Capítulo 4 Resposta em frequência

Documentos relacionados
Capítulo 5 Transformadas de Fourier

Análise de Fourier tempo contínuo

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Capítulo 5 Transformadas de Fourier

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

Transformada de Fourier em tempo discreto

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

1 O Pêndulo de Torção

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

estados. Os estados são influenciados por seus próprios valores passados x

Capítulo 4 Resposta em frequência

Transformadas ortogonais e processamento de sinais não estacionários

ANÁLISE MATEMÁTICA IV A =

Representação de Números no Computador e Erros

Análise Matemática IV

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

2.2 Transformada de Fourier e Espectro Contínuo

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Ánálise de Fourier tempo discreto

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

3. Geometria Analítica Plana

Questões para o concurso de professores Colégio Pedro II

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Geometria Analítica - Aula

Análise Matemática IV Problemas para as Aulas Práticas

Controlabilidade, Observabilidade e Estabilidade

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Sistemas de coordenadas em movimento

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

AULA Subespaço, Base e Dimensão Subespaço.

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

3 Modelagem de motores de passo

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

RI406 - Análise Macroeconômica

Oscilações amortecidas

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

Adriano Pedreira Cattai

Enunciados equivalentes

Aula Expressão do produto misto em coordenadas

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL

Transformada de Fourier

Aula 01 Introdução e Revisão Matemática

Modelagem Matemática em Membranas Biológicas

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Análise Modal. Mecânica Estrutural (10391/1411) 2018 Pedro V. Gamboa. Departamento de Ciências Aeroespaciais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

GRANDEZAS SINUSOIDAIS

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

Sala: Rúbrica do Docente: Registo:

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Divisão (cont.) Obter TODOS os nomes dos empregados que trabalham em TODOS os projectos nos quais Joao trabalha. projectos em que Joao trabalha.

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

CIRCUITOS EM REGIME SINUSOIDAL

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

Análise de sistemas: uma introdução

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

Função do 2 o Grau. Uma aplicação f der emr

Estatística. 6 - Distribuições de Probabilidade de Variáveis Aleatórias Contínuas

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

1.3 submodelo geração e distribuição de viagens

FUNÇÃO REAL DE UMA VARIÁVEL REAL

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

5.10 EXERCÍCIO pg. 215

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Classificação ( ) ( )

Principais Modelos Contínuos

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Atrito Fixação - Básica

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

EXERCÍCIO: BRECHA ALEATÓRIA

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

r = (x 2 + y 2 ) 1 2 θ = arctan y x

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

SISTEMA DE PONTO FLUTUANTE

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

CAPÍTULO 12 REGRA DA CADEIA

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Transcrição:

Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas d Fourir propridads 4.6 Filtragm 4.7 Amostragm rconstrução d sinais 27 4.3 Rsposta m frquência dos SLITs Modlos d spaço d stados são prcisos concisos, mas não tão potnts como a rsposta m frquência Para um SLIT a rsposta m frquência rvla bastant acrca da rlação ntr o sinal d ntrada o sinal d saída Os SLITs podm sr dscritos por modlos d spaço d stados, através d quaçõs à difrnça quaçõs difrnciais Mas modlos d spaço d stados podm dscrvr também sistmas qu não são SLITs Portanto modlos d spaço d stados são mais podrosos, mas com infriors técnicas d dsnho d anális 28

4.3 Rsposta m frquência dos SLITs Dada uma sinusóid na ntrada, a saída do SLIT é uma sinusóid com a msma frquência mas possivlmnt com uma fas amplitud difrnts Dado um sinal d ntrada qu é dscrito como uma soma d sinusóids d crtas frquências, a saída pod sr dscrita como uma soma d sinusóids com a msma frquência mas com a fas amplituds possivlmnt modificadas m cada frquência S a ntrada para um SLIT contínuo é t ntão a saída é H t, ond H é uma constant qu dpnd da frquência da xponncial complxa. Quando a saída do sistma é apnas uma vrsão scalada da ntrada, a ntrada é dnominada d função própria ignfunction 29 4.3 Rsposta m frquência dos SLITs Quando na ntrada tmos t Rais, xt t A saída é dfinida por t Rais, yth t A função H:Rais Complxos é dnominada rsposta m frquência Dfin a rsposta d um SLIT a uma ntrada xponncial complxa numa dada frquência Dfin a pondração qu o sistma impõ nssa xponncial complxa 30 2

4.3 Rsposta m frquência dos SLITs No caso dos sistmas discrtos é smlhant Quando na ntrada tmos n Intiros, xn n A saída é dfinida por n Intiros, ynh n A função H:Rais Complxos é dnominada rsposta m frquência Exist uma difrnça fundamntal ntr o discrto o contínuo n +2πn +4π n logo Rais, H H+2Kπ Dfin a rsposta m frquência d um SLIT discrto como sndo priódica com príodo 2π 3 4.3 Rsposta m frquência dos SLITs Exmplo: Considr um sistma discrto dfinido pla quação às difrnças n Intiros, ynxn+xn-/2 Assumindo qu a ntrada é dada por n Intiros, xn n qu a saída tm a forma n Intiros, ynh n obtmos H n n + n- /2 Rsolvndo m ordm a H obtmos Rais, H+ - /2 32 3

4.3 Rsposta m frquência dos SLITs Exmplo: Considr um sistma contínuo com ntrada x saída y rlacionadas pla quação difrncial t Rais, RC dyt/dt + ytxt Assumindo qu a ntrada é dada por t Rais, xt t qu a saída tm a forma t Rais, yth t obtmos RCH t +H t t ou sa, Rais, H/+RC 33 4.3 Rsposta m frquência dos SLITs Equação às difrnças linar Considr um sistma dscrito por uma quação às difrnças linar n Intiros, a 0 yn+a yn-+...+a N yn-n b o xn+b xn-+...+b M xn-m Os coficints podm sr rais ou complxos Assumindo qu a ntrada é dada por xn n qu a saída tm a forma ynh n obtmos a 0 H n +a H n- +...+a N H n-n b o n +b n- +...+b M n-m ou sa, b Rais, H a 0 0 + b + a +... + b +... + a M M N N 34 4

4.3 Rsposta m frquência dos SLITs Equação difrncial Considr um sistma dscrito por uma quação difrncial N M, N + 0 t d y dy d x dx t Rais a t +... + a t + a0 y t bm t +... + b t N M dt dt dt dt Os coficints podm sr rais ou complxos Assumindo qu a ntrada é dada por xt t qu a saída tm a forma yth t obtmos a N w N H t +...+a wh t +a 0 H t b M w M t +...+b w t +b 0 t ou sa, b Rais, H a M N M N +... + b + b +... + a + a 0 0 b x 35 4.3 Rsposta m frquência dos SLITs Pod-s xprimir uma rlação ntr sinusóids a xponncial complxa cost t + -t /2 S for st o sinal d ntrada para um SLIT com rsposta m frquência H ntão a saída srá yth t + H- -t /2 Quando a ntrada é ral normalmnt a saída d um SLIT é também ral, o qu implica qu H H * - Esta propridad é dnominada d simtria conugada 36 5

4.3 Rsposta m frquência dos SLITs A rsposta m frquência d um sistma ral cuos sinais d ntrada d saída são rais é simétrica conugada Quando a ntrada for xtcost a saída srá t Rais, ytr{h t } Escrvndo H na forma polar H H H prmit-nos obtr a saída como t Rais, y t H cos t + H H consist d um ganho H d uma fas H qu o sinal d ntrada sinusoidal d frquência sofr. 37 4.3 Rsposta m frquência dos SLITs Exmplo: Considr um sistma, qu raliza um atraso T, dfinido como ytxt-t Assumindo qu a ntrada é dada por t Rais, xt t qu a saída tm a forma t Rais, yth t obtmos H -T m qu H H -T Uma ntrada na forma d cosno gra na saída um cosno da msma amplitud com um dslocamnto d fas Um filtro com uma rsposta m amplitud unitária constant é dnominado filtro passa-tudo 38 6

4.3 Rsposta m frquência dos SLITs Exmplo: Considr o sistma discrto dfinido pla quação às difrnças n Intiros, ynxn+xn-/2 A rsposta m frquência H é dada por Rais, H+ - /2 A rsposta d frquência m amplitud é dada por H + - /2 Est sistma tm um comportamnto d um filtro passa-baixo 39 4.3 Rsposta m frquência dos SLITs A rsposta m frquência diz-nos tudo o qu prcisamos sabr sobr um sistma Podmos passar a rprsntar um SLIT através da sua rsposta m frquência, m lugar da rprsntação ntrada/saída, modlo d spaço d stados, da rsposta impulsiva,... 40 7

4.3 Rsposta m frquência dos SLITs Exmplo Suponha-s qu a rsposta m frquência H d um SLIT discrto é dada por Hcos2 Considrmos o sinal d ntrada x n n par n ímpar qu pod scrito como xncosπn A saída é dada por y n H π cos πn + H π cos πn x n Ou sa o sistma não altra a ntrada 4 4.3 Rsposta m frquência dos SLITs Exmplo Suponha-s qu a rsposta m frquência H d um SLIT discrto é dada por Hcos2 Considrmos o sinal d ntrada xn5 qu pod scrito como xn5cos0n A saída é dada por y n H 0 5cos0n + H 0 5 x n Ou sa o sistma não altra a ntrada 42 8

4.3 Rsposta m frquência dos SLITs Exmplo Suponha-s qu a rsposta m frquência H d um SLIT discrto é dada por Hcos2 Considrmos o sinal d ntrada xncosπn/2 A saída é dada por y n H π / 2 cos πn / 2 + H π / 2 cos πn / 2 + π cos πn / 2 x n Ou sa o sistma invrt a ntrada 43 4.3 Rsposta m frquência dos SLITs Exmplo Suponha-s qu a rsposta m frquência H d um SLIT discrto é dada por Hcos2 Considrmos o sinal d ntrada xncosπn/4 A saída é dada por y n H π / 4 cos πn / 4 + H π / 4 0 Ou sa o sistma anula a ntrada 44 9

4.3 Rsposta m frquência dos SLITs Rsposta m frquência para séris d Fourir No caso das séris d Fourir rprsntámos o sinal d ntrada como t Rais x t + X k t k 0, k ond 0 2π/p A saída do SLIT para a ntrada priódica é rprsntada por t, y t k t k 0 0 k Para um SLIT, s a ntrada é dada pla soma d xponnciais complxas, a saída é dada pla soma das msmas xponnciais, cada uma scalada pla rsposta m frquência, avaliada na frquência corrspondnt 45 4.3 Rsposta m frquência dos SLITs Todas as componnts d frquência da saída stão na ntrada A saída consist das msmas componnts m frquência da ntrada m qu cada componnt aparc scalada Os SLITs podm sr usados para ampliar ou suprimir crtas componnts d frquência, opração dnominada d filtragm A rsposta m frquência caractriza quais as frquências qu são ampliadas ou suprimidas também quais os dslocamntos d fas impostos plo sistma nas componnts individuais 46 0

Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas d Fourir propridads 4.6 Filtragm 4.7 Amostragm rconstrução d sinais 47 4.4 Anális da composição d sistmas através da rsposta m frquência A composição d sistmas prmit-nos obtr sistmas mais complxos Ao intrligarmos SLITs, o sistma composto rsultant também é um SLIT Conhcndo a rsposta m frquência d cada SLIT podmos dtrminar a rsposta m frquência do sistma composto Isto prmit-nos construir sistmas complxos intrssants através da intrligação d blocos d componnts simpls Esta composição aplica-s d modo idêntico a sistmas discrtos contínuos 48

4.4 Anális da composição d sistmas através da rsposta m frquência Ligação m séri ou cascata Sistma S Rsposta impulsiva h t Rsposta m frquência H Sistma S 2 Rsposta impulsiva h 2 t Rsposta m frquência H 2 Sistma S rsultant Rsposta impulsiva hth t*h 2 t Rsposta m frquência HH.H 2 49 4.4 Anális da composição d sistmas através da rsposta m frquência Ligação m parallo S y Sistma S Rsposta impulsiva h t Rsposta m frquência H x S S 2 + y 2 y Sistma S 2 Rsposta impulsiva h 2 t Rsposta m frquência H 2 Sistma S rsultant Rsposta impulsiva hth t+h 2 t Rsposta m frquência HH +H 2 50 2

4.4 Anális da composição d sistmas através da rsposta m frquência Ligação com rtroacção Sistma S Rsposta impulsiva h t Rsposta m frquência H Sistma S 2 Rsposta impulsiva h 2 t Rsposta m frquência H 2 Sistma S rsultant Não é possívl calcular a rsposta impulsiva d uma forma dircta Rsposta m frquência H H H H 2 5 4.4 Anális da composição d sistmas através da rsposta m frquência Exmplo: Considr um sistma discrto com rtroacção como na figura Considr S dfinido como yn0.9 xn Considr S 2 dfinido como ynxn- H 0.9 H 2 - A rsposta m frquência do sistma édada por 0.9 H 0.9 52 3

4.4 Anális da composição d sistmas através da rsposta m frquência Exrcício: Dtrmin a rsposta m frquência do sguint sistma H2 H H2 H H2 H H H H2 H H H 2 2 2 53 Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas d Fourir propridads 4.6 Filtragm 4.7 Amostragm rconstrução d sinais 54 4

4.5 Transformadas d Fourir propridads As séris d Fourir dscrvm um sinal priódico como uma soma d xponnciais complxas S a ntrada do SLIT é uma soma d xponnciais complxas, ntão a rsposta m frquência do SLIT dscrv a rsposta a cada uma das componnts xponnciais Podmos calcular a rsposta do sistma a qualqur sinal d ntrada priódico combinando as rspostas aos componnts individuais A rsposta d um SLIT a qualqur sinal d ntrada pod sr obtida como a convolução do sinal d ntrada a rsposta impulsiva A rsposta impulsiva a rsposta m frquência dão-nos a msma informação acrca do sistma mas m formas difrnts Vamos vr agora qu a rsposta impulsiva a rsposta m frquência stão rlacionadas através da Transformada d Fourir 55 4.5 Transformadas d Fourir propridads Vimos antriormnt qu sndo a ntrada dada por xn n a saída tinha a forma ynh n Um SLIT com rsposta impulsiva hn aprsnta como saída yn corrspondnt ao sinal xn S colocarmos na ntrada dst sistma xn n obtmos n Intiros, Comparando as duas xprssõs obtmos h m n Intiros, y n h n x n m x n m y n h n x n m h m nm n m h m m h m Rais, H m m 56 5

4.5 Transformadas d Fourir propridads Transformada d Fourir Discrta n Rais, H h n n A rsposta m frquência H é a Transformada d Fourir da rsposta impulsiva A rsposta m frquência pod sr dscrita como a soma pondrada d xponnciais complxas, cuos psos são as amostras da rsposta impulsiva 57 4.5 Transformadas d Fourir propridads S hn é ral ntão HH*- qu é a propridad da simtria conugada Isto implica qu H- H qu significa qu para qualqur SLIT com uma rsposta impulsiva ral, uma xponncial complxa com frquência sofr a msma altração d amplitud qu uma xponncial complxa com frquência - Not também qu Rais, H+2π H ou sa qu a Transformada d Fourir Discrta é priódica com príodo 2π 58 6

7 59 4.5 Transformadas d Fourir propridads Exmplo Considr um sistma qu provoca um atraso d M amostras A rsposta impulsiva dst sistma é dada por n Intiros, hnδn-m Podmos obtr a rsposta m frquência calculando a TF Est rsultado mostra-nos qu H, dado qu um atraso não muda a amplitud apnas altra a fas do sinal d ntrada M m m m m M m m h H Rais δ, 60 4.5 Transformadas d Fourir propridads Vimos antriormnt qu sndo a ntrada dada por xt t a saída tinha a forma yth t Um SLIT com rsposta impulsiva ht aprsnta como saída yt corrspondnt ao sinal xt S colocarmos na ntrada dst sistma xt t obtmos Comparando as duas xprssõs obtmos τ τ τ d h H Rais, τ τ τ d t x h t x t h t y Rais t, τ τ τ τ τ τ d h d h t x t h t y Rais t t t,

4.5 Transformadas d Fourir propridads Transformada d Fourir Contínua h Rais, H t t dt A rsposta m frquência é a Transformada d Fourir da rsposta impulsiva 6 4.5 Transformadas d Fourir propridads Exmplo Considr um sistma qu provoca um atraso d T sgundos A rsposta impulsiva dst sistma é dada por t Rais, htδt-t Podmos obtr a rsposta m frquência calculando a TF Rais, H h t T t δ t T dt t dt Est rsultado mostra-nos qu H, dado qu um atraso não muda a amplitud apnas altra a fas do sinal d ntrada 62 8

9 63 4.5 Transformadas d Fourir propridads Exmplo Considr o sguint rctângulo discrto A Transformada d Fourir é dada por 4 0 4 3 0 X m x X m m m m 64 4.5 Transformadas d Fourir propridads Exmplo Considr o sguint rctângulo contínuo A Transformada d Fourir é dada por 0 2 / 2 / sin 2 / 2 / 2 / 2 / 0 X w dt dt t x X t t

4.5 Transformadas d Fourir propridads Transformadas invrsas Invrsa da Transformada d Fourir discrta 2π n x n X d 2π 0 Invrsa da Transformada d Fourir contínua t x t X d 2π 65 4.5 Transformadas d Fourir propridads Cálculo da transformada invrsa Através da dfinição Divisão m fracçõs simpls Através da quivalência rlativa a sinais básicos Através das propridads 66 20

4.5 Transformadas d Fourir propridads 67 4.5 Transformadas d Fourir propridads 68 2

4.5 Transformadas d Fourir propridads - Tmpo contínuo - Frquência não priódica - Tmpo discrto - Frquência Priódica Priódico no tmpo Frquência discrta x t + X k t k 0 k X x n m p k 0 X k p m 0t p 0 X k x t k0n p p m 0 x m dt mk0 Não priódico no tmpo Frquência contínua x t X t dt n X x n t x t X d 2π n 2π n x n X d 2π 0 69 70 22

4.5 Transformadas d Fourir propridads Exrcício: Calcul a Transformada d Fourir d: xt -2t ut xn/2 n un Calcul a Transformada d Fourir invrsa d X 3 2 4 8 X 2 + 7 + 2 7 4.5 Transformadas d Fourir propridads Transformada d Fourir d sinais finitos Considr um sinal discrto yn qu é finito Dfina-s um sinal priódico xn como ond + m n Intiros, x n y' n mp y n n Intiros, y' n 0 s n [0, p ] outros casos O sinal xn é priódico portanto pod sr rprsntado através da séri d Fourir O sinal y n é um sinal discrto gnérico portanto tm transformada d Fourir 72 23

4.5 Transformadas d Fourir propridads Rais, Y ' n p n 0 y' n y n n n k Intiros, X k p n 0 p n 0 x n y n nk0 nk0 k Intiros X k Y ' k, 0 73 4.5 Transformadas d Fourir propridads Transformada d Fourir para sinais d fala 74 24

4.5 Transformadas d Fourir propridads 75 4.5 Transformadas d Fourir propridads 76 25

4.5 Transformadas d Fourir propridads 77 4.5 Transformadas d Fourir propridads Transformada d Fourir d sinais priódicos A transformada d Fourir vai sr basada m funçõs dlta A séri d Fourir prmit-nos trabalhar numa rprsntação no domínio da frquência d um sinal priódico sm lidar com as funçõs dlta d Dirac Suponha-s qu um sinal xt tm transformada d Fourir Rais, X 2πδ- 0 Usando a Transformada d Fourir Invrsa obtmos t 0t t Rais, x t 2πδ 0 d 2π A séri d Fourir para xt é m Intiros, X m m 0 outros 78 26

4.5 Transformadas d Fourir propridads Supondo agora qu xt tm múltiplos dltas d Dirac na sua transformada d Fourir, cada um com difrnts psos, X 2π X m δ m0 m Rais rsulta através da Transformada d Fourir Invrsa t Rais x t + X m t m 0, m Esta quação rlaciona para sinais priódicos a Transformada d Fourir as Séris d Fourir 79 4.5 Transformadas d Fourir propridads Exmplo Considr o sinal xt dado por t Rais, x t cos 0t Por inspcção da Tabla vrificamos qu / 2 m m Intiros, X m 0 outros Existm apnas dois coficints da Séri d Fourir não nulos Rais, X πδ + 0 + πδ 0 80 27

4.5 Transformadas d Fourir propridads Exmplo Considr a sguint onda quadrada Os coficints da Séri d Fourir são m Intiros, X m / 2 0 / mπ m 0 m par m 0 m ímpar 8 4.5 Transformadas d Fourir propridads Exrcício Calcul a Transformada d Fourir do sguint sinal... xt 2... - 0 2 3 t 82 28