Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Tamanho: px
Começar a partir da página:

Download "Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática"

Transcrição

1 Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form do msmo sinal, a força qu s xrc ntr las é rpulsiva portanto não é o campo lctrostático qu raliza trabalho. Para trazrmos a carga q 2 do até P 2 tmos d lh aplicar uma força xtrior F = F2, com F2 = q2e1, sndo E 1 o campo lctrostático criado pla carga q 1. O trabalho ralizado pla força xtrna é dado por S dfinirmos a nrgia lctrostática d um sistma d cargas pontuais, como uma nrgia d intracção, com o caráctr d uma nrgia potncial, igual ao trabalho qu um agnt xtrior prcisa ralizar para formar uma distribuição, supondo qu as cargas são trazidas do até às posiçõs finais, uma a uma, tm-s Rpar qu a nrgia lctrostática d um sistma d 1 carga é nula pois uma carga não stá m intracção com nnhuma outra qu não s stá a contabilizar a nrgia intrínsca d cada carga pois nss caso la sria infinita por s tratar d uma carga pontual. A nrgia lctrostática d um sistma d 2 cargas srá igual à soma da nrgia d um sistma d uma carga ( w ( 1) = 0), com o trabalho qu um agnt xtrior prcisa d ralizar para trazr a 2ª carga do até à posição final. Rpar qu s ss trabalho for positivo a nrgia lctrostática d um sistma d 2 cargas também é positiva: 1

2 Considrmos agora a opração invrsa: Uma vz formado o sistma d 2 cargas, transportamos agora q1 d P1 até ao sob a acção do campo da carga q2 (vd. Fig. ) Nst caso, s as duas cargas form do msmo sinal, é o campo lctrostático qu raliza o trabalho, através da força = q E F1 1 2 A nrgia lctrostática final é agora Assim conclui-s qu o trabalho ralizado plo campo E 2 para lvar a carga q1 d P1 até ao é igual ao trabalho qu s tinha ralizado para trazr q2 do até P2. Vrificamos assim qu no final da opração assim como no início a nrgia lctrostática do sistma é nula. Esta é uma caractrística d um campo consrvativo. Exist aqui uma analogia com um campo gravítico rssalvando a difrnça qu no caso das massas las são smpr positivas nquanto qu as cargas léctricas podm sr positivas ou ngativas. Em particular, s as cargas form d sinal contrário, tm-s 2

3 Em qualqur dos casos tm-s 1 q1q2 w (2) =, 4π ε r 0 pois s q 1q2 < 0 w ( 2) < 0. Sistma d 3 cargas pontuais 12 Considr-s agora uma trcira carga trazida do até ao ponto P3, na prsnça das outras 2. Fig. S ar cargas tivrm todas o msmo sinal, a carga q3 é trazida dvido ao trabalho d uma força xtrior F' = F3, com F3 = q3( E1 + E2 ). O trabalho ralizado por sta força é dado por Sguindo o msmo raciocínio aplicado ao sistma d 2 cargas, a nrgia lctrostática d um sistma d 3 cargas srá dado por: 3

4 Sistma d n cargas Os rsultados antriors podm gnralizar-s com facilidad para sndo O potncial léctrico no ponto i (dvido a todas as outras cargas xcpto i). Enrgia lctrostática d distribuiçõs d carga m volum m suprfíci Substituindo qi por dq = ρ dv dq = σ ds a prssão antrior 1 1 w = ρ Vdv + σ VdS 2 2 V Ond V é o potncial m cada lmnto d volum dv ou lmnto d suprfíci ds, variávl portanto quando da intgração. Not-s qu como dv/r é um infinitésimo d 2ª ordm ds/r é um infinitésimo d 1ª ordm,a xprssão antrior pod contr agora a nrgia intrínsca m cada lmnto d volum ou d suprfíci, o qu não acontcia com as cargas pontuais, ond a nrgia d cada carga tinha d ficar d fora snão o rsultado sria. Fluxo d campo lctrostático Fluxo d campo lctrostático E criado por uma carga pontual através d uma suprfíci sférica cntrada na carga. S 4

5 Considr-s agora o fluxo do campo E criado por uma carga pontual, através d uma suprfíci com uma forma qualqur. i) A carga stá no intrior da suprfíci Considr-s m particular o fluxo lmntar dφ através do lmnto d suprfíci ds ds é o lmnto d suprfíci rcortado sobr uma suprfíci sférica d raio r qu pass plo ponto P Not-s qu ds' 0 quando o ângulo Tm-s assim ( grad P n) π. 2 S intgrarmos agora sobr a suprfíci sférica d raio r, tm-s 5

6 S intgrarmos agora sobr a suprfíci sférica d raio r, tm-s O rsultado a qu s chga é o msmo, indpndntmnt da forma da suprfíci. ii) A carga stá no xtrior da suprfíci. S fizrmos passar agora uma suprfíci d raio r 1 por P 1 uma suprfíci d raio r2 por P2 (vd. Fig. ), a intgração sobr a suprfíci d raio r2 é igual a q/ε 0, nquanto qu a intgração sobr a suprfíci d raio r1 é igual a q/ε 0 (pois qu agora a normal n 1 é dirigida para dntro).not-s qu a normal a uma suprfíci fchada é smpr dirigida para o xtrior. Tmos ntão como rsultado final para st caso φ = 0. Torma d Gauss (da Elctrostática) Examplo: 6

7 Exmplo: Fluxo através da fac d um cubo com uma carga no cntro Contudo, s a carga não stivr no cntro, mbora o fluxo através da suprfíci total do cubo sja q/ε 0, não podmos concluir nada sobr o fluxo através d cada fac. Exmplo: 7

= 0. O campo electrostático não tem fontes de circulação, não roda.

= 0. O campo electrostático não tem fontes de circulação, não roda. Aula Tórica nº 3-7 Prof. Rsponsávl: Mário J. Pinhiro 1. Opradors difrnciais (conclusão) Exrcício 1: Provar qu rot gradu = 1. Usando coordnadas cartsianas. rot u x u y u z U U grad U = = u x +... = x y

Leia mais

= σ, pelo que as linhas de corrente coincidem com as l. de f. do campo (se o meio for homogéneo) e portanto ter-se-à. c E

= σ, pelo que as linhas de corrente coincidem com as l. de f. do campo (se o meio for homogéneo) e portanto ter-se-à. c E Aula Tórica nº 17 LEM-2006/2007 Prof. rsponsávl: Mário Pinhiro Campos Eléctricos d origm não Elctrostática Considr-s um condutor fchado sobr si próprio prcorrido por uma corrnt d dnsidad J. S calcularmos

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer

Problemas de Electromagnetismo e Óptica LEAN + MEAer Problmas d Elctromagntismo Óptica LEAN MEAr. Elctrostática: Li d Coulomb, Potncial Eléctrico P-.. y - q = - nc,m,m q = nc Dtrmin o campo léctrico o potncial no ponto (,) rsultants das cargas rprsntadas

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Aula Teórica nº 11 LEM-2006/2007

Aula Teórica nº 11 LEM-2006/2007 Prof. Rsponsávl: Mário J. Pinhiro Aula Tórica nº 11 LEM-2006/2007 Propridads das linhas d força do campo Dfin-s linhas d força (l.d.f.) do campo E como uma linha matmática imaginária à qual o vctor E é

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL Univrsidad Fdral d Alagoas Cntro d cnologia Curso d Engnharia Civil Disciplina: Mcânica dos Sólidos Código: ECIV030 Profssor: Eduardo Nobr Lags orção m Barras d Sção ransvrsal Dlgada Fchada Mació/AL Sção

Leia mais

Curso de Engenharia Elétrica Disciplina: Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno:

Curso de Engenharia Elétrica Disciplina: Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno: Curso d Engnharia Elétrica Disciplina: Nota: Rubrica Coordnador Profssor: Rudson Alvs Aluno: Turma: EE4N Smstr: 2 sm/2015 Data: 22/04/2015 Avaliação: 1 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

EXERCÍCIO: BRECHA ALEATÓRIA

EXERCÍCIO: BRECHA ALEATÓRIA EXERCÍCIO: BRECHA ALEATÓRIA Considr uma manobra qu tm d sr fita nas brchas ntr passagns d vículos do fluxo principal rqur uma brcha mínima d 6 sgundos para qu o motorista possa xcutá-la Uma contagm d tráfgo

Leia mais

Justifique todas as passagens

Justifique todas as passagens ā Prova d Cálculo II - MAT2 - IOUSP /2/204 Nom : GABARITO N ō USP : Profssor : Oswaldo Rio Branco d Olivira Justifiqu todas as passagns Q 2 4 5 Total N. Considr a função f : R 2 R dfinida por f(x,y) =

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6 Introdução ao Soluçõs dos Exrcícios Propostos Capítulo 6 1. Dadas as squências x[n] abaixo com sus rspctivos comprimntos, ncontr as transformadas discrtas d Fourir: a x[n] = n, para n < 4 X[] = 6 X[1]

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

Curso de Engenharia Química Disciplina: Física I Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno:

Curso de Engenharia Química Disciplina: Física I Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno: Curso d Engnharia Química Disciplina: Física I Nota: Rubrica Coordnador Profssor: Rudson Alvs Aluno: Turma: EQ2M Smstr: 2 sm/2016 Data: 25/11/2016 Avaliação: 2 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=.

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=. Prova d Conhcimntos Espcíficos 1 a QUESTÃO: (1,5 ponto) Considr a função f dfinida por Dtrmin: -x f(x). a) as quaçõs das assíntotas horizontais vrticais, caso xistam; b) as coordnadas dos pontos d máximo

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

TRABALHO DA FORÇA ELÉTRICA I) RESUMO DAS PRINCIPAIS FÓRMULAS E TEORIAS: A) TABELA -------------------------------------------------------------------------------------------------------------------------------

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) - 2009/1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 PROBLEMA 1 (Cilindros coaxiais) [ 2,5 ponto(s)] Um cilindro condutor

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

11 Trabalho e Variação da Energia Elétrica. Exercício Resolvido 11.1 Uma força depende das coordenadas de acordo com a seguinte expressão: x y z.

11 Trabalho e Variação da Energia Elétrica. Exercício Resolvido 11.1 Uma força depende das coordenadas de acordo com a seguinte expressão: x y z. Trabalho Variação da Enrgia Elétrica Exrcícios solvidos Exrcício solvido. Uma força dpnd das coordnadas d acordo com a sguint xprssão: F = axzi + byxj + czk Ond a, b c são constants adquadas. Essa força

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24 Microconomia II Rsolução 4 a Lista d Exrcícios Prof. Elain Toldo Pazllo Capítulo 24 1. Exrcícios 2, 3, 4, 7, 8, 9, 11 12 do Capítulo 24 do Varian. s no final do livro. 2. Uma mprsa monopolista opra com

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Anális Matmática IV Problmas para as Aulas Práticas 7 d Abril d 003 Smana 1. Us as quaçõs d cauchy-rimann para dtrminar o conjunto dos pontos do plano complo ond as sguints funçõs admitm drivada calcul

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

Distribuição de Fermi-Dirac

Distribuição de Fermi-Dirac Distribuição d rmi-dirac Vamos inicialmnt lmbrar as caractrísticas d uma colção d férmions: n( ) α + α nrgia d rmi NC 076 - ísica Modrna f D () - Limits d validad da distribuição d Maxwll-Boltzmann: λ

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES voc m o c voc RESOLUÇÃO voc A1 A4 (ABCD) = AB.BC AB.2 = 6 AB = 3 cm (BCFE) = BC.BE 2.BE = 10 BE = 5 cm Um dos lados vai tr a mdida 10-2x o outro 8-2x. A altura

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática Univrsidad Fdral do Rio d Janiro INSTITUTO DE MATEMÁTICA Dpartamnto d Matmática Gabarito da 1 a prova d Gomtria difrncial - 20/09/2018 - Mônica 1. Sja α(s) uma curva rgular plana paramtrizada plo comprimnto

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor.

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor. Aulas Práticas d Matmática II Mstrado m Arquitctura o Smstr Fica 1 Polinómios d Talor d um campo scalar. Rcord qu os polinómios d Talor são uma important frramnta para studar o comportamnto d uma função

Leia mais

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção COLÉGIO PAULO VI Ficha d Trabalho Matmática ºano Tmas: Trigonomtria ( Triângulo rctângulo círculo trigonométrico) Proposta d corrcção Rlmbrar qu um radiano é, m qualqur circunfrência, a amplitud do arco

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matmática A Etnsivo V. 6 Rsolva.) a) Aula. ( )

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia REC2010 MICROECONOMIA II SEGUNDA PROVA (2011) ROBERTO GUENA (1) Considr uma indústria m concorrência prfita formada por mprsas idênticas. Para produzir, cada mprsa dv arcar com um custo quas fixo F = 1.

Leia mais

ELECTROMAGNETISMO. TESTE 1 4 de Abril de 2009 RESOLUÇÕES

ELECTROMAGNETISMO. TESTE 1 4 de Abril de 2009 RESOLUÇÕES LTROMAGNTIMO TT 4 d Abil d 009 ROLUÇÕ a Dvido à simtia das cagas, o campo léctico m qualqu ponto no io dos é paallo a ss io, ou sja a componnt é smp nula Paa > 0, o sntido do y campo léctico é o sntido

Leia mais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO Tnsor d Tnsõs ij Tnsõs Principais ij Tnsõs Principais Estado d tnsão D Estado plano d tnsão I I I P p P ( ), x x x ± I, I, I Invariants das tnsõs z x I x z zx

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Teste Intermédio 2014

Teste Intermédio 2014 Tst Intrmédio 2014 Física Química A 11. ano 12.02.2014 Sugstão d rsolução GRUPO I 1. D acordo com o txto, para lvar a tmpratura, d uma dada massa d água, d 100 C, são ncssários 5 minutos, nquanto para

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

TERMILOGIA NBR 6158 TOLERÂNCIAS E AJUSTES (primeira e segunda aula)

TERMILOGIA NBR 6158 TOLERÂNCIAS E AJUSTES (primeira e segunda aula) TERMILOGIA NBR 6158 TOLERÂNCIAS E AJUSTES (primira sgunda aula) 1. Dimnsão Eftiva Dimnsão obtida mdindo a pça com instrumnto apropriado 2. Dimnsão Limit Mor valor admissívl qu a pça pod sr fabricada 3.

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio Matrial Tórico - Módulo d Gomtria Anaĺıtica Círculos Trciro Ano - Médio Autor: Prof. Anglo Papa Nto Rvisor: Prof. Antonio Caminha M. Nto 9 d julho d 018 1 Equação rduzida d um círculo Considrmos um ponto

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES PÁGINA 26 16 A) COMBINAÇÃO SIMPLES Bca possui 12 pars d sapatos dos quais la vai scolhr 5 pars. Algumas das maniras são rprsntadas plas imagns abaixo: 5 pars

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

ELECTROMAGNETISMO. EXAME 2ª Época 6 de Julho de 2009 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME 2ª Época 6 de Julho de 2009 RESOLUÇÕES ELECTROMAGNETISMO EXAME ª Época d Julho d 009 RESOLUÇÕES As spostas a algumas das pguntas dvm s acompanhada d sumas ilustativos, u não são poduzidos aui ) a D modo gal F k Nst caso, a foça cida pla caga

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

Determinação da carga específica do electrão, e/m

Determinação da carga específica do electrão, e/m Dtrinação da carga spcífica do lctrão, / Dpartanto d Física da FCTUC Coibra 003 Dtrinação da carga spcífica do lctrão, / 1. Objctivo i) studar o ovinto d partículas carrgadas (lctrõs) sob a acção d u capo

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº Estatística I - Licnciatura m MAEG º Ano PADEF Junho 5 Part tórica Prova 753519 Nom: Nº 1. Prguntas d rsposta fchada ( valors) Para cada afirmação, assinal s sta é Vrdadira (V) ou Falsa (F). Uma rsposta

Leia mais

Algumas distribuições de variáveis aleatórias discretas importantes:

Algumas distribuições de variáveis aleatórias discretas importantes: Algumas distribuiçõs d variávis alatórias discrtas importants: Distribuição Uniform Discrta Enquadram-s aqui as distribuiçõs m qu os possívis valors da variávl alatória tnham todos a msma probabilidad

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

Módulo de Círculo Trigonométrico. Secante, Cossecante e Cotangente. 1 a série E.M.

Módulo de Círculo Trigonométrico. Secante, Cossecante e Cotangente. 1 a série E.M. Módulo d Círculo Trigonométrico Scant, Cosscant Cotangnt a séri EM Círculo Trigonométrico Scant, Cosscant Cotangnt Exrcícios Introdutórios ] π Exrcício Sja α ; π tal qu sn α, dtrmin, s xistir, o rsultado

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais