MATEMÁTICA INSTRUMENTAL PROF. BENFICA
|
|
|
- Ana Vitória Cortês de Santarém
- 8 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA INSTRUMENTAL PROF. BENFICA LISTA Função Exponencial. Usando a ecnologia de uma calculadora pode-se calcular a divisão de por 4 e ober um resulado igual a Enre as alernaivas abaixo, assinale a de menor valor: ( ) Admia que um ipo de eucalipo enha expecaiva de crescimeno exponencial, nos primeiros anos após seu planio, modelado pela função y() = a, na qual y represena a alura da plana em mero, é considerado em ano, e a é uma consane maior que. O gráfico represena a função y. Admia ainda que y(0) fornece a alura da muda quando planada, e deseja-se corar os eucalipos quando as mudas crescerem 7, m após o planio. O empo enre a planação e o core, em ano, é igual a log 7. log.
2 4. A figura descreve o gráfico de uma função exponencial do ipo y = a x, de em. Nessa função, o valor de y para x = 0, é igual a log log log,. O governo de uma cidade esá preocupado com a possível epidemia de uma doença infecoconagiosa causada por bacéria. Para decidir que medidas omar, deve calcular a velocidade de reprodução da bacéria. Em experiências laboraoriais de uma culura baceriana, inicialmene com 40 mil unidades, obeve-se a fórmula para a população: p() = 40 em que é o empo, em hora, e p() é a população, em milhares de bacérias. Em relação à quanidade inicial de bacérias, após 0 min, a população será reduzida a um erço. reduzida à meade. reduzida a dois erços. duplicada. riplicada. 6. Quano vale Quano vale + + 9??
3 . O valor exao da raiz cúbica de.7 é Em maemáica, poências são valores que represenam uma muliplicação sucessiva de um número. Usando as propriedades de poenciação, qual dos números a seguir é o maior? O valor da expressão é. Assinale o que for correo. 0) + >. 0) 6 = ) 0 69 = ) +. = ). = 7. A miose é uma divisão celular, na qual uma célula duplica o seu coneúdo, dividindo-se em duas, dias células-filhas. Cada uma desas células-filhas se divide, dando origem a ouras duas, oalizando quaro células-filhas e, assim, o processo coninua se repeindo sucessivamene. Assinale a alernaiva que corresponde, correamene, à função que represena o processo da miose. f:, dada por f(x) = x f:, dada por f: *, dada por x f(x) = x f(x) = f: + +, dada por x f(x) = f:, dada por f(x) = x + +. O sindicao de rabalhadores de uma empresa sugere que o piso salarial da classe seja de R$.00,00, propondo um aumeno percenual fixo por cada ano dedicado ao rabalho. A expressão que corresponde à proposa salarial (s), em função do empo de serviço (), em anos, é s() =.00 (,0). De acordo com a proposa do sindicao, o salário de um profissional dessa empresa com anos de empo de empo de serviço será, em reais,
4 7.46,00..9,4..709,6..70, ,6. 4. Os biólogos observaram que, em condições ideais, o número de bacérias Q() em uma culura cresce exponencialmene com o empo, de acordo com a lei k Q() = Q0 e, sendo k > 0 uma consane que depende da naureza das bacérias; o número irracional e vale aproximadamene,7 e Q 0 é a quanidade inicial de bacérias. Se uma culura em inicialmene bacérias e, 0 minuos depois, aumenou para.000, quanas bacérias esarão presenes depois de hora? 4, 0 4, 4 0 4,0 0 4, , 0. Analise as seguines afirmações: I. A subração II. é maior que. III. (6 ) é igual a 0. Esão correas as afirmaivas I e II apenas. I e III apenas. II e III apenas. I, II e III. 6. A expressão ( ). ( ) equivale a. (0,) é equivalene a 7. Os dados esaísicos sobre violência no rânsio nos mosram que é a segunda maior causa de mores no Brasil, sendo que 9% dos acidenes de rânsio são causados por erro ou negligência humana e a principal falha comeida pelos brasileiros nas ruas e esradas é usar o celular ao volane. Considere que em 0 foram regisrados mores decorrenes de acidenes de rânsio e deses, 40% das víimas esavam em moos. Texo Adapado: Revisa Veja, 9/0/0. A função N() = N 0(,) fornece o número de víimas que esavam de moo a parir de 0, sendo o número de anos e N 0 o número de víimas que esavam em moo em 0. Nessas condições, o número previso de víimas em moo para 0 será de:
5 . Leia as noícias: A NGC 4 esá localizada a cerca de 4 milhões de anos-luz da Terra e se enquadra enre as galáxias jovens que possui um buraco negro em inensa aividade. Mas ela não é só lembrada por esses quesios. A NGC 4 é conhecida por asrônomos como o olho de Sauron, uma referência ao vilão do filme O Senhor dos Anéis. (hp:// Acesso em: ) Cienisas briânicos conseguiram fazer com que um microscópio óico conseguisse enxergar objeos de cerca de 0, m, oferecendo um olhar inédio sobre o mundo nanoscópico. (hp://noicias.uol.com.br/ulno/cienciaesaude/ulimas-noicias/bbc/0/0/0/ com-meodo-inovador-cienisas-criam-microscopio-mais-poene-do-mundo.jhm Acesso em: Adapado) Assinale a alernaiva que apresena os números em desaque no exo, escrios em noação cienífica. 7 4, 0 e,0 7 4, 0 e,0 7 4, 0 e, , 0 e, , 0 e,0 9. Calculando-se o valor da expressão n. 6n n 4, 6 n n ( ) enconra-se 0. Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V 0 corresponde ao seu valor aual. ( ) ( ) V = V 0,64 0 Admiindo que o valor de venda aual do imóvel seja igual a 0 mil reais, calcule seu valor de venda daqui a rês anos.. A desinegração de uma subsância radioaiva é um fenômeno químico modelado pela fórmula k q = 0, onde q represena a quanidade de subsância radioaiva (em gramas) exisene no insane (em horas). Quando o empo é igual a, horas, a quanidade exisene q vale. Enão, o valor da consane k é Um adulo humano saudável abriga cerca de 00 bilhões de bacérias, somene em seu rao digesivo. Esse número de bacérias pode ser escrio como 9 0
6 . Um dos perigos da alimenação humana são os microrganismos, que podem causar diversas doenças e aé levar a óbio. Enre eles, podemos desacar a Salmonella. Aiudes simples como lavar as mãos, armazenar os alimenos em locais apropriados, ajudam a prevenir a conaminação pelos mesmos. Sabendo que cero microrganismo se prolifera rapidamene, dobrando sua população a cada 0 minuos, pode-se concluir que o empo que a população de 00 microrganismos passará a ser composa de.00 indivíduos é: h e min. h e 40 min. h e 0 min. h e min. 4. Um modelo maemáico para deerminar o número de bacérias em deerminado objeo é a função definida por N ( ) = 00, em que é o empo, em horas, a parir da observação inicial. Segundo esse modelo, o empo, em horas, para que a quanidade de bacérias no objeo ainja 7.000, é dado por um número perencene ao inervalo [99, 00]. [, 4]. [6, 7]. [, 4]. [, ].. Para odo número real posiivo a, a expressão + a + a. + a + a. a + a. a + a. + a. a + a + a a é equivalene a 6. A Agência Espacial Nore Americana (NASA) informou que o aseroide YU cruzou o espaço enre a Terra e a Lua no mês de novembro de 0. A ilusração a seguir sugere que o aseroide percorreu sua rajeória no mesmo plano que coném a órbia descria pela Lua em orno da Terra. Na figura, esá indicada a proximidade do aseroide em relação à Terra, ou seja, a menor disância que ele passou da superfície erresre. Com base nessas informações, a menor disância que o aseroide YU passou da superfície da Terra é igual a, 0 km., 0 km., 0 4 km., 0 km., 0 6 km. 6
7 7. Em uma xícara que já coném cera quanidade de açúcar, despeja-se café. A curva a seguir represena a função exponencial M(), que fornece a quanidade de açúcar não dissolvido (em gramas), minuos após o café ser despejado. Pelo gráfico, podemos concluir que 4 7 M() =. 4 0 M() =. 0 M() =. 0 M() =.. Simplificando a expressão 4 + 0,7, obemos Em exo publicado na Folha de S. Paulo, em 6/09/007, o físico Marcelo Gleiser escreveu que áomos êm diâmeros de aproximadamene um décimo de bilionésimo de mero. Escrio em poência de 0, um décimo de bilionésimo é Simplifique: a 6 b xy x y 4 7x y xy ab c 0 0 c 4 4 ab 7
8 f) a + ab+ b (a + (x + y) x + y. Inroduza o faor exerno no radical. a 4 a b r r
Função Exponencial Nível Básico
Função Eponencial - 16 Nível Básico 1. (Imed 16) Em relação à função real definida por g(g()) corresponde a: a) 1. b). c) 3. d). e) 5. g() 1, é correo afirmar que. (Uel 15) A miose é uma divisão celular,
Função Exponencial 2013
Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor
Funções Exponenciais Logarítmicas Modular Inversa
Funções Exponenciais Logarímicas Modular Inversa Prof. Edson. (Unicamp) Considere o gráfico da função y f(x) exibido na figura a seguir. O gráfico da função inversa y f (x) é dado por a) b) c) d) x. Em
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que
Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.
1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra
CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa
CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação
Q = , 03.( )
PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor
Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação
Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal
MATEMÁTICA E SUAS TECNOLOGIAS
1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão
EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 2015
EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 05. (Ia 05) Considere as seguines afirmações sobre números reais: I. Se a expansão decimal de x é infinia e periódica, enão x é um número racional. II..
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A
Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.
dr = ( t ) k. Portanto,
Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de
CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA
CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos
Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação
Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)
Interbits SuperPro Web
Inerbis SuperPro Web 1. O lucro de uma empresa é dado pela expressão maemáica L R C, onde L é o lucro, o cuso da produção e R a receia do produo. Uma fábrica de raores produziu n unidades e verificou que
Professor: Danilo Dacar
Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b
Professor: Danilo Dacar
. (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)
Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2
Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine
Exercícios Sobre Oscilações, Bifurcações e Caos
Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo
= + 3. h t t. h t t. h t t. h t t MATEMÁTICA
MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.
O gráfico que é uma reta
O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber
As cargas das partículas 1, 2 e 3, respectivamente, são:
18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular
12 Integral Indefinida
Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar
RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo
Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário
CORREIOS. Prof. Sérgio Altenfelder
15. Uma pessoa preende medir a alura de um edifício baseado no amanho de sua sombra projeada ao solo. Sabendo-se que a pessoa em 1,70m de alura e as sombras do edifício e da pessoa medem 20m e 20cm respecivamene,
Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL
Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o
Seção 5: Equações Lineares de 1 a Ordem
Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência
Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =
RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas
PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45
PROCESSO SELETIVO 27 2 O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 31. No circuio abaixo, uma fone de resisência inerna desprezível é ligada a um resisor R, cuja resisência pode ser variada por um cursor.
INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.
SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a
TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)
TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:
Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo
Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n
Cálculo Vetorial - Lista de Exercícios
álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos
) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.
ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine
UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III
UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1
2.7 Derivadas e Taxas de Variação
LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como
Experiência IV (aulas 06 e 07) Queda livre
Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III
Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para
QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS
QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo
Curso de preparação para a prova de matemática do ENEM Professor Renato Tião
Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração
Física. Física Módulo 1
Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação
Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial
Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na
Cap. 5 - Tiristores 1
Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,
Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco
Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade
Lista de exercícios 1
Fundamenos de Mecânica - FAP151 Licenciaura em Física - 1 o semesre de 5 Lisa de eercícios 1 Para enregar: eercícios 16 e 17 Algarismos significaios 1) Usando uma régua de madeira, ocê mede o comprimeno
GFI Física por Atividades. Caderno de Trabalhos de Casa
GFI00157 - Física por Aividades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 4 1.1 Velocidade.............................. 4 1.2 Represenações do movimeno................... 8 1.3 Aceleração em uma
Lista de Exercícios nº 3 - Parte IV
DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: [email protected] Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico
18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45
18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene
Introdução às Medidas em Física
Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura [email protected] Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica
GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES
XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 1 a15 de ouubro de
Confiabilidade e Taxa de Falhas
Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ [email protected] Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado
4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.
4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia
MATEMÁTICA RESOLUÇÃO DE EXERCÍCIOS POTENCIAÇÃO E RADICIAÇÃO (APOSTILA 1 PÁGINA 141)
MATEMÁTICA Prof. Rodrigo Pandolfi RESOLUÇÃO DE EXERCÍCIOS POTENCIAÇÃO E RADICIAÇÃO (APOSTILA 1 PÁGINA 141) PRATICANDO (PÁG. 145) 1. (Unisinos 2012) Em uma cultura de bactérias, a população dobra a cada
Função definida por várias sentenças
Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades
Universidade Federal do Rio de Janeiro
Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação
P2 - PROVA DE QUÍMICA GERAL - 07/05/05
P - PROVA DE QUÍMICA GERAL - 07/05/05 Nome: Nº de Marícula: Gabario Turma: Assinaura: Quesão Valor Grau Revisão a,0 a,0 3 a,0 4 a,0 5 a,0 Toal 0,0 Consanes: R 8,34 J mol - K - R 0,08 am L mol - K - am
MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel
MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel [email protected], [email protected] Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios
QUESTÃO 60 DA CODESP
UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene
Contabilometria. Séries Temporais
Conabilomeria Séries Temporais Fone: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Conabilidade e Adminisração, Ediora Alas, São Paulo, 2010 Cap. 4 Séries Temporais O que é? Um conjuno
4 O Papel das Reservas no Custo da Crise
4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal
A entropia de uma tabela de vida em previdência social *
A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela
SÉRIE: Estatística Básica Texto: SÉRIES TEMPORAIS SUMÁRIO 1. INTRODUÇÃO TENDÊNCIA VARIAÇÕES SAZONAIS... 16
SÉRIE: Esaísica Básica Texo: SÉRIES TEMPORAIS SUMÁRIO. INTRODUÇÃO... 3.. NOTAÇÃO E NOMENCLATURA... 3.. COMPONENTES DE UMA SÉRIE TEMPORAL... 5.3. ESTACIONARIDADE... 6. TENDÊNCIA... 6.. DETERMINAÇÃO DA TENDÊNCIA...
DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:
DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das
Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.
PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição
Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006)
PROVA MODELO GRUPO I Arisóeles inha examinado corpos em moimeno e inha concluído, pelo modo como os corpos caem denro de água, que a elocidade de um corpo em queda é uniforme, proporcional ao seu peso,
Fundamentos de Computação Gráfica Prova Aluna: Patrícia Cordeiro Pereira Pampanelli
Fundamenos de Compuação Gráfica Prova -6- Aluna: Parícia Cordeiro Pereira Pampanelli Observação: Os códigos uilizados para o desenvolvimeno da prova enconram-se em anexo. Quesão : A Transformada Discrea
ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.
ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis
Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento
Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala [email protected] Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree
Ciências do Ambiente
Universidade Federal do Paraná Engenharia Civil Ciências do Ambiene Aula 24 O meio aquáico III: Auodepuração 2º Semesre/ 205 Auodepuração de rios Auodepuração de rios Cinéica da desoxigenação O conceio
Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações.
.. Sisemas Escalonados Os sisemas abaio são escalonados: 7 Veja as maries associadas a esses sisemas: 7 Podemos associar o nome "escalonado" com as maries ao "escalar" os eros ou energar a "escada" de
FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA
FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA S S S S S S v v S v v S Área S v v v v v v S(m) 2-1 (s) Se a < S Se a > S S S 1 2 3 a a a v v Área v v S S(m) 16 15 1 (s) Como pode cair no enem? (ENEM)
AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM
AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e
LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC)
LIGAÇÕES QUÍMICAS NS CMPSTS DE CRDENAÇÃ: TERIA D CAMP CRISTALIN (TCC) A Teoria do Campo Crisalino (TCC) posula que a única ineração exisene enre o íon cenral e os liganes é de naureza elerosáica, pois
6 Processos Estocásticos
6 Processos Esocásicos Um processo esocásico X { X ( ), T } é uma coleção de variáveis aleaórias. Ou seja, para cada no conjuno de índices T, X() é uma variável aleaória. Geralmene é inerpreado como empo
6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou
6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que
Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH
Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale
Circuitos Elétricos I EEL420
Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com
Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos
SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA
O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são
O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores
Análise de séries de tempo: modelos de decomposição
Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,
Exercícios 2.7. e (4, 1 2 ).
LIMITES E DERIVADAS 7.7 Eercícios. Uma curva em por equação f. (a) Escreva uma epressão para a inclinação da rea secane pelos ponos P, f e Q, f. (b) Escreva uma epressão para a inclinação da rea angene
Estudo comparativo de processo produtivo com esteira alimentadora em uma indústria de embalagens
Esudo comparaivo de processo produivo com eseira alimenadora em uma indúsria de embalagens Ana Paula Aparecida Barboza (IMIH) [email protected] Leicia Neves de Almeida Gomes (IMIH) [email protected]
Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro
Física Lisa de Física Prof. Alexsandro MU e MU 1 - (UnB DF) Qual é o empo gaso para que um merô de 2m a uma velocidade de 18km/h aravesse um únel de 1m? Dê sua resposa em segundos. 2 - (UERJ) Um rem é
Características dos Processos ARMA
Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada
