UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais"

Transcrição

1 Repota: UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Diciplina: Equaçõe Diferenciai Profeora: Geraldine Silveira Lima Eercício Livro: Jame Stewart Eercício Motre que y 1 é uma olução da equação diferencial y ' y. Verifique que y en co co é uma olução do problema de valor inicial y ' tg y co, y(0) 1 no intervalo. 3. (Q10) A função y(t) atifaz a equação diferencial dy y 6y 5y dt 4 3 a) Quai ão a oluçõe contante da equação? b) Para quai valore de y a população etá aumentando? c) Para quai valore de y a população etá diminuindo? Livro: Sérgio A. Abunahman I. Formar a equaçõe diferenciai da eguinte família de curva: 1) ) 3) 4) 5) 6) 1. d+ydy= II. Reolva a equaçõe eparando a variávei: 1) ) 1 dy tgy 0 d 4 y d ( 1) dy 0 3) yd 3( y ) dy 0 1

2 Repota: Repota: Repota: Repota: Repota: 4) 5) 6) 7) 8) 9) d ye dy 0 1: coy=c : 3: 4: 5: 6: 7: 8: III. Reolva a equaçõe homogênea: 1) ) 3) 4) 1: : 3: 4: IV. Reolva a equaçõe: 1) ) 3) 4) (3-y+)d+(9-3y+1)dy=0 V. Reolva a equaçõe: 1: : 3: 4: +6y+C=Lg(6-y+1) 1) ) 3) 4) 1: : 3: 4: C VI. Procurar o fator integrante e reolver a eguinte equaçõe: a) d b) c) VII. Determinar a trajetória ortogonai da família de curva onde p é um parâmetro e a é contante. VIII. Reolva a equaçõe lineare: 1) ) R 1: R : 3)

3 Repota: IX. Achar a olução particular para y 0 e 0 em X. Reolva a equaçõe de Bernoulli: dy 1 ytg. d co 1) dy 3 3 y y d y c y 1. y lg C dy 4 c ) y y 3. y lg 4. c y y 1 d 7) 3) dy y y 0 d 1 5. y 6. y c 1 1 4) dy y y d 5) dy ( y 1) d 6) (1 ) dy R y y d XI. Calcular a olução da equação, abendo-e que y é olução particular. XII. Dar a olução geral da equação, abendo-e que y=-1 é olução particular. XIII. Conhecendo-e a olução particular da equação, calcular ua olução geral. LIVRO: Denni Zill (p11) No problema abaio, claifique a ED dizendo e ela ão lineare ou não-lineare. Dê também a ordem de cada equação (1 ) 4 5 co y y y 3 d y dy y 0 3 d d yy y dy +(y- y-e )d= y (4) - y +4y -3y=0 3

4 Livro: JON ROGAWSK Eercício 10.4 Eercício Prelimimare 1. Quai da eguinte ão equaçõe lineare de primeira ordem? a) y ' y 1 b) y ' y 1 c) 5 y ' y e d) 5 y y ' y e. Se a ( ) for um fator integrante de y ' A( ) y B( ), então a'( ) é igual a: a) B ( ) b) a( ) A( ) c) a( ) A'( ) d) a( ) B( ) Eercício Conidere dy dt 3t y e. a) Verifique que a() t t e é um fator integrante; b) Encontre a olução geral da equação; c) Encontre a olução particular que atifaz y(0) 1 No eercício abaio encontre a olução geral da equaçõe: 9. 3 y ' y y ' y 11. y y 1 ' co( ) 8. Um tanque de 00 galõe (gal) contém 100 gal de água com uma concentração de al de 0,1Kg/gal. No tanque é colocada água com uma concentração de al 0,4 kg/gal a uma taa de 0 gal/min. O fluido é miturado intantaneamente e a água miturada é bombeada para fora do tanque a uma taa de 10 gal/min. Seja yt () a quantidade de al no tanque no intante t, monte e reolva a equação diferencial para yt () e diga qual é a concentração de al quando o tanque tranborda. Equaçõe Diferenciai, R.Kent Nagle - Capítulo 1 Campo de Direçõe dy 1. O campo de direção para d aparece na figura abaio. a) Eboce a curva-olução que paa por (0,- ). Por ee eboço ecreva a equação para a olução; y b) Eboce a curva olução que paa por (- 1,3); c) O que você pode dizer obre a olução do item b) quando? E quando? Curo Cálculo II Profeora Geraldine Página

5 . Dado campo de direção para dy 4 d y a) Verifique e a linha reta y ão curva de olução, dede que 0 1. Conidere a equação diferencial dp p( p 1)( p) para a população p dt (em milhare) de uma certa epécie no intante t. b) Eboce a curva olução com condição inicial y(0). c) Eboce a curva olução com condição inicial y() 1 3. O modelo para a velocidade v no intante t de certo objeto caindo ob a influência da gravidade em um meio vicoo é dado dv v pela equação 1 dt. Pelo campo de 8 direção motrado abaio eboce a oluçõe com a condiçõe iniciai v(0) 5,8 e 15. Por que o valor v 8 é chamado de velocidade terminal? Curo Cálculo II Profeora Geraldine Página

6 Livro: Cálculo Jame Stewart Livro: Cálculo Jame Stewart Encontre uma equação da tangente à curva no ponto correpondente ao valore dado do parâmetro. Encontre a área da uperfície obtida pela rotação da curva fornecida em torno do eio. RESPOSTAS: Encontre dy d e d y d Encontre o comprimento da curva: Curo Cálculo II Profeora Geraldine Página

7 No problema 15 a, determine e o conjunto de funçõe dado é LI no intervalo. 15. f ( ), f ( ), f ( ) f ( ) 0, f ( ), f ( ) e f ( ) 5, f ( ) co, f ( ) en ( ) co, ( ) 1, ( ) co f1 f f3 19. f ( ), f ( ) 1, f ( ) f ( ), f ( ) 1 No problema 3 a 30, verifique e a funçõe dada formam u conjunto fundamental de oluçõe da equação diferencial no intervalo indicado. Contrua a olução geral y'' ' 1 0; y y e, e em (, ) 4. y'' 4 y ' 0; coh, enh em (, ) 5. y'' ' 5 0; y y e co, e en em (, ) 6. 4y'' 4 y ' y 0; e, e em (, ) y '' 6 y ' 1y 0;, em (0, ) 8. y''+ y y 0; co(ln ), en(ln ) em (, ) 3 9. y'''+6 y'' 4 y ' 4y 0;,, ln em (0, ) (4) 30. y + y'' 0; 1, co, en em (, ) Curo Cálculo II Profeora Geraldine Página

8 Eercício Denni Zill pg 17 No problema de 1 a 1, encontre uma egunda olução para cada equação diferencial. Suponha um intervalo apropriado. No problema de 1 a 16, a função indicada y 1 () é uma olução da equação diferencial dada. Encontre uma egunda olução para a eguinte equaçõe: 11. y" +y' =0; y 1= ln y" +y =0; y = ln Profeora Geraldine Página 8

9 Equaçõe Diferenciai, R.Kent Nagle - Capítulo 4. No problema ache uma olução para a equação diferencial dada: 4. y" 6 y ' 9 y 0 5. y" 7 y ' 4 y 0 6. y" y ' y 0 7. y" 5 y ' 6y 0 1. c e 3. c e 11. c e 3t 3t 1 cte t 1 c e t t cte t w" 0 w' 5w 0 No problema reolva o problema de valor inicial dado: 13. y" y ' 8y 0; y(0) 3, y '(0) y" y ' 0; y(0), y '(0) y" 4 y ' 5y 0; y( 1) 3, y '( 1) y" 4 y ' 3y 0; y(0) 1, y '(0) 1/ z" z ' z 0; z(0) 0, z '(0) e 3 4t e 5( t1) ( t1) e e 1 3t 1 3 e t 6. Problema de valor de fronteira. Quando o valore de uma olução para uma equação diferencial ão epecificado em doi ponto diferente, ea condiçõe ão chamada de Condiçõe de fronteira. (Ao contrário, a condiçõe iniciai epecificam o valore de uma função e ua derivada no memo ponto). A finalidade dete eercício é motrar que, para problema de valor de fronteira, não há teorema de eitência-unicidade que eja emelhante ao Teorema 1. Dado que cada olução para ( I) y" y 0 tem a forma y( t) c cot c ent, onde C 1 e C ão contante arbitrária, motre que 1 a) Eite uma olução única para (I) que atifaz a condiçõe de limite y(0) = e y( / ) 0 ; b) Não eite uma única olução para (I) que atifaz a condiçõe y(0)= e y( ) 0 c) Eitem infinitamente muita oluçõe para (I) que atifazem y(0)= e y( ). Profeora Geraldine Página 9

10 35. Para cada uma da eguinte funçõe, determine e a trê funçõe dada ão LD ou LI em (, ). a) y ( t) 1; y ( t) t; y ( t) t. b) y ( t) 3; y ( t) 5 en t; y ( t) co t. 43. Reolva o problema de valor inicial: y"' y ' 0; y(0), y '(0) 3 e y"(0) Reolva o problema de valor inicial: y"' y" y ' y 0; y(0), y '(0) 3 e y"(0) 5 Capítulo 4.3 No problema abaio, a equação auiliar determina raíze complea. Ache a olução geral. 1. y" y 0. y" 9 y 0 4. z" 6 z' 10z 0 5. y" 4 y ' 7 y 0 3. y" 10 y ' 6y 0 Capítulo 4.4 pg136 Soluçõe: Profeora Geraldine Página 10

11 Capítulo 4.5 pg141 Capítulo 4.6 pg146 Profeora Geraldine Página 11

12 Capítulo 4.7 pg15 Profeora Geraldine Página 1

13 Soluçõe: Profeora Geraldine Página 13

14 No problema 15 a, determine e o conjunto de funçõe dado é LI no intervalo (, ) 15. f ( ), f ( ), f ( ) f ( ) 0, f ( ), f ( ) e f ( ) 5, f ( ) co, f ( ) en ( ) co, ( ) 1, ( ) co f1 f f3 19. f ( ), f ( ) 1, f ( ) f ( ), f ( ) 1 No problema 3 a 30, verifique e a funçõe dada formam u conjunto fundamental de oluçõe da equação diferencial no intervalo indicado. Contrua a olução geral y'' ' 1 0; y y e, e em (, ) 4. y'' 4 y ' 0; coh, enh em (, ) 5. y'' ' 5 0; y y e co, e en em (, ) 6. 4y'' 4 y ' y 0; e, e em (, ) y '' 6 y ' 1y 0;, em (0, ) 8. y''+ y y 0; co(ln ), en(ln ) em (, ) 3 9. y'''+6 y'' 4 y ' 4y 0;,, ln em (0, ) (4) 30. y + y'' 0; 1, co, en em (, ) Eercício Denni Zill pg 17 No problema de 1 a 1, encontre uma egunda olução para cada equação diferencial. Suponha um intervalo apropriado. Profeora Geraldine Página 14

15 No problema de 1 a 16, a função indicada y 1 () é uma olução da equação diferencial dada. Encontre uma egunda olução para a eguinte equaçõe: 11. y" +y' =0; y 1= ln y" +y =0; y = ln LIVRO: Equaçõe Diferenciai com Aplicaçõe em Modelagem; Denni G. Zill Eercício 4.7 (pg 199): Reolva a equação diferencial dada 1. y" y 0 5. y" y ' 4y 0. 4 y" y 0 3. y" y ' 0 4. y" 3 y ' 0 6. y" 5 y ' 3y 0 7. y" 3 y ' y 0 8. y" 3 y ' 4y y" 5 y ' y y" 4 y ' y y" 5 y ' 4y 0 1. y" 8 y ' 6y 0 No problema abaio, reolva a equação diferencial dada por variação de parâmetro: 19. y" 4 y ' 4 0. " 5 ' y y y 1. " ' y y y. " ' 4 y y y e Profeora Geraldine Página 15

16 No problema abaio, reolva o problema de valor inicial dado. 3. y" 3 y ' 0, y(1) 0, y '(1) 4 4. y" 5 y ' 8y 0, y() 3, y '() 0 Repota 1. y c c 3. y c1 cln c co( ln ) c en( ln ) y c c 9. y c co( ln ) c en( ln ) 11. y c c ln ( 6) ( 6) y c c ln y c c ln (ln ) 1 3. y LIVRO: EQUAÇÕES DIFERENCIAIS ELEMENTARES; R.Kent Nagle/Edward B.Saff/Arthur david pg81 No problema ue a definição para determinar a tranformada de Laplace da função dada: 4. 3t te 0, 0 t t 7. e co3 1 t, 0 t 1 t 10. f( t) 0, 1 t 9. f( t) t,t ent,0t 5. cot 11. f( t) 0, t LIVRO EQUAÇÕES DIFERENCIAIS DENNIS G. ZILL/MICHAEL R. CULLEN Eercício 7.3 No problema abaio encontre F() ou f(t) como indicado: 1. L. L 3. L te 10t te 6t te 3 t 4. L t e 10 7t t 6. L e co 4 5t 7. L h 3 t e en t t t t t L t e e 10. L e ( t1) 11. L e en t 9. ( ) t 1. L e co L t 14. L 15. L L t 16. L coh t e L 45 Profeora Geraldine Página 16

17 18. L L 1 0. L L L 1 ( 1) 4 No Problema 51-58, ecreva cada função em termo de funçõe degrau unitário. Encontre a tranformada de Laplace da função dada:, 0 t f( t), t 3 3 0, 0 t 54. f( t) 3 ent, t 1, 0 t 4 5. f ( t) 0, 4 t 5 1, t 5 t, 0 t 55. f( t) 0, t ent, 0 t 56. f( t) 0, t LIVRO: EQUAÇÕES DIFERENCIAIS ELEMENTARES; WILLIAM E. BOYCE/RICHARD C. DIPRIMA. CAPÍTULO 6. PG 51 Em cada um do Problema de 1 a 10, encontre a tranformada de Laplace invera dada: 1. F ( ) F ( ) ( 1) 3. F ( ) F ( ) 5. F ( ) F ( ) 4 7. F ( ) 8. F ( ) 9. F ( ) ( 4) 1 45 Em cada um doa problema de 11 a 3, ue a tranformada de Laplace para reolver o problema de valor inicial dado: 11. y '' y ' 6y 0; y(0) 1, y '(0) 1 1. y '' 3 y ' y 0; y(0) 1, y'(0) y '' y ' y 0; y(0) 0, y '(0) y '' 4 y ' 4y 0; y(0) 1, y '(0) y '' y' 4y 0; y(0), y'(0) y '' y ' 5y 0; y(0), y '(0) 1 (4) (3) 17. y 4y 6 y" 4 y ' y 0; y(0) 0, y '(0) 1, y"(0) 0, y"'(0) 1 (4) 18. y y 0; y(0) 1, y '(0) 0, y"(0) 1, y"'(0) 0 (4) 19. y 4y 0; y(0) 1, y '(0) 0, y"(0), y"'(0) 0 Profeora Geraldine Página 17

18 CAPÍTULO 6 - pg 43 Em cada um do Problema de 1 a, eboce o gráfico da função dada. Em cada aco determine e f é contínua, eccionalmente contínua ou nenhuma da dua no intervalo 0t 3. t, 0 t 1 1. f ( t) t,1 t 6 t, t 3 t t, f ( t) t 1,1 t 1, t 3 bt bt bt bt e e e e Lembre-e que coh( bt) e en h( bt). Em cada um do problema abaio, encontre a tranformada de Laplace da função dada, com a e b contante reai. 7. f ( t) coh( bt) 8. f ( t) en h( bt) 9. at f ( t) e coh( bt) 10. at f ( t) e en h( bt) Profeora Geraldine Página 18

19 Profeora Geraldine Página 19

Lista 4 Prof. Diego Marcon

Lista 4 Prof. Diego Marcon Lita 4 Prof. Diego Marcon Método Aplicado de Matemática I 6 de Junho de 07 Lita de exercício referente ao retante da primeira área da noa diciplina: Exponencial de matrize Tranformada de Laplace Delocamento

Leia mais

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria Cálculo Diferencial e Integral II Lita 8 - Exercício/ Reumo da Teoria Derivada Direcionai Definição Derivada Direcional. A derivada da função f x, no ponto P x, na direção do veror u u 1, u é o número

Leia mais

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Univeridade Salvador UNIFACS Curo de Engenharia Método Matemático Aplicado / Cálculo Avançado / Cálculo IV Profa: Ila Rebouça Freire A Tranformada de Laplace Texto 0: A Tranformada Invera. A Derivada da

Leia mais

Transformadas de Laplace

Transformadas de Laplace ranformada de Laplace Definição e exemplo Recorde-e a definição de integral impróprio de ª epécie: Definição: Seja f uma função real ou complexa definida no intervaloa, e integrável em cada ubintervalo

Leia mais

Transformada de Laplace

Transformada de Laplace Tranformada de Laplace Câmpu Francico Beltrão Diciplina: Prof. Dr. Jona Joacir Radtke Tranformada de Laplace Se f (t) for uma função definida para todo t 0, ua tranformada de Laplace é a integral de f

Leia mais

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei

Leia mais

Modelação e Simulação Problemas - 4

Modelação e Simulação Problemas - 4 Modelação e Simulação - Problema Modelação e Simulação Problema - P. Para cada uma da funçõe de tranferência eguinte eboce qualitativamente a repota no tempo ao ecalão unitário uando empre que aplicável)

Leia mais

1 Transformada de Laplace de u c (t)

1 Transformada de Laplace de u c (t) Tranformada de Laplace - Função de Heaviide Prof ETGalante Equaçõe diferenciai ob ação de funçõe decontínua aparecem com frequência na análie do uxo de corrente em circuito elétrico ou na vibraçõe de itema

Leia mais

Para ajudar em sua organização dos estudos, vale lembrar quais foram os conteúdos trabalhados durante o bimestre:

Para ajudar em sua organização dos estudos, vale lembrar quais foram os conteúdos trabalhados durante o bimestre: ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 9ºAno Data: / / Profeore: Diego, Deny e Yuri Nota: (Valor 1,0) 2º Bimetre Apreentação: Prezado aluno, A etrutura da recuperação bimetral paralela do Colégio

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definiçõe O gráfico do Lugar geométrico da raíze, conite no deenho de todo o valore que o pólo de malha fechada de uma função

Leia mais

Aula 08 Equações de Estado (parte I)

Aula 08 Equações de Estado (parte I) Aula 8 Equaçõe de Etado (parte I) Equaçõe de Etado input S output Já vimo no capítulo 4 ( Repreentação de Sitema ) uma forma de repreentar itema lineare e invariante no tempo (SLIT) atravé de uma função

Leia mais

SISTEMA DE POTÊNCIA. Pd(s) Figura 1. , variando entre [ 0 e + ] K = Real. Figura 2

SISTEMA DE POTÊNCIA. Pd(s) Figura 1. , variando entre [ 0 e + ] K = Real. Figura 2 0 - AUTOMAÇÃO E CONTOLE ocê é integrante de uma equipe de engenheiro em uma emprea pretadora de erviço para o etor de energia elétrica. Sua equipe etá encarregada do projeto de um itema de controle de

Leia mais

1 s. Propriedades da transformada de Laplace A seguir apresentam-se algumas propriedades importantes da transformada de Laplace:

1 s. Propriedades da transformada de Laplace A seguir apresentam-se algumas propriedades importantes da transformada de Laplace: Secção 6 Tranformada de aplace (Farlow: Capítulo 5) Definição Tranformada de aplace A tranformada de aplace é, baicamente, um operador matemático que tranforma uma função numa outra Ea operação é definida

Leia mais

MECÂNICA DO CONTÍNUO. Tópico 2. Cont. Elasticidade Linear Cálculo Variacional

MECÂNICA DO CONTÍNUO. Tópico 2. Cont. Elasticidade Linear Cálculo Variacional MECÂNICA DO CONTÍNUO Tópico 2 Cont. Elaticidade Linear Cálculo Variacional PROF. ISAAC NL SILVA Lei de Hooke Até o limite elático, a tenão é diretamente proporcional à deformação: x E. e x e e y z n E

Leia mais

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017)

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017) Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma Cálculo Diferencial e Integral I 07/II a Lista de Integrais (07//07 Faça a antidiferenciação. Verifique o resultado, calculando a

Leia mais

Lista de exercícios 2 Resposta no Tempo, Erros Estacionários e Lugar Geométrico das Raízes

Lista de exercícios 2 Resposta no Tempo, Erros Estacionários e Lugar Geométrico das Raízes 16003 Controle Dinâmico ENE - UnB Lita de exercício 16003 Controle Dinâmico o emetre de 01 Lita de exercício Repota no Tempo, Erro Etacionário e Lugar Geométrico da Raíze 1. Quando o itema motrado na figura

Leia mais

Transformadas de Laplace Matemática Aplicada

Transformadas de Laplace Matemática Aplicada Tranformada de Laplace Matemática Aplicada Carlo Luz Revito em 4/5 Conteúdo Introdução Definição e exemplo 3 Exitência e Unicidade 6 3. Exitência... 6 3. Unicidade... 7 4 Propriedade da tranformação de

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Univeridade Federal do ABC Eng. de Intrumentação, Automação e Robótica Circuito Elétrico II Joé Azcue, Prof. Dr. Tranformada invera de Laplace Definição Funçõe racionai Expanão em fraçõe parciai Teorema

Leia mais

s: damasceno.

s:  damasceno. Matemática II 6. Pro.: Luiz Gonzaga Damasceno E-mails: damasceno@yahoo.com.br damasceno@interjato.com.br damasceno@hotmail.com http://www.damasceno.ino www.damasceno.ino damasceno.ino - Derivadas Considere

Leia mais

2 o Roteiro de Atividades: reforço da primeira parte do curso de Cálculo II Instituto de Astronomia e Geofísica

2 o Roteiro de Atividades: reforço da primeira parte do curso de Cálculo II Instituto de Astronomia e Geofísica o Roteiro de Atividades: reforço da primeira parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Critérios de Convergência e divergência de integrais

Leia mais

Cinemática Exercícios

Cinemática Exercícios Cinemática Exercício Aceleração e MUV. 1- Um anúncio de um certo tipo de automóvel proclama que o veículo, partindo do repouo, atinge a velocidade de 180 km/h em 8. Qual a aceleração média dee automóvel?

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores BONS ESTUDOS!

Leia mais

FEUP-DEEC Teoria dos Sistemas

FEUP-DEEC Teoria dos Sistemas SNL- FEP-DEEC Teoria do Sitema Problema obre Sitema Não Lineare SNL Conidere o eguinte itema, onde o elemento não linear é um comutador cuja aída toma o valore e e que pode ter hiteree: a a K ( ) 3 a)

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

Optimização de um reactor biológico baseada em simulação

Optimização de um reactor biológico baseada em simulação Modelação e Simulação 2011/12 Trabalho de Laboratório nº 2 Optimização de um reactor biológico baeada em imulação Objectivo Apó realizar ete trabalho, o aluno deverá er capaz de utilizar o SIMULINK para

Leia mais

Transformada de Laplace

Transformada de Laplace Sinai e Sitema - Tranformada de Laplace A Tranformada de Laplace é uma importante ferramenta para a reolução de equaçõe diferenciai. Também é muito útil na repreentação e análie de itema. É uma tranformação

Leia mais

Cálculo - James Stewart - 7 Edição - Volume 1

Cálculo - James Stewart - 7 Edição - Volume 1 Cálculo - James Stewart - 7 Edição - Volume. Eercícios. Eplique com suas palavras o significado da equação É possível que a equação anterior seja verdadeira, mas que f? Eplique.. Eplique o que significa

Leia mais

Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares.

Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares. Reolução da atividade complementare Matemática M9 Geometria nalítica: Ponto e Reta p. 08 (MK-SP) Identifique a entença fala: a) O ponto (0, ) pertence ao eio. b) O ponto (4, 0) pertence ao eio. c) O ponto

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

Relação de exercícios - 2: Derivada de funções de uma variável real. (o) f(x) = (q) f(x) = x (c) f(x) = 4 x

Relação de exercícios - 2: Derivada de funções de uma variável real. (o) f(x) = (q) f(x) = x (c) f(x) = 4 x Relação de eercícios - 2: Derivada de funções de uma variável real 1. Ache as derivadas aplicando as regras básicas (a) f() = 5 3 3 + 1 (b) f() = 5 6 9 4 (c) f() = 8 2 7 + 3 + 1 (d) f() = 5 5 25 1 (e)

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV

MAT Cálculo Diferencial e Integral para Engenharia IV MAT456 - Cálculo Diferencial e Integral para Engenharia IV Parte A: Equações Diferenciais de 1 a Ordem o Semestre de 018-3 a Lista de exercícios 1) Os gráficos de duas soluções de y = x + y podem se cruzar

Leia mais

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii)

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii) MINISTÉRIO DA EDUCAÇÃO DESEMPENHO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a Dayse Batistus, Dr a.

Leia mais

Controle de Processos

Controle de Processos CONCURSO PETROBRAS ENGENHEIRO(A) DE PROCESSAMENTO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PROCESSAMENTO Controle de Proceo Quetõe Reolvida QUESTÕES RETIRADAS DE PROVAS DA BANCA CESGRANRIO Produzido por Exata

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

Aplica-se a transformada de Fourier nas duas equações: EDP e condição inicial. A transformada da EDP é: = ( ik 1)û(k,t) û(k,t) = A(k)e ( ik 1)t

Aplica-se a transformada de Fourier nas duas equações: EDP e condição inicial. A transformada da EDP é: = ( ik 1)û(k,t) û(k,t) = A(k)e ( ik 1)t TEA13: Matemática Aplicada II - Engenharia Ambiental - UFPR Gabarito P (1) (4. ponto) Reolva a equação diferencial e condição inicial uando Tranformada de Fourier: Solução da Quetão 1: u x + u t + u =,

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no

Leia mais

DERIVADA. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

DERIVADA. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I DERIVADA COMO MEDIMOS VELOCIDADE MÉDIA? A velocidade média de um objeto ao longo de um determinado percuro é o delocamento total do objeto ( ) dividido pelo tempo gato no percuro ( t). Io não igniica que

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 EXAME FINAL Nome Legível Turma RG CPF Repoa em juificaiva ou com fórmula prona

Leia mais

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das

Leia mais

PSI3213 CIRCUITOS ELÉTRICOS II

PSI3213 CIRCUITOS ELÉTRICOS II PSI33 CIRCUITOS ELÉTRICOS II Solução do Exercício Complementare Correpondente à Matéria da a Prova a) il ( ) = ( não há geradore independente ) Reitência equivalente vita pelo indutor: i i 5 i E i = i

Leia mais

8 Equações de Estado

8 Equações de Estado J. A. M. Felippe de Souza 8 Equaçõe de Etado 8 Equaçõe de Etado 8. Repreentação por Variávei de Etado Exemplo 4 Exemplo 8. 4 Exemplo 8. 6 Exemplo 8. 6 Exemplo 8.4 8 Matriz na forma companheira Exemplo

Leia mais

TRANSFORMADA DE LAPLACE Conceitos e exemplos

TRANSFORMADA DE LAPLACE Conceitos e exemplos TRANSFORMADA DE LAPLACE Conceio e exemplo Diciplina MR7 A finalidade dea apoila é dar o conceio da ranformada de Laplace, eu uo na olução de problema e por fim um aprendizado do méodo de reoluçõe. Muia

Leia mais

Aula: Equações diferenciais lineares de ordem superior

Aula: Equações diferenciais lineares de ordem superior Aula: Equações diferenciais lineares de ordem superior Profa. Ariane Piovezan Entringer DMA - UFV Problema de Valor Inicial - EDO de ordem n Problema de Valor Inicial - EDO de ordem n a n (x) d n y dx

Leia mais

2. senh(x) = ex e x. 3. cos(t) = eit +e it. 4. sen(t) = eit e it 5. cos(2t) = cos 2 (t) sen 2 (t) 6. sen(2t) = 2sen(t)cos(t) 7.

2. senh(x) = ex e x. 3. cos(t) = eit +e it. 4. sen(t) = eit e it 5. cos(2t) = cos 2 (t) sen 2 (t) 6. sen(2t) = 2sen(t)cos(t) 7. UFRGS INSTITUTO DE MATEMÁTICA Deparameno de Maemáica Pura e Aplicada MAT68 - Turma D - / Segunda avaliação - Grupo 3 4 Toal Nome: Carão: Regra a obervar: Seja ucino porém compleo. Juifique odo procedimeno

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2

Leia mais

MAT111 - Cálculo I - IO

MAT111 - Cálculo I - IO II - Integrais Indefinidas MAT - Cálculo I - IO - 0 a Lista de Eercícios Calcule as integrais indefinidas abaio: 7 + +. d.. tg d. 7. 0.. 6. 9... 8... 7. 0. sen cos d 8. d. + d. +d 7. d (arcsen) 0. e d.

Leia mais

LISTA DE EXERCÍCIOS Valor: 0 a 1,5 Entrega em 28/novembro/2018 INTEGRAÇÃO DE FUNÇÃO REAL DE UMA VARIÁVEL REAL

LISTA DE EXERCÍCIOS Valor: 0 a 1,5 Entrega em 28/novembro/2018 INTEGRAÇÃO DE FUNÇÃO REAL DE UMA VARIÁVEL REAL Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba Diretoria de Graduação e Educação Profissional Departamento Acadêmico de Matemática Disciplina: Cálculo Diferencial e Integral

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: CÁLCULO III CÓDIGO: 2DB.015 VALIDADE: Início: 01/13 Eixo: Matemática Carga Horária: Total: 50 horas/ 60 horas-aula Semanal: 4 aulas Créditos: 4 Modalidade: Teórica Integralização: Classificação

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais Introdução... Soluções de uma equação diferencial... 4 Classificação das Equações Diferenciais de ª Ordem... 5. Equações Diferenciais Separáveis... 5. Equações Diferenciais Homogêneas...

Leia mais

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações AP3 Introdução às Equações Diferenciais Ordinárias e Aplicações Lista semestre de 017 Prof Claudio H Asano 1 Equações Diferenciais de Primeira Ordem 11 Utilize a mudança de variável y = v, dy = vd+dv para

Leia mais

Mais Sobre Valores Extremos

Mais Sobre Valores Extremos Mais Sobre Valores Extremos Aula 15 5950253 Plano da Aula Valores Extremos de Funções Teorema de Rolle Funções Crescentes e Decrescentes Teste de Primeira Derivada Exercícios Referências James Stewart

Leia mais

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área IA

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área IA UFRGS INSTITUTO DE MATEMÁTICA Deparameno de Maemáica Pura e Aplicada MAT68 - Turma A - 6/ Prova da área IA - 6 7 8 Toal Nome: Regra Gerai: Não é permiido o uo de calculadora, elefone ou qualquer ouro recuro

Leia mais

MOVIMENTOS VERTICAIS NO VÁCUO

MOVIMENTOS VERTICAIS NO VÁCUO Diciplina de Fíica Aplicada A 1/ Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MOVIMENTOS VERTICAIS NO VÁCUO Agora etudaremo o movimento na direção verticai e etaremo deprezando

Leia mais

2 o semestre de Calcule os seguintes limites, caso existam. Se não existirem, justifique por quê:

2 o semestre de Calcule os seguintes limites, caso existam. Se não existirem, justifique por quê: MAT2454 - Cálculo II - POLI - 2 a Lista de Eercícios 2 o semestre de 2004. Calcule os seguintes ites, caso eistam. Se não eistirem, justifique por quê: (a) (b) (c) (d) (e) y 2 + y 2 (f) 2 y cos( 2 + y

Leia mais

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e CAPÍTULO 0 Eercícios 0.. a) Substituindo tg t e sec t na equação, obtemos ù sec t tg t para todo t no intervalo, é, logo, tg t é solução da equação ûú dada. c) Substituindo t ()4 e 0 na equação t ( ),

Leia mais

e-física IFUSP 08 Movimento dos Projéteis Exercícios Resolvidos

e-física IFUSP 08 Movimento dos Projéteis Exercícios Resolvidos e-fíica Enino de Fíica Online Inituto de Fíica da USP 8 Moimento do Projétei Eercício Reolido Eercício Reolido 8.1 A figura ilutra a ituação na ual em um determinado intante um projétil de maa m = kg ai

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Ficha prática n o 3 - Equações Diferenciais 1. Determine as equações diferenciais das seguintes famílias de linhas: (a) y = cx (b) y = cx 3

Leia mais

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais:

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais: Universidade do Estado de Mato Grosso - Campus de Sinop Cálculo Diferencial e Integral III - FACET Lista 6 Profª Ma. Polyanna Possani da Costa Petry 1. Resolva as equações diferenciais: a) y + 2y = 2e

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Sistemas e Sinais 2009/2010

Sistemas e Sinais 2009/2010 Análie de Sitema alimentado Sitema e Sinai 9/ Análie de itema realimentado Álgebra de diagrama de bloco Sitema realimentado Etabilidade Deempenho SSin Diagrama de bloco Sitema em érie X Y G G Z Y G X Z

Leia mais

Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Univeridade de Coimbra Análie e Proceamento de BioSinai Metrado Integrado em Engenharia Biomédica Faculdade de Ciência e Tecnologia Univeridade de Coimbra Slide Análie e Proceamento de BioSinai MIEB Adaptado

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da EDO indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C 1 e 2t + C 2 e 3t ; :: x 10 : x + 6x = 0: (c) y = ln

Leia mais

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández Lista 3: Introdução à Derivada, Limites e continuidade. Ano 207. Determine a função derivada e seu domínio para a função

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de

Leia mais

Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Controle de Sitema Deempenho de Sitema de Controle Renato Dourado Maia Univeridade Etadual de Monte Claro Engenharia de Sitema Repota Tranitória de Sitema de Ordem Superior A repota ao degrau de um itema

Leia mais

Função de Transferência. Função de Transferência

Função de Transferência. Função de Transferência Departamento de Engenharia Química e de Petróleo UFF Diciplina: TEQ10- CONTROLE DE PROCESSOS Função de Tranferência cuto Prof a Ninoka Bojorge Sumário metre Função de Tranferência 5. Função de tranferência

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinai e Sitema Mecatrónico Análie de Sitema no Domínio do Tempo Etabilidade Joé Sá da Cota Joé Sá da Cota T9 - Análie de Sitema no Tempo - Etabilidade 1 Análie e Projecto de Sitema A análie e a íntee (projecto)

Leia mais

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 7 Repota no domínio do tempo - Sitema de egunda ordem Prof. Marcio Kimpara Univeridade Federal de Mato Groo do Sul Sitema de primeira ordem Prof. Marcio Kimpara

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Função de Transferência Processos de Primeira e Segunda Ordem

Função de Transferência Processos de Primeira e Segunda Ordem Diciplina: TEQ0- CONTROLE DE PROCESSOS Função de Tranferência Proceo de Primeira e Segunda Ordem Prof a Ninoka Bojorge Departamento de Engenharia Química e de Petróleo UFF Sumário Função de Tranferência.

Leia mais

CAPÍTULO 4. Movimento Variado. Introdução. 2-Aceleração Escalar Média

CAPÍTULO 4. Movimento Variado. Introdução. 2-Aceleração Escalar Média CAPÍTULO 4 Movimento Variado Introdução O movimento do corpo no dia-a-dia ão muito mai variado do que propriamente uniforme, até porque, para entrar em movimento uniforme, um corpo que etava em repouo,

Leia mais

Seja ( ) ( ) g ( z1z 2 ) é um número real. ( )

Seja ( ) ( ) g ( z1z 2 ) é um número real. ( ) . Seja n natural e n ³. Se S (0) é: 5000 57650 600 606700 67670 QUESTÃO ÚNICA 0,000 pontos distribuídos em 0 itens S ( n + ) = S ( n ) + n e S () =, então o valor de. A negação de A Matemática é fácil

Leia mais

Cálculo I - Lista 7: Integrais II

Cálculo I - Lista 7: Integrais II Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo - Prof. Responsável: Andrés Vercik. Use o teorema fundamental do calculo para achar a derivada da função. g( ) = + tdt g ( ) =

Leia mais

Computação Gráfica. Ponto, Linha, Vetor e Matriz

Computação Gráfica. Ponto, Linha, Vetor e Matriz Computação Gráfica Ponto, Linha, Vetor e Matriz Prof. Rodrigo Rocha rodrigor@antanna.g.br Onde Etamo... Introdução a Computação Gráfica; Repreentação de Imagen: vetorial e matricial; Dipoitivo de entrada

Leia mais

Exercícios de Cálculo - Prof. Ademir

Exercícios de Cálculo - Prof. Ademir Exercícios de Cálculo - Prof. Ademir Funções, limites e continuidade. Considere f : IR IR definida por f(x) = x 4x + 3. (a) Faça um esboço do gráfico de f. (b) Determine os valores de x para os quais f(x)..

Leia mais

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Professor: Daniel Henrique Silva Introdução às Equações Diferenciais 1) Defina equação diferencial. 2) Seja f(x; y) uma função

Leia mais

FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido.

FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido. FÍSICA º ANO I- ETOES - GANDEZA ESCALA E ETOIAL a) G Ecalar: é aquela que fica perfeitamente definida quando conhecemo o eu valor numérico e a ua unidade de medida Ex: maa, tempo, comprimento, energia,

Leia mais

3 Equações de movimentos

3 Equações de movimentos 3 Equaçõe de movimento A formulação da equaçõe governante e da condiçõe de contorno, memo que para um cao geral, é uualmente muito direta. ontudo, a olução analítica do problema, em muito cao é impoível

Leia mais

Resolução 2 o Trabalho de Análise Matemática I ETI/LEI (02 de Dezembro de 2010)

Resolução 2 o Trabalho de Análise Matemática I ETI/LEI (02 de Dezembro de 2010) Resolução o Trabalho de Análise Matemática I ETI/LEI ( de Dezembro de ) Diana A. Mendes a). Z ( + e ) d Z Z µ () d + (e ) d +(e ) µ + e e +e +e b). µ Z +4 +5 d Z µ d +4 +4+ Z µ +( +) d (arctan ( +)) arctan

Leia mais

Cálculo I - Lista 1: Números reais. Desigualdades. Funções.

Cálculo I - Lista 1: Números reais. Desigualdades. Funções. Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Cálculo I - Lista : Números reais Desigualdades Funções Prof Responsável: Andrés Vercik Um inteiro positivo n é par se n k para

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Condução de calor numa barra semi-infinita

Condução de calor numa barra semi-infinita Univeridade de São Paulo Ecola de Engenharia de Lorena Departamento de Engenharia de Materiai Condução de calor numa barra emi-infinita Prof. Luiz T. F. Eleno Ecola de Engenharia de Lorena da Univeridade

Leia mais

Total. UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT Turma A /2 Prova da área IIA

Total. UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT Turma A /2 Prova da área IIA UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Deparameno de Maemáica Pura e Aplicada MAT68 - Turma A - 7/ Prova da área IIA - 5 6 7 Toal Nome: Regra Gerai: Não é permiido o uo de calculadora, elefone ou

Leia mais

Ficha 8 Aplicação de conceitos em MatLab

Ficha 8 Aplicação de conceitos em MatLab U N I V E R S I D A D E D A B E I R A I N T E R I O R Departamento de Engenharia Electromecânica CONTROLO DISCRETO E DIGITAL (Prática/Laboratorial) Ficha 8 Aplicação de conceito em MatLab Todo o exercício

Leia mais

ESTABILIDADE MALHA FECHADA

ESTABILIDADE MALHA FECHADA Departamento de Engenharia Química e de Petróleo UFF Diciplina: TEQ- CONTROLE DE PROCESSOS ESTABILIDADE Método critério de Routh-Hurwitz Cao Epeciai Prof a Ninoka Bojorge ESTABILIDADE MALHA FECHADA Regiõe

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

3 o quadrimestre a Lista de Exercícios - Derivadas 1 :

3 o quadrimestre a Lista de Exercícios - Derivadas 1 : Funções de Uma Variável 3 o quadrimestre - 00 a Lista de Eercícios - Derivadas : Técnicas de Derivação, Taas Relacionadas e Aplicações à Geometria Analítica. Determine o valor de a para que as funções

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Matemática. Lic. em Enologia, 2009/2010

Matemática. Lic. em Enologia, 2009/2010 Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v

Leia mais

Lista 6 Funções de Uma Variável

Lista 6 Funções de Uma Variável Lista 6 Funções de Ua Variável Integral II Use o Teorea Fundaental do Cálculo para achar a derivada das seguintes funções: a) + tdt f) g) h) ln(t)dt cos(t )dt cos() e (t + cos(t)dt (t + cos(t))dt e cos

Leia mais

Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa MECÂNICA

Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa MECÂNICA Diciplina de Fíica Aplicada A 212/2 Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MECÂNICA Neta aula etudaremo a primeira parte da Fíica Cláica: a Mecânica. A Mecânica divide-e

Leia mais

Equações diferencias são equações que contém derivadas.

Equações diferencias são equações que contém derivadas. Equações diferencias são equações que contém derivadas. Os seguintes problemas são exemplos de fenômenos físicos que envolvem taxas de variação de alguma quantidade: Escoamento de fluidos Deslocamento

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

2 0 Lista de Exercício de MAT2110 (1 0 semestre 2018) Turma:

2 0 Lista de Exercício de MAT2110 (1 0 semestre 2018) Turma: 2 0 Lista de Exercício de MAT2110 (1 0 semestre 2018) Turma: 2012102 1 Parte 1 1.1 VII- Integração Problema 1.1. Esboce a região A limitada pelas curvas y = x 2 + 4x e y = x 2 e encontre a area de A. Problema

Leia mais

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral,

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral, Etatítica II Antonio Roque Aula 8 Intervalo de Confiança para a Variância de uma População Ditribuída Normalmente Pode-e motrar matematicamente que a variância amotral, ( x x) n é um etimador não envieado

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Univeridade Federal do ABC Eng. de Intrumentação, Automação e Robótica Circuito Elétrico II Joé Azcue, Prof. Dr. Ganho e Delocamento de Fae Função de Tranferência Etabilidade 1 Definiçõe Ganho? Delocamento

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXI Olimpíada Braileira de Matemática GBRITO Segunda Fae Soluçõe Nível Segunda Fae Parte PRTE Na parte erão atribuído ponto para cada repota correta e a pontuação máxima para ea parte erá 0 NENHUM PONTO

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais