Exercícios Complementares 5.2

Tamanho: px
Começar a partir da página:

Download "Exercícios Complementares 5.2"

Transcrição

1 Exercícios Complementares A Veri que se a função dada é ou não solução da EDO indicada: (a) y = 2e x + xe x ; y y 0 + y = 0: (b) x = C 1 e 2t + C 2 e 3t ; :: x 10 : x + 6x = 0: (c) y = ln x; xy 00 + y 0 = 0; x > 0: (d) y = x ; y 0 + 2xy 2 = 0; 1 < x < 1: (e) y = C 1 sen 2x + C 2 cos 2x; y y = 0: (f) x = C 1 sen 1 t + C 2 cos 1 t ; d dt (g) y = 1 2 (ex e x ) ; y (4) y = x: t 2 _x + 1 x = 0; t > 0: t2 5.2B Encontre uma função r (x) de modo que y = sen (ln x) ; x > 0; seja solução da EDO: r (x) y y x = 0: 5.2C Determine as constantes C 1 e C 2 para que a função y (x) atenda às condições indicadas: (a) y (x) = C 1 sen 2x + C 2 cos 2x + 1; y (=8) = 0; y 0 (=8) = p 2: (b) y (x) = C 1 e 2x + C 2 e x + 2 sen x; y (0) = 0; y 0 (0) = 1: 5.2D Determine as trajetórias ortogonais às seguintes famílias de curvas: (a) y = x (b) y 2 = 4x (c) x 2 + y 2 2x = 0 (d) 2 x 2 + y 2 = 2 (e) xy = (f) y = e x (g) x 2 + y 2 = 2 (h) x 2 y 2 = 2 : 5.2E Sabe-se que uma cultura de bactérias cresce a uma taxa proporcional à quantidade presente. Após uma hora, observam-se leiras de bactérias na cultura; e após quatro horas, leiras. Determine: (a) a expressão do número N (t) de leiras de bactérias presentes na cultura no instante t e (b) o número aproximado N 0 de leiras de bactérias no início da cultura.

2 CAPÍTULO 5 - EDO DE PRIMEIRA ORDEM F Cinco ratos, em uma população estável de 500, são intencionalmente inoculados com uma doença contagiosa para testar uma teoria de disseminação da epidemia, segundo a qual a taxa da população infectada é proporcional ao produto do número de ratos infectados pelo número de ratos sem a doença. Admitindo que essa teoria seja correta, qual o tempo necessário para que a metade da população contraia a doença? 5.2G Sabe-se que a população de certo estado cresce a uma taxa proporcional ao número presente de habitantes. Se após dez anos a população triplicou e se após vinte anos a população é de pessoas, determine o número inicial N 0 de habitantes no estado. 5.2H Certo material radioativo decai a uma taxa proporcional à quantidade presente. Se inicialmente há 100 miligramas e se, após dois anos, 5% do material decaiu, determine: (a) a expressão para a massa m (t) em um instante t e (b) o tempo necessário para o decaimento de 10% do material. 5.2I Sabe-se que o C 137 s (Césio 137) se desintegra a uma taxa proporcional à massa existente em cada instante. Sua meia-vida, isto é, o tempo necessário para 50% da massa inicialmente presente se desintegrar, é da ordem de 30 anos. Qual a percentagem que se desintegra em 1 ano? 5.2J Danielle depositou R$ 5.000,00 em uma conta que paga juros compostos continuamente. Admitindo que não haja depósitos adicionais ou retiradas, determine o saldo S da conta de Danielle após sete anos, se a taxa de juros é de 8,5% durante os quatro primeiros anos e de 9,25% durante os últimos três anos. 5.2K Um depositante aplica R$ 5.000,00 em uma conta em favor de um recém-nascido. Admitindo que não haja outros depósitos ou retiradas, de quanto a criança disporá ao atingir a idade de 21 anos, se o banco abona juros de 5% ao ano compostos continuamente durante o período? 5.2L Determine a taxa de juros i necessária para triplicar um investimento em dez anos sob capitalização contínua. 5.2M Um corpo à temperatura de 50 0 F é colocado ao ar livre onde a temperatura é F. Se, após 5 minutos, a temperatura do corpo é de 60 0 F, determine: (a) o tempo t necessário para que o corpo atinja a temperatura de 75 0 F e (b) a temperatura T do corpo após 20 minutos.

3 34 SÉRIES E EQUAÇÕES DIFERENCIAIS MPMATOS 5.2N Um corpo com temperatura desconhecida é colocado em um quarto que é mantido à temperatura constante de 30 0 F. Se, após 10 minutos, a temperatura do corpo é 0 0 F e após 20 minutos é 15 0 F, determine a temperatura inicial T 0 do corpo. 5.2O Um corpo à temperatura de 50 0 F é colocado em um forno cuja temperatura é mantida em F. Se, após 10 minutos, a temperatura do corpo é de 75 0 F, determine o tempo t necessário para que o corpo atinja a temperatura de F. 5.2P Uma barra de ferro, previamente aquecida a C, é resfriada em um tanque de água mantida à temperatura constante de 50 0 C. A barra resfria C no primeiro minuto. Quanto tempo levará até que a barra resfrie outros C? 5.2Q Um tanque contém inicialmente 350 litros de salmoura com 10kg de sal. A partir de um dado momento, água pura começa a entrar no tanque à razão de 20 litros por minuto, enquanto a mistura bem homogeneizada sai do tanque à mesma razão. Qual a quantidade Q (t) de sal no tanque após t minutos? O que ocorre com a quantidade de sal no tanque com o passar do tempo? 5.2R Um tanque contém inicialmente 350 litros de salmoura com 1kg de sal. A partir de um dado momento, outra solução de salmoura com 1kg de sal por litro começa a entrar no tanque à razão de 10 litros por minuto, enquanto a mistura bem-homogeneizada sai do tanque à mesma razão. Determine: (a) a quantidade Q (t) de sal no tanque no instante t e (b) o instante t em que a mistura no tanque contém exatamente 2kg de sal. 5.2S Um tanque contém 380 litros de salmoura obtida dissolvendo-se 27kg de sal na água. Água salgada com 0; 10kg de sal por litro, entra no tanque à razão de 7,5 litros por minuto, e a mistura bem-homogeneizada sai do tanque à mesma razão. Determine a quantidade Q de sal no tanque após 30 minutos. 5.2T Um tanque contém inicialmente 300 litros de salmoura com 0; 225kg de sal por litro. Em t = 0, começa a entrar no tanque outra solução de salmoura com 0; 120kg de sal por litro, à razão de 15 litros por minuto, enquanto a mistura, bem homogeneizada, sai do tanque à razão de 30 litros por minuto. Determine a quantidade de sal no tanque quando este contiver exatamente 150 litros de salmoura.

4 CAPÍTULO 5 - EDO DE PRIMEIRA ORDEM U Deixa-se cair de uma altura de 150m um corpo de 15kg de massa, sem velocidade inicial. Desprezando a resistência do ar, determine a expressão da velocidade v (t) e da posição y (t) do corpo num instante t: Qual o tempo necessário para o corpo atingir o solo? 5.2V Deixa-se cair de uma altura de 30m um corpo de 30kg; com uma velocidade inicial de 3 m/s. Admitindo que a resistência do ar seja proporcional à velocidade e que a velocidade-limite é de 43 m/s, determine a expressão da velocidade v (t) e da posição y (t) do corpo num instante t: 5.2X Deixa-se cair de uma altura de 300 m uma bola de 75 kg. Determine a velocidade limite v da bola, se a força, devido à resistência do ar, é de 0; 5v: Exercícios Complementares A As seguintes EDO s são apresentadas na forma normal e na forma diferencial. Classi que-as em: linear (L), separável (S), exatas (E) ou a coe cientes homogêneos (H): (a) y 0 = xy; xydx dy = 0 (b) y 0 = xy; xdx 1 y dy = 0 (c) y 0 = xy2 x 2 y + y 3 ; xy2 dx x 2 y + y 3 dy = 0 (d) y 0 = xy 2 x 2 y + y 2 ; xy2 dx + x 2 y + y 2 dy = 0: 5.4B Resolva por integração formal, indicando onde a solução está de nida: (a) y 0 = 5y (b) (2x 1) cos 4 ydx + x 2 2x + 2 dy = 0 (c) xdx y 2 dy = 0 (d) p 1 y 2 dx x 2 dy = 0 (e) y ln xdx 2ydy = 0 (f) x dx + y 2 + y dy = 0: 5.4C Encontre a solução geral de cada EDO dada a seguir: (a) y 0 + y = 3 (b) xy 0 + 4y = x 5 (c) xy 0 + y = 2x + e x (d) y 0 7y = sen 2x (e) y 0 3y = 1 (f) x 2 y 0 xy = x (g) y 0 + ay = b; a 6= 0 (h) y 0 = e x y (i) (1 + e x ) yy 0 = e x (j) xy 0 + y = xe x2 (k) y 0 = xy2 y x (l) cos(y 0 ) = 0:

5 36 SÉRIES E EQUAÇÕES DIFERENCIAIS MPMATOS 5.4D Usando um fator integrante do tipo I = exp determine a solução geral da EDO não linear: y 0 = 3x2 y x 3 + 2y 4 : R g (y) dy, onde g (y) = 1 P (P y Q x ) ; 5.4E Usando o método do Exemplo encontre a solução geral das seguintes equações de Bernoulli: (a) y 0 + xy = 6x p y (b) dx dy = x2 x (c) 3 y 0 + y = (1 2x) y 4 (d) y 0 y = x p y (e) y 0 3 x y = p x4 3 y (f) xy 0 = y + xy 3 (1 + ln x) 5.4F Se y 0 (x) é uma solução da EDO linear y 0 + a (x) y = b (x) ; veri que que: y 1 (x) = y 0 (x) + C exp( R a (x) dx) também é solução, para qualquer valor da constante C. 5.4G Veri que que as EDO s dadas abaixo são exatas, resolvendo-as a seguir: (a) 3x 2 ydx + x 3 y x dy = 0 (b) (x + x 2 )dx + (y + y2 x 2 + y 2 )dy = 0 (c) (x 1) 2 dx 2ydy = 0 (d) (2x y) dx + (2y x) dy = 0: 5.4H Determine um fator integrante I (x; y) e as curvas integrais de cada EDO. (a) y + x 3 y 3 dx + xdy = 0 (b) y xy 2 dx + xdy = 0 (c) y + x 4 y 2 dx + xdy = 0 (d) xydy + x 2 + 2y dy = 0 (e) xy 2 dx + x 2 y 2 + x 2 y dy = 0 (f) x 2 + y dx (xy + y) dy = 0 (g) (2xy 2 + x y 2 )dx + 4x2 ydy = 0 (h) x 2 + y 2 a 2 dx 2xydy = 0 (i) y + x 3 + xy 2 dx xdy = 0 (j) x 3 y 2 y dx + x 2 y 4 x dy = 0 (k) x 2 + y 2 + y dx xdy = 0 (l) 3x 2 y 2 dx + 2x 3 y + x 3 y 4 dy = 0: 5.4I Veri que que a substituição x = u m e y = v n, sendo m e n não nulos tais que 2m = 3n; reduz a EDO: 2x 3 + 4xy 3 dx + 6x 2 y 2 3y 5 dy = 0 a uma EDO com coe cientes homogêneos e em seguida determine a solução geral da equação. 5.4J Imitando o método utilizado no exercício precedente, encontre a solução geral da EDO: xydx + xy 4 2x 2 dy = 0; x > 0; y > 0:

6 CAPÍTULO 5 - EDO DE PRIMEIRA ORDEM K Em cada caso veri que que a EDO tem coe cientes homogêneos e encontre as curvas integrais. (a) x 2 y 2 dx + 2xydy = 0 (b) (x 2 tg(y 2 =x 2 ) 2y 2 )dx + 2xydy = 0 (c) x 2 + y 2 dx + xydy (d) x 4 + 2y 4 dx xy 3 dy = 0 (e) (x tg(y=x) y)dx + xdy = 0 (f) x 3 + 2xy 2 dx + y 3 + 2x 2 y dy = 0: 5.4L Encontre a EDO de primeira ordem com a seguinte família de curvas integrais: (a) y = Cx (b) y 2 = 2Cx (c) x 2 + y 2 = 2Cx (d) xy = C: 5.4M Escreva a EDO na forma exata e em seguida encontre sua solução geral: (a) xdy ydx = x 2 + y 2 dx (b) xdy + ydx + x 4 y 4 (ydx + xdy) = 0 (c) p x 2 + y 2 dx = xdy ydx (d) 3y (ydx + 3xdy) = 2x 2 (3ydx + 2xdy) (e) ydx xdy x 2 y 4 = xdy + ydx (f) 3xydx + 2x 2 dy = 6y 3 dx + 12xy 2 dy: 5.4N Em cada caso use a substituição indicada e determine a solução geral da EDO: (a) y = 4e y sen x; z = e y (b) (y 4x) 2 dx dy = 0; z = y 4x (c) 4(y 0 ) 2 9x = 0; z = y 0 (d) y 0 sen y = cos y (1 x cos y) ; z = sec y (e) tg 2 (x + y) dx dy = 0; z = x + y (f) (x + y) dx + (3x + 3y 4) dy = 0; z = x + y (g) y(y 0 ) 2 + (x y) y 0 = x z = y 0 (h) y 0 sen y = cos x(2 cos y sen 2 x); z = cos y: Exercícios Complementares A O Teorema de Existência e Unicidade é aplicável ao PVI xy 0 2y = 0; y (1) = 1? 5.6B Veri que que as funções y 0 e y (x) = x 2 são soluções do PVI xy 0 2y = 0; y (0) = 0. Por que esse exemplo não viola o Teorema de Existência e Unicidade? 5.6C Quantas soluções da EDO y 0 = 1 y 2 passam pela origem? Quais são essas soluções? 5.6D Utilizando o Teorema de Existência e Unicidade, mostre que a função y (x) 0 é a única solução do PVI: 8 >< y 00 + e x y 0 + (x + 1) y = 0 >: y (1) = 0; y 0 (1) = 0:

7 38 SÉRIES E EQUAÇÕES DIFERENCIAIS MPMATOS 5.6E Considere o exercício anterior para y (x) 1 e o PVI: 8 >< >: y x 2 y 00 + p x y 0 = 0 y (0) = 1; y 0 (0) = 0; y 00 (0) = 0: 5.6F No Exemplo encontramos a solução geral da EDO y 00 + y = 0. Mostre que essa EDO não possui solução satisfazendo às condições y (0) = 0 e y () = 1: 8 < y y = 0 5.6G Mostre que y (x) = C cos 2x é a solução geral do sistema : y 0 (0) = 0: 5.6H Seja y (x) ; a x b; uma solução da EDO y xy 0 + 4y = 0; cujo grá co é tangente ao eixo x no ponto de abscissa x 0 do intervalo [a; b] : Mostre que a solução y (x) é identicamente nula. 5.6I Resolva os seguintes problemas de valor inicial (PVI). Nos problemas de segunda ordem use a substituição z = y 0 : (a) y 0 y = 1; y (0) = 0 (b) e x y 0 + 2e x y = e x ; y (0) = 1=2 + 1=e (c) xy 0 + 2y = x 2 ; y (1) = 0 (d) (sen x) y 0 + (cos x) y = cos 2x; y( 2 ) = 1 2 (e) xy 0 + y = 2x; y (1) = 1 (f) x 2 + y 2 dx + 2xydy = 0; y (1) = 1 (g) y 0 + 2xy = 2x 3 ; y (0) = 1 (h) y 00 + y 0 = 2; y (0) = 1; y 0 (0) = 1 (i) ydx xdy x 2 + y 2 = 0; y (2) = 2 (j) 2yy 00 = 1 + (y 0 ) 2 ; y (0) = 1; y 0 (0) = 1: 5.6J Use uma série de potências de e x e calcule o valor y (1) com três casas decimais, sendo y a solução do PVI: y 0 + 2xy = 1 y (0) = 1: RESPOSTAS & SUGESTÕES 5.2 EXERCÍCIOS ::::::::::::: ::::::::::::::::::::::: COMPLEMENTARES :::: 5.2A (a) V (b) F (c) V (d) V (e) V (f) V (g) F 5.2B r (x) = x 5.2C (a) C 1 = p ; C 2 = p (b) C 1 = 1; C 2 = 1

8 CAPÍTULO 5 - EDO DE PRIMEIRA ORDEM D Se as trajetórias são descritas pela equação F (x; y; ) = 0, então as trajetórias ortogonais são governadas pela EDO F y dx F x dy = 0: Nas respostas, representa-se por C uma constante genérica. (a) x 2 + y 2 = C: (b) 2x 2 + y 2 = C: (c) Neste caso, a EDO resultante é 2xydx + y 2 x 2 dy = 0 e para resolvê-la use a substituição x = yv e dx = ydv + vdy (ou y = xu e dy = xdu + udx) ou determine um fator integrante para a EDO (veja a Seção 5.3). As trejetórias ortogonais são x 2 + y 2 = Cy; x; y > 0: (d) x 2 + y 2 ln x 2 = C: (e) x 2 y 2 = C: (f) 2x + y 2 = C: (g) y = Cx: (h) xy = C: 5.2E (a) N (t) = 694 exp (0; 366t) ; (b) N 0 = N (0) = 694: 5.2F t = ln k 5.2G N (t) = 16:620 exp (0; 11t) ; N 0 = 16:620: 5.2H m (t) = 100 exp ( 0; 026t) ; (b) t = 4; 05 anos. 5.2I 2; 3% da massa original. 5.2J N (t) = k exp (0; 085t) ; 0 t 4; e N (4) = R$ 7:024; 74 N (t) = k exp (0; 0925t) ; 4 t 7; e N (7) = R$ 9:271; K R$14:288; L i = 10; 99% 5.2M (a) t = 15; 4 min; (b) 79; 5 0 F 5.2N T 0 = 30 0 F 5.2O T (t) = 100e 0;029t + 150; T (100) = 23; 9 min 5.2P Mais 1; 24 min : 5.2Q Q (t) = 10 exp ( 0; 057t) ; lim t!1 Q (t) = 0:

9 40 SÉRIES E EQUAÇÕES DIFERENCIAIS MPMATOS 5.2R (a) Q (t) = 344e 0;029t + 345; (b) t = (0; 029) 1 ln( ) ' 0; 1 min : 5.2S 31; 74 kg 5.2T 25; 9 kg: 5.2U v (t) = 9; 81t; y (t) = 4; 905t 2 ; 5; 53 s: 5.2V v (t) = 39; 65e 0;23t + 42; 65; y (t) = 172e 0;23t + (42; 65) t X 150 m/s. 5.4 EXERCÍCIOS ::::::::::::: ::::::::::::::::::::::: COMPLEMENTARES :::: 5.4A (a) L; S (b) L; S; E (c) CH (d) E 5.4B (a) Ce 5x (b) ln x 2 2x arctg (x 1) + tg y tg3 y = C (c) 3 2 x2 + C 1=3 (d) arctg x + arcsen y = C (e) x ln x x 2y = C (f) 2x 3 + 6x + 2y 3 + 3y 2 + C 5.4C (a) y = 3 + Ce x (b) y = C=x 4 + x 5 =9 (c) y = x + x 1 e x + Cx 1 (d) y = Ce 7x 1 53 (2 cos 2x + 7 sen 2x) (e) y = Ce 3=x 1=3 (f) y = Cx + x 2 2=x (g) y = b=a + Ce ax (h) y = ln (e x + C) (i) y = y 2 = 2 ln (1 + e x ) + C (j) y = exp x 2 + C =2x (k) y = (x ln Cx) 1 (l) y = (k + =2) x + C; k 2 Z 5.4D x = 2 3 y4 + Cy 1=3 5.4E (a) y = (Ce x2 =4 + 6) 2 (b) x = (1 + Ce y ) 1 (c) y 3 (Ce x 2x 1) = 1 (d) y = (Ce x=2 x 2) 2 (e) y = (Cx x5 ) 3=2 (f) x 2 = y 2 C 2 3 x ln x 5.4G (a) x 3 y = C (b) x 2 + y arctg (x=y) = C (c) 1 3 (x 1)3 y 2 = C (d) x 2 xy + y 2 = C: 5.4H (a) 1 y 2 = 2x2 (x + C). (I(x; y) = x 3 y 3 ) (b) ln jxj + 1 xy = C: (I(x; y) = x 2 y 2 ) (c) y = x 4 =3 Cx 1 : (I(x; y) = x 2 y 2 ) (d) x 2 y 2 + y 4 + 2y 2 = C: (I(x; y) = y) (e) ln jxyj = C y: (I(x; y) = x 2 y 3 )

10 CAPÍTULO 5 - EDO DE PRIMEIRA ORDEM 41 (f) ln jx + 1j + 4 (x + 1) y2 2 2 (x + 1) = C: (I(x; y) = (x + 1) 3 ) (g) 2x 2 y 4 + x 2 = C: (I(x; y) = y 2 ) (h) x 2 y 2 + a 2 = Cx: (I(x; y) = x 2 ) (i) y = x tg(c + x2 2 ): (I(x; y) = x 2 y 2 ) (j) 3x 3 y + 2xy 4 + Cxy = 6: (I(x; y) = x 2 y 2 ) (k) y = x tg (x + C) : (I(x; y) = x 2 y 2 ) (l) jxj 3 y 2 exp y 3 =3 = C: (I(x; y) = x 3 y 2 ) 5.4I x 4 + 8x 2 y 3 2y 6 = C 5.4J y 4 + 2xy 2 = Cy 2 : 5.4K (a) x 2 + y 2 x 3 = C (b) x sen y 2 =x 2 = C (c) x 4 + 2x 2 y 2 = C (d) y 4 = Cx 8 x 4 (e) ln jx sen (y=x)j = C (f) x 4 + 4x 2 y 2 + y 4 = C 5.4L (a) xdy ydx = 0 (b) ydx 2xdy = 0 (c) x 2 y 2 dx + 2xydy = 0 (d) xdy + ydx = 0 5.4M (a) y = x tg (x + C) (b) 3x 4 y 4 + Cx 3 y 3 = 1 (c) x 2 = C(y + p x 2 + y 2 ) (d) 2x 3 y 2 3xy 3 = C (e) x 3 y 4 3x = Cy (f) x 3 y 2 3x 2 y 4 = C: (g) y = arcsec (Ce x + x + 1) (h) cos y = 1 2 sen2 x sen x Ce sen x 5.4N (a) e y = Ce x + 2 (sen x cos x) (b) ln y 4x 2 y 4x + 2 (c) y = x 3=2 + C; C > 0 (d) y = arcsec (1 + x + Ce x ) 4 (x C) = 0 (e) 2x 2y sen (2x + 2y) = C (f) 2 ln j2 x yj + x + 3y = C (g) x 2 + y 2 = C; x + y < 0 (h) cos y = Ce 2 sen x sen x sen2 x EXERCÍCIOS ::::::::::::: ::::::::::::::::::::::: COMPLEMENTARES :::: 5.6A Sim. Neste caso y 0 = f (x; y), sendo f (x; y) = 2y=x contínua, juntamente com a derivada parcial f y ; em um pequeno retângulo contendo o ponto A (1; 1) :

11 42 SÉRIES E EQUAÇÕES DIFERENCIAIS MPMATOS 5.6B O Teorema de Existência e Unicidade não é violado porque ele não se aplica neste caso. 5.6C A função y = exp (2x) 1 exp (2x) + 1 é a única solução da EDO y0 = 1 5.6I (a) y = e x 1 (b) y = exp e2x (c) y = 1 4 x2 x 2 (d) y = cos x + 1=2 sen x (e) y = x (f) y = p (4 x 3 ) =3x y 2 que passa pela origem. (g) y = 2e x2 + x 2 1 (h) y = 2x + e x (j) y = 1 2 (x + 1)2 + 1=2 (i) y = x 5.6J y (1) ' 0:867:

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL:

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL: 5. EDO DE PRIMEIRA ORDEM SÉRIES & EDO - 2017.2 5.1. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

Exercícios Complementares 6.3

Exercícios Complementares 6.3 Exercícios Complementares 6.3 6.3A Usando a De nição 6.1.3 ou o Teorema 6.1.9, mostre que as funções dadas são soluções LI da edo indicada. y 1 (x) = sen x; y (x) = cos x; y 00 + y = 0; y 1 (x) = ; y (x)

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV

MAT Cálculo Diferencial e Integral para Engenharia IV MAT456 - Cálculo Diferencial e Integral para Engenharia IV Parte A: Equações Diferenciais de 1 a Ordem o Semestre de 018-3 a Lista de exercícios 1) Os gráficos de duas soluções de y = x + y podem se cruzar

Leia mais

LISTA dy dx y x + y3 cos x = y = ky ay 3. dizemos que F (x, y) é homogênea de grau 0. Neste caso a equação diferencial y =

LISTA dy dx y x + y3 cos x = y = ky ay 3. dizemos que F (x, y) é homogênea de grau 0. Neste caso a equação diferencial y = MAT 01167 LISTA Equações Diferenciais Resolva: 1. y = y x + x y, y ( ) 1 8 =. (1 x ) dy dx (1 + x) y = y. dy dx y x + y cos x = 0 4. y = ky ay. Se uma função F (x, y) satisfaz a condição F (t x, t y) =

Leia mais

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Professor: Daniel Henrique Silva Introdução às Equações Diferenciais 1) Defina equação diferencial. 2) Seja f(x; y) uma função

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Ficha prática n o 3 - Equações Diferenciais 1. Determine as equações diferenciais das seguintes famílias de linhas: (a) y = cx (b) y = cx 3

Leia mais

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais:

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais: Universidade do Estado de Mato Grosso - Campus de Sinop Cálculo Diferencial e Integral III - FACET Lista 6 Profª Ma. Polyanna Possani da Costa Petry 1. Resolva as equações diferenciais: a) y + 2y = 2e

Leia mais

Lista 1 - Conceitos Iniciais e EDO s de Primeira Ordem

Lista 1 - Conceitos Iniciais e EDO s de Primeira Ordem Lista - Conceitos Iniciais e EDO s de Primeira Ordem. Classi que as EDO s como lineares ou não-lineares. E ainda, determine a ordem e o grau de cada equação diferencial. (a) x 2 00 + x + 2 = sen(x) ; (b)

Leia mais

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32 1 Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / 2012. 1 a LISTA DE MAT-32 Nos exercícios de 1 a 9, classi car e apresentar, formalmente, solução (ou candidata a solução)

Leia mais

Exercícios Matemática I (M193)

Exercícios Matemática I (M193) Exercícios Matemática I (M93) Funções. Associe a cada uma das seguintes funções o gráfico que a representa. a) f(x) = 2x + 4. b) f(x) = 3x +. c) f(x) = x 2. d) f(x) = 2x 3. e) f(x) = 0 x. f) f(x) = (0,

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Universidade Estadual Paulista Instituto de Química de Araraquara Equações Diferenciais Ordinárias Jorge Manuel Vieira Capela Marisa Veiga Capela Material de apoio à disciplina Equações Diferenciais Ordinárias

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo

Leia mais

IST-TAGUS PARQUE-2007/08-2 o SEMESTRE ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EXERCÍCIOS DE REVISÃO

IST-TAGUS PARQUE-2007/08-2 o SEMESTRE ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EXERCÍCIOS DE REVISÃO IST-TAGUS PARQUE-007/08- o SEMESTRE ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EXERCÍCIOS DE REVISÃO EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM. Diga, justi cando, se as seguintes

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios de Equações Diferenciais Ordinárias 1 Exercícios 1.1 EDO de Variáveis Separáveis Diz-se que uma equação diferencial ordinária (EDO)

Leia mais

Instituto de Matemática Departamento de Métodos Matemáticos

Instituto de Matemática Departamento de Métodos Matemáticos ?????? @ @ @@ @@?????? @ @ @@ @@ Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prova Final Unificada de Cálculo II Politécnica,Escola Química - 03/12/2013

Leia mais

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO I por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2017 16 e 18 de outubro de 2017 Definição 1 Uma equação diferencial é qualquer relação entre uma função e suas derivadas.

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de

Leia mais

1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0:

1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0: 2. NTEGRAL E LNHA CÁLCULO 3-2018.1 2.1. :::: :::::::::::::::::::::::: ARCOS REGULARES Um arco (ou trajetória) : ~r (t) = x (t)~i + y (t)~j + z (t) ~ k; a t b; denomina-se arco regular quando as componentes

Leia mais

5.1 Exercícios Complementares

5.1 Exercícios Complementares 5.1 Exercícios Complementares 6.4A Usando a De nição 6.1.3 ou o Teorema 6.1.9, mostre que as funções dadas são soluções LI da EDO indicada. (a) y 1 (x) = sen x; y (x) = cos x; y 00 + y = 0; (b) y 1 (x)

Leia mais

Equações Diferenciais

Equações Diferenciais IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013

Leia mais

Equações Lineares de 1 a Ordem - Aplicações

Equações Lineares de 1 a Ordem - Aplicações Equações Lineares de 1 a Ordem - Aplicações Maria João Resende www.professores.uff.br/mjoao 2016-2 M. J. Resende (UFF) www.professores.uff.br/mjoao 2016-2 1 / 14 Modelos Matemáticos Chamamos de modelo

Leia mais

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017)

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017) Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma Cálculo Diferencial e Integral I 07/II a Lista de Integrais (07//07 Faça a antidiferenciação. Verifique o resultado, calculando a

Leia mais

Exercícios de Cálculo - Prof. Ademir

Exercícios de Cálculo - Prof. Ademir Exercícios de Cálculo - Prof. Ademir Funções, limites e continuidade. Considere f : IR IR definida por f(x) = x 4x + 3. (a) Faça um esboço do gráfico de f. (b) Determine os valores de x para os quais f(x)..

Leia mais

1.1 Domínios & Regiões

1.1 Domínios & Regiões 1. CAMPOS ESCALARES CÁLCULO 2-2018.2 1.1 Domínios & Regiões 1. Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a)

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

Exercícios. de Equações Diferenciais Ordinárias. Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas

Exercícios. de Equações Diferenciais Ordinárias. Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas Exercícios de Equações Diferenciais Ordinárias Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas Departamento de Matemática UNIVERSIDADE DE AVEIRO 2 Prefácio A presente publicação tem

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza 1. Dado um campo vetorial bidimensional ÁLULO

Leia mais

Lista 2 - EDO s de Ordem Superior

Lista 2 - EDO s de Ordem Superior Lista - EDO s de Ordem Superior. Use o teorema de eistência e unidade de soluções, para EDO s lineares, para encontrar um intervalo em que os PVI s abaio possuam solução única. (a) ( )y 00 + 3y = ; y(0)

Leia mais

Dados de identificação. Curso: Marque qual é a sua Engenharia. Mecânica Computação Civil Produção Elétrica Contr.Automação

Dados de identificação. Curso: Marque qual é a sua Engenharia. Mecânica Computação Civil Produção Elétrica Contr.Automação Lista de Exercícios º Bimestre 018 1 Faculd. Anhanguera SJC Profª Luciana Vasconcellos Site: https://sites.google.com/site/profalucianavasconcellos/ Contato: lucianacvasconcellos@gmail.com º Bimestre 018

Leia mais

(x 1) 2 (x 2) dx 42. x5 + x + 1

(x 1) 2 (x 2) dx 42. x5 + x + 1 I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.

Leia mais

a) ( ) b) ( ) ( ) 1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais:

a) ( ) b) ( ) ( ) 1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais: Universidade do Estado de Mato Grosso - Campus de Sinop Cálculo Diferencial e Integral III - FACET Lista 2 Profª Ma. Polyanna Possani da Costa Petry 1. Resolva as equações diferenciais: 2. Resolver os

Leia mais

MAT146 - Cálculo I - Equações Diferenciais. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira

MAT146 - Cálculo I - Equações Diferenciais. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Equações Diferenciais Uma equação contendo derivadas é chamada de Equação Diferencial. Existem muitos tipos de equações diferenciais.

Leia mais

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h =

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h = UNIVERSIDADE FEDERAL DE ITAJUBÁ FÍSICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/06/206 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 0 Prova sem consulta. 02 Duração:

Leia mais

Equa c oes Diferenciais Ordin arias - Aplica c oes Marcelo Nascimento

Equa c oes Diferenciais Ordin arias - Aplica c oes Marcelo Nascimento Equações Diferenciais Ordinárias - Aplicações Marcelo Nascimento 2 Sumário 1 Aplicações 5 1.1 Desintegração Radioativa........................... 5 1.2 Resfriamento de um corpo..........................

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2

Leia mais

Equações Exatas e Fator Integrante

Equações Exatas e Fator Integrante Equações Exatas e Fator Integrante Laura Goulart UESB 30 de Setembro de 2018 Laura Goulart (UESB) Equações Exatas e Fator Integrante 30 de Setembro de 2018 1 / 11 Equação Exata A edo Mdx + Ndy = 0 é dita

Leia mais

Equações Diferenciais de 1ª ordem ALGUMAS APLICAÇÕES

Equações Diferenciais de 1ª ordem ALGUMAS APLICAÇÕES Equações Diferenciais de 1ª ordem ALGUMAS APLICAÇÕES APLICAÇÃO: MODELOS DE CRESCIMENTO POPULACIONAL MODELO DE MALTHUS Problemas populacionais nos levam às perguntas: 1. Qual será a população de certo local

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Aplicação das derivadas: Equações diferenciais Teorema As soluções da equação y = 0 num intervalo (a, b) são exatamente

Leia mais

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados.

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados. 17 Equações Diferenciais de Segunda Ordem Copyright Cengage Learning. Todos os direitos reservados. 17.2 Equações Lineares Não Homogêneas Copyright Cengage Learning. Todos os direitos reservados. Equações

Leia mais

Trabalho de Equações Diferenciais Ordinárias

Trabalho de Equações Diferenciais Ordinárias Universidade Tecnológica Federal do Paraná Diretoria de Graduação e Educação Prossional Departamento Acadêmico de Matemática Trabalho de Equações Diferenciais Ordinárias Data de Entrega: 16/12/2015 Nome:

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio

Leia mais

CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof.

CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof. Prof. Chico Vieira MATEMÁTICA da ANPEC Tudo Passo a Passo Teoria e Questões FICHA com LIMITES, DERIVADAS, INTEGRAIS, EDO, SÉRIES Integrais Dupla e Tripla LIMITES ANPEC QUESTÕES JÁ GRAVADAS DERIVADAS ANPEC

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6. 6. EDO DE ORDEM SUPERIOR SÉRIES & EDO - 2017.2 Ua EDO Linear de orde n se apresenta sob a fora: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.1) onde os coe

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Professora Renata Alcarde Sermarini Notas de aula do

Leia mais

d [xy] = x cos x. dx y = sin x + cos x + C, x

d [xy] = x cos x. dx y = sin x + cos x + C, x Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral

Leia mais

Curso de Cálculo Diferencial Avançado Professora Luciana França da Cunha Aguiar. Unidade 3 - Equações Diferenciais Ordinárias

Curso de Cálculo Diferencial Avançado Professora Luciana França da Cunha Aguiar. Unidade 3 - Equações Diferenciais Ordinárias Curso de Cálculo Diferencial Avançado Professora Luciana França da Cunha Aguiar Unidade 3 - Equações Diferenciais Ordinárias Uma equação algébrica é uma equação em que as incógnitas são números, enquanto

Leia mais

Matemática 2 Engenharia Eletrotécnica e de Computadores

Matemática 2 Engenharia Eletrotécnica e de Computadores Matemática Engenharia Eletrotécnica e de Computadores Eercícios Compilados por: Alzira Faria Ana Cristina Meira Ana Júlia Viamonte Carla Pinto Jorge Mendonça Teórico-prática. Indique o domínio das funções:

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec M Paluch Aulas 28 33 7 23 de Abril de 2014 Exemplo de uma equação diferencial A Lei de Newton para a propagação de calor,

Leia mais

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia. Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 Aproximações

Leia mais

(1) O vetor posição de uma partícula que se move no plano XY é dado por:

(1) O vetor posição de uma partícula que se move no plano XY é dado por: 4320195-Física Geral e Exp. para a Engenharia I - 1 a Prova - 12/04/2012 Nome: N o USP: Professor: Turma: A duração da prova é de 2 horas. Material: lápis, caneta, borracha, régua. O uso de calculadora

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014 MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t

Leia mais

EDO Linear de 2a. Ordem com Coecientes Constantes Homogênea

EDO Linear de 2a. Ordem com Coecientes Constantes Homogênea EDO Linear de 2a. Ordem com Coecientes Constantes Homogênea Laura Goulart UESB 27 de Março de 2018 Laura Goulart (UESB) EDO Linear de 2a. Ordem com Coecientes Constantes 27 de Março Homogênea de 2018 1

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

(a) dq dt + 4. (e) dq

(a) dq dt + 4. (e) dq Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Cálculo II Data: 25/03/2014 PRIMEIRA PROVA UNIFICADA 1. Considere a curva parametrizada por r(t) = (cos t, sen t, at), t 2 [0,

Leia mais

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade. 7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4

Leia mais

Variáveis Separáveis

Variáveis Separáveis Variáveis Separáveis Laura Goulart UESB 7 de Março de 2018 Laura Goulart (UESB) Variáveis Separáveis 7 de Março de 2018 1 / 11 Edo de 1a. ordem Uma edo de 1a. ordem se apresenta sob duas formas equivalentes:

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Talvez a aplicação mais importante do cálculo sejam as equações diferenciais. Quando cientistas físicos ou cientistas sociais usam cálculo, muitas vezes o fazem

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 28/06/2015 Física

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17

MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17 MAT 340 - EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17 Bulmer Mejía García 2010-II Universidade Federal de Viçosa EDO de Cauchy-Euler É uma EDO da seguinte forma a n (ax+b) n y (n) (x)+a n 1 (ax+b) n

Leia mais

(a) Determine a velocidade do barco em qualquer instante.

(a) Determine a velocidade do barco em qualquer instante. NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte

Leia mais

5. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique.

5. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique. 4 ā Lista de Exercícios de SMA-332- Cálculo II 1. Mostre que as funções dadas são diferenciáveis. a) f(x, y) = xy b) f(x, y) = x + y c) f(x, y) = x 2 y 2 d) f(x, y) = 1 xy e) f(x, y) = 1 x + y f) f(x,

Leia mais

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. 3. AS CÔNICAS CÁLCULO VETORIAL - 2017.2 3.1 A circunferência 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa pelos pontos A (5; 1) ;

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios MAT 352 - Lista de exercícios Integrais indefinidas. Calcule 2x cos(x 2 )dx sen(x) cos(x)dx sen(2x) 5 + sen 2 (x)dx sec 2 (x) 3 + 2 tan(x) dx x + 2 x dx x 2 x + dx g) tan 3 (x) sec 4 (x)dx h) (2x + 3)

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B33 Limites e Derivadas Prof a. Graça Luzia Dominguez Santos

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B33 Limites e Derivadas Prof a. Graça Luzia Dominguez Santos UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivadas Prof a Graça Luzia Dominguez Santos LISTA DE EXERCÍCIOS( Questões de Provas a UNIDADE) Derivada

Leia mais

PROFMAT AV2 MA

PROFMAT AV2 MA PROFMAT AV MA 11 011 Questão 1. Calcule as seguintes epressões: [ ] (1,0) (a) log n log n (1,0) (b) log a/ log, onde a > 0, > 0 e a base dos logaritmos é fiada arbitrariamente. (a) Como = n 1/n 3, temos

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

4.1 Trajetórias & Integral de Linha

4.1 Trajetórias & Integral de Linha CÁLCULO AVANÇADO 4. CÁLCULO INTEGRAL NO R N 4. Trajetórias & Integral de Linha. Calcule a integral de linha do campo vetorial f x; y; z) = y 2 z 2 i + 2yzj x 2 k, ao longo do caminho descrito por t) =

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

UNIVERSIDADE PARANAENSE - UNIPAR: 2004 Disciplina: Cálculo Diferencial e Integral

UNIVERSIDADE PARANAENSE - UNIPAR: 2004 Disciplina: Cálculo Diferencial e Integral UNIVERSIDADE PARANAENSE - UNIPAR: 2004 Disciplina: Cálculo Diferencial e Integral Professor ADILANDRI MÉRCIO LOBEIRO Departamento de Matemática - UNIPAR Umuarama, fevereiro de 2004 Capítulo 1 SEQÜÊNCIAS

Leia mais

Notas de aula de Calculo Diferencial e Integral IV. Fabio Henrique de Carvalho

Notas de aula de Calculo Diferencial e Integral IV. Fabio Henrique de Carvalho Notas de aula de Calculo Diferencial e Integral IV Fabio Henrique de Carvalho Copyright c 2016 Publicado por Fundação Universidade Federal do Vale do São Francisco (Univasf) www.univasf.edu.br Todos os

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos

Leia mais

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com:

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com: Matemática Licenciatura em Biologia 4 / 5. Matrizes.. Dê um eemplo, em cada alínea, de uma matriz A = [a ij ] m n com: m =, n = cuja soma das entradas principais seja. (b) m = n = 4 com a a e a 4 = a 4.

Leia mais

EDO III. por Abílio Lemos. 07, 09 e 14 de novembro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO III. por Abílio Lemos. 07, 09 e 14 de novembro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO III por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 07, 09 e 14 de novembro de 2018 Teorema (D Alembert): Sejam y 1 (x) uma solução, não nula, da EDO y + p(x)y

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos:

O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos: Capítulo 2 Modelos O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos: 2.1 Molas Considere uma mola, de massa desprezível,

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem 06/7 - LEAN, MEMat, MEQ FICHA - SOLUÇÕES Teorema Fundamental do Cálculo Regra de Barrow Integração por partes

Leia mais

CÁLCULO I. 1 Crescimento e Decaimento Exponencial

CÁLCULO I. 1 Crescimento e Decaimento Exponencial CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada

Leia mais

8.1-Equação Linear e Homogênea de Coeficientes Constantes

8.1-Equação Linear e Homogênea de Coeficientes Constantes 8- Equações Diferenciais Lineares de 2 a Ordem e Ordem Superior As equações diferenciais lineares de ordem n são aquelas da forma: y (n) + a 1 (x) y (n 1) + a 2 (x) y (n 2) + + a n 1 (x) y + a n (x) y

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

Equações Diferenciais de Primeira Ordem

Equações Diferenciais de Primeira Ordem Capítulo Equações Diferenciais de Primeira Ordem. Introdução Equações diferenciais é um dos tópicos da matemática com aplicações em quase todos os ramos da ciência. Física, Química, Biologia, Economia

Leia mais

Equações Diferenciais

Equações Diferenciais IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Edson Patrício Barreto de Almeida Vitória da Conquista - BA 2017 Sumário 1 Terminologia e Definições Básicas 4 11 Classificação 4 12 Solução de

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Equações Diferenciais

Equações Diferenciais IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013

Leia mais

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e CAPÍTULO 0 Eercícios 0.. a) Substituindo tg t e sec t na equação, obtemos ù sec t tg t para todo t no intervalo, é, logo, tg t é solução da equação ûú dada. c) Substituindo t ()4 e 0 na equação t ( ),

Leia mais