Equações Diferenciais
|
|
|
- Augusto Bergler Pinto
- 8 Há anos
- Visualizações:
Transcrição
1 IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013
2 Aula 15 Objetivos - Modelar matemáticamente fenômenos naturais utilizando equações diferenciais. 0.1 Cronologia do Carbono A proporção entre os isótopos 14 C/ 12 C (carbono-12 e carbono-14 respectivamente) na matéria orgânica viva é constante. No entanto, na matéria orgânica morta, a quantidade, Q, de 14 C diminui com o tempo a uma taxa proporcional à quantidade existente. Vejamos um modelo para a datação por utilização da relação 14 C/ 12 C. Indiquemos a taxa de decrescimento do carbono 14 C na matéria orgânica morta por dq. Sendo a taxa de crescimento proporcional à quantidade existente Q, temos o seguinte modelo onde k é a constante de proporcionalidade. Agora vejamos a solução para (1). Arrumando a equação (1), temos dq dq = kq, (1) kq = 0, (2) que é uma equação diferencial ordinária linear de primeira ordem com P (t) = k e q(t) = 0 (notação vista em sala). Assim, sua solução é dada por Q(t) = e k Considerando a condição inicial Q(0) = Q 0, temos e k.0 + ce k Q(t) = ce kt. Q 0 = Q(0) = ce k.0 c = Q 0 Q(t) = Q 0 e kt. Observação 0.1. i) Uma vez que a quantidade Q, de 14 C, decresce com o tempo o valor de k deve ser negativo; ii) Quando t + temos que Q 0; iii) O tempo de meia vida do 14 C, isto é, o tempo que a quantidade de 14 C cai pela metade, é de aproximadamente 5600 anos. Exemplo 0.2. Um osso fossilizado contém 1/1000 da quantidade original de C 14. Determine a idade do fóssil. Solução: Novamente, o modelo é A(t) = A 0 e kt. Temos que, Logo, A 0 2 = A 0e k = e5600k 5600k = ln 0, 5 k = 0, A(t) = A 0 e 0, t. Quando A(t) = A 0 /1000, temos A = A 0e 0, t 0, = ln t = anos. 1
3 0.2 Crescimento Populacional Na biologia, por exemplo, é observado que a taxa de crescimento de certas bactérias é proporcional ao número de bactérias presentes num dado instante. Designando por N o número de bactérias num dado instante t, temos o seguinte modelo: = kn, (3) onde k é a constante de proporcionalidade. Arrumando (3), temos kn = 0, (4) que é uma equação diferencial ordinéria linear de primeira ordem com P (t) = k e q(t) = 0 (notação vista em sala). Sua solução é dada por e k Considerando a condição inicial = N(0), temos e k.0 + ce k ce kt. = N(0) = ce k.0 c = e kt. Exemplo 0.3. Em uma cultura, há inicial mente bactérias. Uma hora depois, t = 1, o número de bactérias passa a ser de 2 Se a taxa de bactérias é proporcional ao número de bactérias presentes, determine o tempo necessário para que o número de bacttérias quadruplique. Solução: O modelo a ser adotado é dado pela edo = kn. (5) Resolvendo 5, temos ce kt. Usando o fato de que N(0) =, temos = ce k.0 c = e kt. Além disso, temos que N(1) = 2. Assim, 2 = e k.1 e k = 2 k = ln 2. Portanto a expressão para N(t) é dada por e ln 2 t. Por fim, a população quadruplicará em 4 = e ln 2 t e ln 2 t = 4 ln 2 t = ln 4 t = ln 4 /ln 2 = 2 horas. O modelo acima se mostra bastante útil nos casos em que a taxa de morte é nula, o que ocorre, geralmente em pequenos intervalos de tempo. Agora, vejamos um modelo levando-se em conta a taxa de mortalidade. Por exemplo, se considerarmos a população de seres humanos observaremos que a mortalidade é provocada pelos mais diversos fatores, tais como subnutrição, doenças, crimes violentos etc. Esses fatores envolvem uma competição, de modo que poderíamos considerar que a 2
4 componente da taxa de mortalidade é proporcional ao número de iterações duplas. tamanho N, temos C N,2 = N(N 1) 2 dessas iterações possíveis. Assim, temos o seguinte modelo: Organizando (6), temos onde A = k2 2 (A > 0) e = 2k1 k Note que (7) é uma equação diferencial ordinária separável. De fato, cuja solução é obtida da seguinte maneira = A N( ) N N No caso de uma iteração de = k N(N 1) 1N k 2. (6) 2 = A.N(N ) (7) = AN(N N 1) = A (8) N(N ) ( 1/N1 1/ N N ) = At + c 1 1 (ln N ln N ) = At + c 1 1 ln N N = At + c 1 ln N N = At + c 1 N N = e N1At+N1c1 = e N1At e N1c1 N = Nc 2 e N1At N(1 c 2 e N1At ) = Considerando a condição inicial N(0) =, temos Por fim, = N(0) = (1 c 2 e N1A.0 ) = (1 c 2 ) 1 c 2 = c 2 = 1. (1 c 2 e N1At ) = N ( 1 ) = (1 1 N1 e N1At ) = ( ( )e At ) (1 c 2 e N1At ). (+( )e At ). (9) + ( ) e N1At Observação 0.4. i) Note que se = 0, temos 0 para todo t. Neste caso, dizemos que = 0 é um ponto de equilíbrio. Além disso, um outro ponto de equilíbrio é =. De fato, + ( ) e N1AN1 = + 0 =. ii) Diferentemente do modelo populacional anterior, este tende a quando t. De fato, lim t lim t + ( ) e N1At = + ( ) e N1A( ) = + ( ) e = + 0 = Lembre-se de que A > 0. Um pequeno ajuste na equação diferencial (9) produz lim t. = AN(N (P + 1)), que é um modelo razoável para descrever a disseminação de uma epidemia trazida inicialmente pela introdução de um indivíduo infectado em uma população estática saudável P. A solução N(t) representa o número de indivíduos infectados em qualquer tempo t. 3
5 Exemplo 0.5. Suponha que um estudante infectado com vírus da gripe retorne a uma faculdade isolada no campus onde se encomtram 1000 estudantes. Presumindo que a taxa a qual o vírus se espalha é proporcional não somente à quantidade de alunos infectados, mas também à quantidade de alunos não infectados, determine o número de alunos infectados após 6 dias se ainda é observado que depois de 4 dias x(4) = 50. Suponhamos que ninguém saia do campus equanto durar a epidemia. Solução: Devemos resolver o seguinte PVI = AN(N ), N(0) = 1. onde = P + 1 = 1000 é o número de estudantes no campus. Assim, Usando a condição inicial N(4) = 50, temos + ( ) e N1At e 1000At Por fim, 50 = e 1000A e 4000A = e 4000A = 19 e 4000A = N(6) = 4000A = ln A = 0, e 0,9906t estudantes e 0, Velocidade de um Corpo em Queda Livre Considerando a Resistência do Ar A 2 a Lei de Newton afirma que o produto da massa pela aceleração de um corpo é igual ao somatório das forças que o corpo está sujeito, isto é ma = i onde m é a massa do corpo, a é a aceleração e os F i são as forças que atuma sobre o corpo. No caso de um corpo em queda livre podemos supor que sobre este atuam apenas duas forças, a força peso e a força de resistência do ar. Admitiremos que a força de resistência do ar é proporcional à velocidade do corpo. Pois bem, encontremos um modelo que descreva tal situação. Considerando que a aceleração é a derivada da velocidade, que a força peso é dada por P = mg (onde m é a massa do corpo e g a aceleração da gravidade) e que a força de resistência do ar é R = kv (onde k é a constante de proporcionalidade e v é a velocidade do corpo), temos o seguinte modelo: Arrumando (10), temos F i, ma = P R m dv que é uma equação diferencial ordinária linear de primeira ordem com P (t) = k m Neste caso, a solução de (10)é dada por v(t) = e k m = mg kv. (10) dv + kv = g, (11) m e k m g + ce k m e q(t) = g (notação vista em sala). 4
6 Considerando a condição inicial v(0) = v 0, temos v(t) = e k m t e k m t g + ce k m t k m v(t) = gm k + ce k m t. v 0 = v(0) = gm k + ce k m.0 c = v 0 gm k. Portanto, v(t) = gm k + ( v 0 gm k ) e k m t. 0.4 Exercícios Exercício 1: Um osso fossilizado comtém 0, 3% da quantidade original de 14 C. Determine a idade do fossil. Considere a meia-vida do 14 C como sendo de 5600 anos. Resposta: anos Exercício 2: Um pára-quedista, pesando 70 kg, salata de um avião e abre seu pára-quedas passados 10s. Antes da abertura do pára quedas, o seu coeficiente de atrito era de 5 kg/s (valor de k) e depois foi de 100 kg/s. Com base nestas informações determine. a) Qual a velocidade do pára-quedista no isntante em que se abre o pára-quedas? b) Qual a distância percorrida pelo páraquedista em queda livre? c) Qual a velocidade mínima que o pára-quedista poderá atinjir, após a abertura do páraquedas? Adote g = 9, 8 m/s 2. Respostas: a) 70 m/s, b) 392 m, c) 6, 86 m/s Exercício 3: Estudos feitos tomando-se a população dos Estados Unidos mostram que a população em 1790, 1840 e 1890 era de 3, 93, 17, 07 e 62, 98 milhões, respectivamente. Use o modelo logístico (9) para estimar a população no instante t. Resposta: p(t) = 989,50 3,93+247,85e 0,030463t. 5
Equações Diferenciais
IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013
Exemplos de Aplicações das Funções Exponencial e Logarítmica em Biologia (com uma introdução às equações diferenciais)
Exemplos de Aplicações das Funções Exponencial e Logarítmica em Biologia (com uma introdução às equações diferenciais) Vejamos o seguinte exemplo retirado do livro de Kaplan e Glass (veja a bibliografia
d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh
TURMA 202: Modelagem Matemática PRA3 Prof. José A. Dávalos Chuquipoma Questão LER 04 LISTA DE EXERCÍCIOS RESOLVIDOS 04 Data para submissão na Plataforma Moodle: 22/09/204 Um objeto de massa m = se encontra
A Matemática e as Órbitas dos Satélites
A Matemática e as Órbitas dos Satélites Centro de Análise Matemática, Geometria e Sistemas Dinâmicos Instituto Superior Técnico Julho, 2009 Equações Diferenciais Equações Diferenciais Em matemática, uma
O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos:
Capítulo 2 Modelos O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos: 2.1 Molas Considere uma mola, de massa desprezível,
LISTA dy dx y x + y3 cos x = y = ky ay 3. dizemos que F (x, y) é homogênea de grau 0. Neste caso a equação diferencial y =
MAT 01167 LISTA Equações Diferenciais Resolva: 1. y = y x + x y, y ( ) 1 8 =. (1 x ) dy dx (1 + x) y = y. dy dx y x + y cos x = 0 4. y = ky ay. Se uma função F (x, y) satisfaz a condição F (t x, t y) =
MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17
MAT 340 - EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17 Bulmer Mejía García 2010-II Universidade Federal de Viçosa EDO de Cauchy-Euler É uma EDO da seguinte forma a n (ax+b) n y (n) (x)+a n 1 (ax+b) n
Crescimento Populacional
Crescimento Populacional (06-03-09) Taxa de variação Suponha que y é uma quantidade que depende de outra quantidade x. Assim, y é uma função de x e escrevemos y = f(x). Se x variar de x 1 para x 2, então
Equa c oes Diferenciais Ordin arias - Aplica c oes Marcelo Nascimento
Equações Diferenciais Ordinárias - Aplicações Marcelo Nascimento 2 Sumário 1 Aplicações 5 1.1 Desintegração Radioativa........................... 5 1.2 Resfriamento de um corpo..........................
em função de t é indique qual dos gráficos abaixo melhor representa uma primitiva y em função de t:
Centro Universitário UNIVATES Disciplina de Cálculo III Professora Maria Madalena Dullius Este teste é constituído por 0 questões de escolha múltipla e duas questões abertas. Dentre as alternativas, escolha
Equações Diferenciais de Primeira Ordem
Capítulo Equações Diferenciais de Primeira Ordem. Introdução Equações diferenciais é um dos tópicos da matemática com aplicações em quase todos os ramos da ciência. Física, Química, Biologia, Economia
Equações Lineares de 1 a Ordem - Aplicações
Equações Lineares de 1 a Ordem - Aplicações Maria João Resende www.professores.uff.br/mjoao 2016-2 M. J. Resende (UFF) www.professores.uff.br/mjoao 2016-2 1 / 14 Modelos Matemáticos Chamamos de modelo
Sessão 1: Generalidades
Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar
Figura 4.1: Circuito elétrico tipo RL com o indutor inicialmente carregado.
Guia de Atividades para abordar Equações Diferenciais Ordinárias através da exploração de situações-problema que envolvem queda de corpos e circuitos elétricos. Nestas atividades temos como objetivo abordar
Cálculo 4 Aula 18 Equações Diferenciais. Prof. Gabriel Bádue
Cálculo 4 Aula 18 Equações Diferenciais Prof. Gabriel Bádue Motivação Modelos matemáticos Crescimento Populacional Movimento de uma mola Movimento Planetário Aplicações de forças Equações Diferenciais
CÁLCULO I. 1 Crescimento e Decaimento Exponencial
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada
Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim
Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim Nestas atividades temos como objetivo abordar a definição, solução e notação de uma equação diferencial e,
Equações Diferenciais: Modelagem de problemas. Palavras chave: aplicações, equações diferenciais de primeira ordem, variáveis separáveis.
Equações Diferenciais: Modelagem de problemas Cleber de Oliveira dos Santos 1 Faculdade capivari - FUCAP, Capivari de Baixo, SC [email protected] Resumo: Este artigo apresenta algumas modelagens matemática
Dada uma função contínua a(t) definida num intervalo I = [0, T ], considere o problema x = a(t) x, x(0) = x 0. (1) Solução do Problema. 0 a(s) ds.
Lei Exponencial Dada uma função contínua a(t) definida num intervalo I = [, T ], considere o problema x = a(t) x, x() = x. (1) Solução do Problema O problema (1) admite uma única solução, que é explicitamente
Seção 9: EDO s lineares de 2 a ordem
Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y
Complementos de Análise Matemática
Instituto Politécnico de Viseu Escola Superior de Tecnologia Ficha prática n o 3 - Equações Diferenciais 1. Determine as equações diferenciais das seguintes famílias de linhas: (a) y = cx (b) y = cx 3
APLICAC OES - EDO s DE 1a. ORDEM
APLICAÇÕES - EDO s DE 1 ạ ORDEM 2 1. Dinâmica Populacional (Modelo Malthusiano) O modelo mais simples de crescimento populacional é aquele em que se supõe que a taxa de crescimento de uma população dy
1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais:
Universidade do Estado de Mato Grosso - Campus de Sinop Cálculo Diferencial e Integral III - FACET Lista 6 Profª Ma. Polyanna Possani da Costa Petry 1. Resolva as equações diferenciais: a) y + 2y = 2e
Taxas de Variação: Velocidade e Funções Marginais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas de Variação:
Resolução comentada da questão 1 da P1 de 2015 da disciplina PME Mecânica dos Fluidos I
Resolução comentada da questão 1 da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos I Caio Cancian Março 2016 Resumo A primeira questão da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos
Exercícios Complementares 5.2
Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da EDO indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C 1 e 2t + C 2 e 3t ; :: x 10 : x + 6x = 0: (c) y = ln
Equações Diferenciais Noções Básicas
Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas
y (n) (x) = dn y dx n(x) y (0) (x) = y(x).
Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.
Probabilidade e Estatística
IFBA Probabilidade e Estatística Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista
1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo
ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência
Equações diferencias são equações que contém derivadas.
Equações diferencias são equações que contém derivadas. Os seguintes problemas são exemplos de fenômenos físicos que envolvem taxas de variação de alguma quantidade: Escoamento de fluidos Deslocamento
Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taas de Variação:
Equações Diferenciais Noções Básicas
Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo
1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com:
Matemática Licenciatura em Biologia 4 / 5. Matrizes.. Dê um eemplo, em cada alínea, de uma matriz A = [a ij ] m n com: m =, n = cuja soma das entradas principais seja. (b) m = n = 4 com a a e a 4 = a 4.
Capítulo 1.1: Modelos Matemáticos Básicos; Campo de Direções
Capítulo 1.1: Modelos Matemáticos Básicos; Campo de Direções As Equações Diferenciais são equações que contêm derivadas. Os seguintes exemplos são fenômenos físicos que envolvem taxas de variação: Movimento
MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO
UNIDADE 15 OSCILAÇÕES
UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito
Equações Diferenciais Ordinárias
Universidade Estadual Paulista Instituto de Química de Araraquara Equações Diferenciais Ordinárias Jorge Manuel Vieira Capela Marisa Veiga Capela Material de apoio à disciplina Equações Diferenciais Ordinárias
Gabarito da Prova P1 - Física 1
Gabarito da Prova P1 - Física 1 1. Duas partículas (1 e 2) se movem ao longo do eixo x e y, respectivamente, com velocidades constantes v 1 = 2ˆx cm/s e v 2 = 3ŷ cm/s. Em t = 0 s elas estão nas posições:
Soluções dos Problemas do Capítulo 3
48 Temas e Problemas Soluções dos Problemas do Capítulo 3. A cada período de 5 anos, a população da cidade é multiplicada por,0. Logo, em 0 anos, ela é multiplicada por,0 4 =,084. Assim, o crescimento
Cálculo Diferencial e Integral C. Me. Aline Brum Seibel
Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno
UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS
UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números
2.2. Lei Fundamental da Dinâmica
2.2. Lei Fundamental da Dinâmica Lei Fundamental da Dinâmica ou 2.ª Lei de Newton Se no instante t = 0 s aplicares uma força horizontal com uma determinada intensidade, da esquerda para a direita, o corpo
DERIVADAS TABELA DE DERIVADAS FUNÇÃO DERIVADA FUNÇÃO DERIVADA y c, c = constante y 0
DERIVADAS TABELA DE DERIVADAS FUNÇÃO DERIVADA FUNÇÃO DERIVADA y c, c = constante 0 y sen cos n y n 1 n y cos sen y = cf y = cf ' y tag sec y f g f g y cot g csc y f. g f. g f. g y sec sec tag f f. g f.
Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL:
5. EDO DE PRIMEIRA ORDEM SÉRIES & EDO - 2017.2 5.1. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas
ELEMENTOS DE EQUAÇÕES DIFERENCIAIS
ELEMENTOS DE EQUAÇÕES DIFERENCIAIS AULA 05: MODELAGEM E PROBLEMAS DIVERSOS TÓPICO 01: MODELAGEM No tópico 03 da aula 01 vimos alguns exemplos de equações diferenciais que serviam de modelo matemático para
SOBRE EQUAÇÕES DIFERENCIAIS
SOBRE EQUAÇÕES DIFERENCIAIS PROBLEMA: É um fato da física que os elementos radioativos se desintegram espontaneamente em um processo chamado decaimento radioativo. Os experimentos têm mostrado que a taxa
Equações Ordinarias 1ªOrdem - Lineares
Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
Equações Diferenciais Ordinárias
Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet
Secção 3. Aplicações das equações diferenciais de primeira ordem
3 Aplicações das equações diferenciais de prieira orde Secção 3 Aplicações das equações diferenciais de prieira orde (Farlow: Sec 23 a 26) hegou a altura de ilustrar a utilidade prática das equações diferenciais
Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária
Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária Para algumas situações-problema, cuja formulação matemática envolve equações diferenciais, é possível
Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013
Solução numérica de Equações Diferenciais Ordinárias: Método de Euler Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires;
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
MAT 0143 : Cálculo para Ciências Biológicas
MAT 0143 : Cálculo para Ciências Biológicas Aula 8/ Quarta 26/03/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 7 1 Informações gerais: Site: o link do MAT 0143 na pagina seguinte http://www.ime.usp.br/~sylvain/courses.html
Solução aproximada de equações de uma variável
Cálculo Numérico de uma variável Prof. Daniel G. Alfaro Vigo [email protected] Departamento de Ciência da Computação IM UFRJ Parte I Localização de zeros e Método da bissecção Motivação: Queda de um
Exercícios Matemática I (M193)
Exercícios Matemática I (M93) Funções. Associe a cada uma das seguintes funções o gráfico que a representa. a) f(x) = 2x + 4. b) f(x) = 3x +. c) f(x) = x 2. d) f(x) = 2x 3. e) f(x) = 0 x. f) f(x) = (0,
Equações diferencias ordinárias - Exercícios
Página 1 de 5 Equações diferencias ordinárias - Exercícios 1) A lei do resfriamento de Newton diz que a temperatura de um corpo varia a uma taxa proporcional à diferença entre a temperatura do mesmo e
Na Física (em módulo) é uma Lei
1 a interpretação Interpretações matemáticas Na Física (em módulo) é uma Lei Elementos de uma expressão matemática Variável dependente Coeficiente Variável independente 2 a interpretação Interpretações
Física I Prova 1 25/04/2015
Nota Física I Prova 1 25/04/2015 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento
LISTA DE EXERCÍCIOS -2 Leis de Newton
LISTA DE EXERCÍCIOS -2 Leis de Newton QUESTÃO 1 - (UNIFOR - modificada) - Um bloco de massa 20 kg é puxado constantemente por uma força F horizontal e paralela à superfície. O coeficiente de atrito cinético
PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/2016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo.
PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo. Um corpo move ao longo de uma reta obedecendo a função horária
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
1.(UFB - adaptado) Determine a intensidade da Força Resultante necessária para manter um trem de 5 toneladas com velocidade constante de 5 m/s.
1.(UFB - adaptado) Determine a intensidade da Força Resultante necessária para manter um trem de 5 toneladas com velocidade constante de 5 m/s. 2. -(PUC-RJ - adaptado) Considere as seguintes afirmações
Algumas aplicações das equações diferenciais ordinárias de primeira ordem
Algumas aplicações das equações diferenciais ordinárias de primeira ordem Rebello Out/1999 (rev. Mar/2015, Ago/2015) - Modelamento - Crescimento e decrescimento Admitindo que uma quantidade Q de uma substância
Equações Diferenciais
Equações Diferenciais EQUAÇÕES DIFERENCIAS Talvez a aplicação mais importante do cálculo sejam as equações diferenciais. Quando cientistas físicos ou cientistas sociais usam cálculo, muitas vezes o fazem
CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO
CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO MATERIAL DIDÁTICO IMPRESSO ORIENTAÇÔES PARA A ELABORAÇÃO DO PLANEJAMENTO DE UMA AULA CURSO: Física DISCIPLINA: Informática para
Equações Diferenciais de 1ª ordem ALGUMAS APLICAÇÕES
Equações Diferenciais de 1ª ordem ALGUMAS APLICAÇÕES APLICAÇÃO: MODELOS DE CRESCIMENTO POPULACIONAL MODELO DE MALTHUS Problemas populacionais nos levam às perguntas: 1. Qual será a população de certo local
APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM
APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM Decaimento radioativo Resultados experimentais mostram que elementos radioativos desintegram a uma taxa proporcional à quantidade presente do elemento. Se Q = Q(t) é a
As leis de Newton e suas aplicações
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel As leis de Newton e suas aplicações Disciplina: Física Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este
DERIVADA. Aula 02 Matemática I Agronomia Prof. Danilene Donin Berticelli
DERIVADA Aula 02 Matemática I Agronomia Prof. Danilene Donin Berticelli No instante que o cavalo atravessou a reta de chegada, ele estava correndo a 42 mph. Como pode ser provada tal afirmação? Uma fotografia
Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações
Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Professor: Daniel Henrique Silva Introdução às Equações Diferenciais 1) Defina equação diferencial. 2) Seja f(x; y) uma função
Curso de Cálculo Diferencial Avançado Professora Luciana França da Cunha Aguiar. Unidade 3 - Equações Diferenciais Ordinárias
Curso de Cálculo Diferencial Avançado Professora Luciana França da Cunha Aguiar Unidade 3 - Equações Diferenciais Ordinárias Uma equação algébrica é uma equação em que as incógnitas são números, enquanto
Deslocamento: Desse modo, o deslocamento entre as posições 1 e 2 seria dado por: m
Deslocamento: x = xf - x i Desse modo, o deslocamento entre as posições 1 e 2 seria dado por: x = x - x = 72-30 = 42 1 2 2 1 m Se a execução do deslocamento ou espaço percorrido por um objeto ou partícula
Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica
Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia
Introdução às medidas físicas ( ) Aulas 6 e 7 Queda livre
Introdução às medidas físicas (43005) Aulas 6 e 7 Queda livre Grupo: Nome: Nome: Nome: Introdução: Qual é o objetivo do experimento? Qual é o método que usará para atingir seu objetivo? Medidas Experimentais:
Introdução às medidas físicas ( ) Aula 6 e 7 Queda livre. Qual é o método que usará para atingir seu objetivo?
Introdução às medidas físicas (430015) Aula 6 e 7 Queda livre Grupo: Nome: Nome: Nome: Introdução: Qual é o objetivo do experimento? Qual é o método que usará para atingir seu objetivo? Medidas Experimentais:
5 Forças em Dinâmica. 1 Princípio da inércia (primeira lei de Newton) 2 Princípio fundamental da Dinâmica (segunda lei de Newton)
F=m.a 5 Forças em Dinâmica A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam. Significa que a força resultante F produz uma aceleração a com mesma direção
CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário
Equações Diferenciais
Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos
MAT 0143 : Cálculo para Ciências Biológicas
MAT 0143 : Cálculo para Ciências Biológicas Aula 11/ Segunda 07/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 10 1 Informações gerais: Site: o link do MAT 0143 na pagina seguinte http://www.ime.usp.br/~sylvain/courses.html
