Equações Diferenciais Ordinárias

Tamanho: px
Começar a partir da página:

Download "Equações Diferenciais Ordinárias"

Transcrição

1 Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet 1

2 Equações separáveis As equações diferenciais ordinárias separáveis são equações que podem ser escritas na forma Seja Então d g f d Substituindo-se g por dh/d na equação 1 obtemos h g d dh d g 1 dh d d d f

3 Equações separáveis Mas pela regra da cadeia d d h dh d d d d O que implica que pode ser escrita como: h f 3 d A eq. 3 é do tipo 1.3 d dt qt, vista na aula 0, ou seja, é da forma dy d f Em que Y = h. Assim, integrando-se 3 dos dois lados obtemos que a solução geral de 1 é dada implicitamente por h f d C 3

4 Equações separáveis Também podemos obter a solução anterior da seguinte maneira: Integrando-se em relação a ambos os membros de 1 obtemos d g d f d C d Que pode ser reescrita como g d ' f d C Fazendo a substituição d = d obtemos g d f d C Observação: As curvas que são soluções de uma equação separável podem ser vistas como curvas de nível da função z F, h f d 4

5 Equações separáveis Eemplo 1: Modo de resolução 1 Encontrar a solução geral da EDO: A EDO pode ser reescrita como: d d d 4 d d 4 d ou pela regra da cadeia: d d 4 Assim a solução geral é dada implicitamente por: 4 d C As soluções são elipses ver fig. 1 que são curvas de nível da função z F, O gráfico da função F, dada é um parabolóide elíptico ver fig. 5

6 Equações separáveis Eemplo 1: Modo de resolução Encontrar a solução geral da EDO: d 4 ou ' 4 d Integrando-se em relação a ambos os membros obtemos: ' d 4d C Fazendo a substituição d = d obtemos: d 4d C Assim a solução geral é dada implicitamente por As soluções são elipses ver fig. 1 que são curvas de nível da função O gráfico da função F, dada é um parabolóide elíptico ver fig. C z F, 6

7 Equações separáveis Figura 1: Soluções da equação diferencial do eemplo 1 7

8 Equações separáveis Figura : Soluções da equação diferencial do eemplo 1 como curvas de nível do parabolóide elíptico z = F, = +. 8

9 Equações separáveis Eemplo : a Encontre a solução do PVI d 1 d b Determine o intervalo de validade da solução, ou seja, o maior intervalo contendo 0 =1 para o qual a solução e sua derivada d/d estão definidas. c Determine os pontos onde a solução tem um máimo local. d Faça um esboço do gráfico da solução. 9

10 Equações separáveis Eercício: Fazer pela primeira metodologia para verificar 10

11 Equações separáveis 11

12 Equações separáveis 1

13 Equações separáveis 13

14 Equações separáveis Figura 3: Solução do PVI do eemplo. 14

15 Equações separáveis Figura 4: Soluções da EDO e do PVI do eemplo. 15

16 Equações separáveis Figura 5: Soluções da EDO do eemplo como curvas de nível de uma função de duas variáveis z=f,=

17 Soluções por Substituições Muitas Equações Diferenciais, o primeiro passo para resolvê-la é transformar em outra E.D. conhecida por meio de uma substituição. Equações Homogêneas; Equações de Bernoulli; Equações de Riccati; 17

18 Equações Homogêneas Definição: Função homogênea Se uma função f satisfaz f, f, n Para algum número real n, então dizemos que f é uma função homogênea de grau n. 18

19 Equações Homogêneas 19 Eemplo 1: f, =,,, f f f f é homogênea de grau Eemplo : : f, = 3 + 1, 1 3, 1 3, f f f f não é homogênea

20 Equações Homogêneas 0 Eemplo 3: : f, = e sen, / /, /, 0 / / / f sen e sen e f sen e f f é homogênea de grau zero OBS: 1. Nos eemplos e 3 observamos que uma constante adicionada à função destrói a homogeneidade, a menos que a função seja homogênea de grau zero.. Uma função homogênea pode ser reconhecida eaminado o grau de cada termo

21 Equações Homogêneas Definição: Equação homogênea Uma equação diferencial da forma M, d N, d 0 é chamada de homogênea se ambos os coeficientes M e N são funções homogêneas do mesmo grau. 1

22 Equações Homogêneas Método de solução: Equação homogênea Uma equação diferencial homogênea M, d N, d 0 pode ser resolvida por meio de uma substituição algébrica. Neste caso a substituição: v transformará a equação em uma equação diferencial de 1ª ordem separável. Lembrando: v; d vd dv

23 Equações Homogêneas 3 Eemplo 1: 0 d d d d dv vd d v ; Substituição: fç homog. de mesmo grau c c v v v dv v d v dv v d dv v d v dv v d v dv v d v v v dv vd v vd / v ln 1 ln ln separáveis variáveis

24 Eercícios Resolva as equações diferenciais homogêneas: 1 + = 0 Sol. Geral: ² = C + d + d = 0 Sol. Geral: ln = C 3 cos = cos Sol. Geral: sen = ln C 4 = Sol. Geral: = Ce / 5 = + Sol. Geral: ln ² + ² + arctan/ = C 6 = ; 1 = Sol. Particular: arctan/ = ln + π/4 4

25 Equações Homogêneas Observações: Caso M, e N, sejam funções de trinômios lineares em e, ou seja a b1 c1 d a b c d Teremos de analisar se os coeficientes a 1, a, b 1 e b são proporcionais ou não. 5

26 Equações Homogêneas 6 1º caso: Os coeficientes a 1, a, b 1 e b são proporcionais, ie, Substituindo em 1: A transformação reduz à forma de uma equação de variáveis separáveis. 0 ] [ 1 d c b a d c b a R b a b a e Rb b Ra a R b b a a ; b d a dt d b a t

27 Equações Homogêneas Eemplo 1º caso: + 1 d d = 0 7

28 Equações Homogêneas 8 º caso: Os coeficientes a 1, a, b 1 e b não são proporcionais, ie, A transformação onde h e k são coordenadas da solução do sistema reduz 1 à forma de uma equação homogênea b a b a dy d dx d k Y h X c b a c b a

29 Equações Homogêneas Eemplo º caso: + 4 d + + d = Transformação: X h Y k d dx d dy h e k são coordenadas da solução do sistema h k 0 h k 4 0 reduz à forma de uma equação homogênea. k = 3; h = 1 X Y dy + X Y dx = 0 9

30 Equações Homogêneas Eemplo º caso: X Y dy + X Y dx = 0 Eq. Homogênea de Grau 1 Substituição: Y = vx; dy = vdx + Xdv X vx vdx + Xdv + X vx dx = 0 1 v X dv + vx v X X vx dx = 0 v 1 v +1 dv + dx X = 0 tan 1 v + 1 ln v ln X = C tan 1 Y X + 1 ln Y +X X + ln X = C tan ln = C 30

31 Equações de Bernoulli Seja a equação diferencial: Onde n R d d + P = f n, 1 E.D. Não linear Note que: n = 0 e n = 1 a equação se torna linear. Para n 0 e n 1, a substituição u = 1 n reduz qualquer equação da forma 1 a uma equação diferencial linear. 31

32 Equações de Bernoulli Metodologia para resolver Equações de Bernoulli: Seja a E.D. na forma 1: d d + P = f n, 1 1. Dividir a eq. 1 por n ;. Substituir u = 1 n e du = 1 n nd d d 3. Pelos passos 1 e, obtém-se a seguinte equação: 1 du 1 n d + P u = f Note que a eq. é uma Equação Linear de 1ª Ordem na função incógnita u Pode ser resolvida multiplicando pelo Fator Integrante! 3

33 Equações de Bernoulli Eemplo: d d = e Eercícios: Resolva a equação diferencial dada utilizando uma substituição apropriada. a d d 1 + = b t d dt + = t c d d = 34 33

34 Equações de Riccati Uma E.D. na forma 3: d d = P + Q + R 3 é chamada de uma eq. de Riccati. Obs: Se P = 0 Eq. é Linear! Se não for dada a sol. Particular testar: p = funções simples: cte; funções lineares; funções quadráticas; etc Se P 0 e conseguirmos de alguma forma obter uma solução particular da Equação Diferencial de Riccati E.D.R. p, então fazemos a seguinte troca de variável: = p + 1 z Note que esta troca de variável transforma a E.D.R. em uma equação diferencial linear em e z. 34

35 Equações de Riccati Eemplo: d d = p = 1 = z Obs: Eq. de Bernoulli X Eq. de Riccati d d + P = f n d d = P + Q + R 35

7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis

7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis 7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis 7.1-Equação de Bernoulli A equação de Bernoulli é uma equação diferencial de primeira ordem do tipo: onde é uma constante sendo e e e quaisquer

Leia mais

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno

Leia mais

Secção 2. Equações diferenciais de primeira ordem

Secção 2. Equações diferenciais de primeira ordem . Equações diferenciais de primeira ordem Secção. Equações diferenciais de primeira ordem (Farlow: Sec..,.) Vamos nesta secção analisar como podem ser resolvidos diferentes tipos de EDOs de primeira ordem.

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais Introdução... Soluções de uma equação diferencial... 4 Classificação das Equações Diferenciais de ª Ordem... 5. Equações Diferenciais Separáveis... 5. Equações Diferenciais Homogêneas...

Leia mais

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações AP3 Introdução às Equações Diferenciais Ordinárias e Aplicações Lista semestre de 017 Prof Claudio H Asano 1 Equações Diferenciais de Primeira Ordem 11 Utilize a mudança de variável y = v, dy = vd+dv para

Leia mais

Resolução 2 o Trabalho de Análise Matemática I ETI/LEI (02 de Dezembro de 2010)

Resolução 2 o Trabalho de Análise Matemática I ETI/LEI (02 de Dezembro de 2010) Resolução o Trabalho de Análise Matemática I ETI/LEI ( de Dezembro de ) Diana A. Mendes a). Z ( + e ) d Z Z µ () d + (e ) d +(e ) µ + e e +e +e b). µ Z +4 +5 d Z µ d +4 +4+ Z µ +( +) d (arctan ( +)) arctan

Leia mais

3 Equacões de Bernoulli e Riccati Equação de Bernoulli Equação de Riccati Exercícios... 24

3 Equacões de Bernoulli e Riccati Equação de Bernoulli Equação de Riccati Exercícios... 24 Conteúdo 3 Equacões de Bernoulli e Riccati 18 3.1 - Equação de Bernoulli.................... 18 3.2 - Equação de Riccati..................... 20 3.3 - Exercícios.......................... 24 1 Equações

Leia mais

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32 1 Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / 2012. 1 a LISTA DE MAT-32 Nos exercícios de 1 a 9, classi car e apresentar, formalmente, solução (ou candidata a solução)

Leia mais

d [xy] = x cos x. dx y = sin x + cos x + C, x

d [xy] = x cos x. dx y = sin x + cos x + C, x Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

Aula: Equações diferenciais lineares de ordem superior

Aula: Equações diferenciais lineares de ordem superior Aula: Equações diferenciais lineares de ordem superior Profa. Ariane Piovezan Entringer DMA - UFV Problema de Valor Inicial - EDO de ordem n Problema de Valor Inicial - EDO de ordem n a n (x) d n y dx

Leia mais

Equações Diferenciais Ordinárias de Ordem Superior a Um

Equações Diferenciais Ordinárias de Ordem Superior a Um Capítulo 2 Equações Diferenciais Ordinárias de Ordem Superior a Um 2.1 EDOs lineares homogéneas de ordem dois. Redução de ordem. Exercício 2.1.1 As seguintes equações diferenciais de 2 a ordem podem ser

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS Uma equação diferencial é aquela em que a função incógnita aparece sob a forma da sua derivada. Havendo uma só variável independente as derivadas são ordinárias e a equação é denominada

Leia mais

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x,

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x, Seção 4: Equações Exatas Fator Integrante Introduzimos a idéia de equação exata, através de dois exemplos simples. Note que nesses dois exemplos, além de exata, a EDO também é separável, podendo alternativamente

Leia mais

d [xy] = x arcsin x. dx + 4x

d [xy] = x arcsin x. dx + 4x Instituto de Matemática e Estatística da USP MAT456 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 01-6/11/01 Turma A Questão 1. a (1,0 ponto Determine a solução geral da equação

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781 Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2

Leia mais

SEGUNDA PROVA DE EDB - TURMA M

SEGUNDA PROVA DE EDB - TURMA M SEGUNDA PROVA DE EDB - TURMA M Prof. MARCELO MARCHESIN -/1/7 (13:-1: DPTO. DE MATEMÁTICA, UFMG. RESOLUÇÃO E CRITÉRIOS 1. (11, ptos Sabendo-se que u n (x, y = c n senh( nπx nπy b sen( b para n = 1,,...

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS CONCEITOS BÁSICOS Definição: Uma Equação Diferencial Ordinária (EDO) de ordem n é uma igualdade do tipo ( n) F(, y, y,, y ) 0 () n ( n dy Onde F é uma função de n+ variáveis

Leia mais

Lista de exercícios sobre integrais

Lista de exercícios sobre integrais Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas ICEB Departamento de Matemática DEMAT Cálculo Diferencial e Integral A Lista de exercícios sobre integrais Questão : Em nossa

Leia mais

1 Definição de uma equação diferencial linear de ordem n

1 Definição de uma equação diferencial linear de ordem n Equações diferenciais lineares de ordem superior 1 1 Definição de uma equação diferencial linear de ordem n Equação diferencial linear de ordem n é uma equação da forma: a n (x) dn y dx n + a n 1(x) dn

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Aula 25 Técnicas de integração Aula de exercícios

Aula 25 Técnicas de integração Aula de exercícios MÓDULO - AULA 5 Aula 5 Técnicas de integração Aula de exercícios Objetivo Conhecer uma nova série de exemplos nos quais diferentes técnicas de integração são utilizadas. Nesta aula, você verá uma série

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de

Leia mais

Equações Diferenciais Ordinárias de 1 a ordem - II AM3D

Equações Diferenciais Ordinárias de 1 a ordem - II AM3D 20 2 Equações Diferenciais Ordinárias de a ordem - II AM3D EDOs de a ordem lineares Definição Uma equação diferencial ordinária de a ordem diz-se linear se for da forma y (x)+p(x)y(x) = b(x). Se p(x) =

Leia mais

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias MAP2310 14/03/2005 Análise Numérica e Equações Diferenciais I 1 o Semestre de 2005 1 1 Equações Diferenciais Ordinárias 1.1 Introdução Equações envolvendo uma variável independente real t, uma função desconhecida

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da EDO indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C 1 e 2t + C 2 e 3t ; :: x 10 : x + 6x = 0: (c) y = ln

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento.

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES SISTEMAS LINEARES Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Análise Matemática - 007/008.5.- Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Teorema.31 Derivada da Função Composta

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Conceitos Básicos. Capítulo 1 EQUAÇÕES DIFERENCIAIS. Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas.

Conceitos Básicos. Capítulo 1 EQUAÇÕES DIFERENCIAIS. Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas. Capítulo 1 Conceitos Básicos EQUAÇÕES DIFERENCIAIS Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas. Exemplo 1.1 Algumas equações diferenciais envolvendo a função

Leia mais

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7.

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7. Gabarito Sistemas numéricos. Números naturais.. N. Infinito.. Infinito. 5. Não. Contra-eemplo: número 7. 6. Não, pois sempre é possível encontrar um número maior, bastando somar mais uma unidade. 7. 0

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes:

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: caso não Homogêneo Vamos estudar as equações da forma: ay + by + cy = G(x), onde G(x) é uma função polinomial, exponencial,

Leia mais

Equações Diferenciais de Primeira Ordem

Equações Diferenciais de Primeira Ordem Capítulo Equações Diferenciais de Primeira Ordem. Introdução Equações diferenciais é um dos tópicos da matemática com aplicações em quase todos os ramos da ciência. Física, Química, Biologia, Economia

Leia mais

y x f x y y x y x a x b

y x f x y y x y x a x b 50 SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Uma equação diferencial é uma equação que envolve uma função desconecida e algumas de suas derivadas. Se a função é de uma só variável, então a equação

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA VIGÉSIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, consideraremos mais uma técnica de integração, que é conhecida como substituição trigonométrica. Esta técnica pode

Leia mais

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com:

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com: Matemática Licenciatura em Biologia 4 / 5. Matrizes.. Dê um eemplo, em cada alínea, de uma matriz A = [a ij ] m n com: m =, n = cuja soma das entradas principais seja. (b) m = n = 4 com a a e a 4 = a 4.

Leia mais

de Coeficientes Constantes

de Coeficientes Constantes Seção 12: Equações Diferenciais Lineares não Homogêneas de Coeficientes Constantes O objetivo desta seção é estudar as equações lineares não homogêneas de coeficientes constantes No entanto, a versão do

Leia mais

Como, neste caso, temos f(x) = 1, obviamente a primitiva é F(x) = x, pois F (x) = x = 1 = f(x).

Como, neste caso, temos f(x) = 1, obviamente a primitiva é F(x) = x, pois F (x) = x = 1 = f(x). 4. INTEGRAIS 4.1 INTEGRAL INDEFINIDA A integral indefinida da função f(x), denotada por f x dx, é toda expressão da forma F(x) + C, em que F (x) = f(x) num dado intervalo [a,b] e C é uma constante arbitrária.

Leia mais

d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh

d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh TURMA 202: Modelagem Matemática PRA3 Prof. José A. Dávalos Chuquipoma Questão LER 04 LISTA DE EXERCÍCIOS RESOLVIDOS 04 Data para submissão na Plataforma Moodle: 22/09/204 Um objeto de massa m = se encontra

Leia mais

Resolução de Questões das Listas de Cálculo de Uma Variável:

Resolução de Questões das Listas de Cálculo de Uma Variável: Eercícios resolvidos: Cálculo I -A- Cálculo Diferencial e Integral Aplicado I Cálculo Aplicado I Lista Questão Lista Questão 20 20 6 6 40 40 4 4 2 2 4 6 4 6 4 24 4 24 5 8 5 8 8 8 9 9 9 4 9 4 2 0 2 0 7

Leia mais

3ª LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO Prof.: Magnus Melo

3ª LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO Prof.: Magnus Melo Os eercícios a 4 se referem a interpolação polinomial. Resolva-os com os dois polinômios interpoladores estudados. 4 ) Dada a função f ( ), determine:

Leia mais

Notas de Aula. Equações Diferenciais Ordinárias

Notas de Aula. Equações Diferenciais Ordinárias Notas de Aula Equações Diferenciais Ordinárias Básicas Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula do

Leia mais

Frações Parciais e Crescimento Logístico

Frações Parciais e Crescimento Logístico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Frações Parciais e

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

1 Transformada de Legendre

1 Transformada de Legendre 1 Transformada de Legendre No caso da parede porosa a pressão constante a quantidade se conserva. Além disso H = U + P V dh = du + P dv + V dp du = dq + dw = dq dh = dq + V dp P dv escrevendo H = H (P;

Leia mais

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012 Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem A C Tort 22 de outubro de 2012 Uma equação diferencial ordinária linear de segunda ordem

Leia mais

Resolução comentada da questão 1 da P1 de 2015 da disciplina PME Mecânica dos Fluidos I

Resolução comentada da questão 1 da P1 de 2015 da disciplina PME Mecânica dos Fluidos I Resolução comentada da questão 1 da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos I Caio Cancian Março 2016 Resumo A primeira questão da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos

Leia mais

Conteúdo. 3 Transformada de Laplace Aplicações em equações diferenciais de primeira ordem... 34

Conteúdo. 3 Transformada de Laplace Aplicações em equações diferenciais de primeira ordem... 34 Conteúdo 1 Introdução/Revisão a integral 3 1.1 Integral de funções primitivas......................... 3 1.1.1 Integral de uma constante:...................... 3 1.1.2 Integral de um função:.........................

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

Equações Diferenciais

Equações Diferenciais IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013

Leia mais

Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química

Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química Notas de Aula da Disciplina Cálculo 3 Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química André Luiz Galdino Departamento de Matemática do Campus Catalão da Universidade Federal

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013 Página de 8 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC38 Respostas da Prova de Final - 0//03 Questão : ( pontos) (a) Dado o gráfico da função f, esboce o gráfico da função

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace

Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Transformada de Laplace da Derivada de uma Função Teorema 1:

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Notas de aula para o

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

Aula 12 Regras de Substituição. Integração por partes.

Aula 12 Regras de Substituição. Integração por partes. Universidade Federal do ABC Aula 12 Regras de Substituição. Integração por partes. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site do prof. Annibal:

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS MATEMÁTICAS DE SÃO CARLOS DEPARTAMENTO DE MATEMÁTICA APLICADA E ESTATÍSTICA EQUAÇÕES DIFERENCIAIS ORDINÁRIAS NOTAS DE AULAS Herminio Cassago Junior Luiz

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

Exemplos de equações diferenciais

Exemplos de equações diferenciais Transformadas de Laplace - EDO's Prof. E.T.Galante Denição. Uma equação diferencial é uma equação na qual: a incógnita é uma função; há ao menos uma derivada da função incógnita. Antes de mais nada, vamos

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

Método da substituição

Método da substituição Prof. Neto Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemática são resolvidos a partir

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção.

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção. 1 a) Mostre que f (x) = x cos x possui uma raiz no intervalo [0, 1]. b) Prove que essa raiz é única. c) Sem executar o método, preveja o número de iterações que o algoritmo da bissecção utilizaria para

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

Capítulo 6 Transformação de tensão no plano

Capítulo 6 Transformação de tensão no plano Capítulo 6 Transformação de tensão no plano Resistência dos Materiais I SLIDES 06 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Transformar as componentes de tensão

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar

Leia mais

Aulas n o 22: A Função Logaritmo Natural

Aulas n o 22: A Função Logaritmo Natural CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE NOVEMBRO DE dt + a 0(t)y = 0

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE NOVEMBRO DE dt + a 0(t)y = 0 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 24 16 DE NOVEMBRO DE 2016 EQUAÇÕES LINEARES HOMOGÉNEAS DE ORDEM SUPERIOR A DOIS São da forma a n (t) dn y dt n + a n 1(t) dn 1 y dt n 1 + + a 1(t)

Leia mais

Erros nas aproximações numéricas

Erros nas aproximações numéricas Erros nas aproximações numéricas Prof. Emílio Graciliano Ferreira Mercuri Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR [email protected] 4 de março de 2013 Resumo: O objetivo

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Entre os pontos A e B temos uma d.d.p. no indutor dada por V L = L d i e entre os pontos C e D da d.d.p. no capacitor é dada por V L V C = 0

Entre os pontos A e B temos uma d.d.p. no indutor dada por V L = L d i e entre os pontos C e D da d.d.p. no capacitor é dada por V L V C = 0 Um circuito elétrico LC é composto por um indutor de mh e um capacitor de 0,8 μf. A carga inicial do capacitor é de 5 μc e a corrente no circuito é nula, determine: a) A variação da carga no capacitor;

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 15 16 SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 3. Todos os dispositivos elétricos funcionam baseados na ação de campos elétricos, produzidos por cargas elétricas, e campos magnéticos, produzidos

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais