EQUAÇÕES DIFERENCIAIS
|
|
|
- Domingos Lancastre Ribas
- 9 Há anos
- Visualizações:
Transcrição
1 EQUAÇÕES DIFERENCIAIS Uma equação diferencial é aquela em que a função incógnita aparece sob a forma da sua derivada. Havendo uma só variável independente as derivadas são ordinárias e a equação é denominada equação diferencial ordinária. dy dx EXEMPLOS: = x + 5 d y dy ; y = 0; xy ' +y = 3; y '' ' + ( y '') + y ' = cos x dx dx Havendo duas ou mais variáveis independentes as derivadas são parciais e a equação é denominada equação diferencial parcial. EXEMPLOS: z x z z z = z + x ; + = x + y y x y ORDEM DE UMA EQUAÇÃO DIFERENCIAL: é a ordem da mais alta derivada que nela aparece. GRAU DE UMA EQUAÇÃO DIFERENCIAL: considerando as derivadas como uma polinómio, é o grau da derivada de mais alta ordem que nela aparece. SOLUÇÃO OU INTEGRAL GERAL: é toda a função que verifica, identicamente, a equação diferencial e vem expressa em termos de n constantes arbitrárias. Se a equação é de primeira ordem, aparece uma constante, se é de segunda ordem, duas constantes, etc.. Capítulo 3 1 de 8
2 Geometricamente, a solução geral ou o integral geral representa uma família de curvas (denominadas curvas integrais). EXEMPLO: a equação diferencial dy = sen x tem como solução geral a seguinte dx família de curvas a que chamamos campo de direcções da equação diferencial: SOLUÇÃO PARTICULAR OU INTEGRAL PARTICULAR: é toda a solução da equação diferencial que se obtém da solução geral, por particularização da(s) constante(s) e, geometricamente, representa uma das curvas da família de curvas integrais, correspondentes à solução ou integral geral. EXEMPLO: no caso anterior para a constante c= temos Capítulo 3 de 8
3 Para a particularização das constantes, com vista à obtenção duma solução ou integral particular, podem ser fornecidas condições que podem ser referidas a uma mesmo valor da variável independente, condições iniciais. Resolver ou integrar uma equação diferencial consiste em determinar a solução geral ou integral geral ou sendo dadas condições, determinar a solução ou integral particular que as satisfazem. Forma Geral das Equações Diferenciais e das suas Soluções Gerais Ordem Forma Geral da Equação Diferencial Forma Geral da Solução Geral 1ª f ( x,y, y ') = 0 f ( x,y,c)= 0 ª f ( x, y, y ', y '') = 0 f(x,y,c,c ) = n f ( x,y, y ',...,y n ) = 0 f(x,y,c,...,c ) = n Inversamente, sendo dada uma família de curvas, é sempre possível determinar a equação diferencial que lhe está associada, isto é, a equação diferencial que admite essa família de curvas como solução geral. Para isso, deverá Ter-se em conta o número de constantes arbitrárias que aparecem na família de curvas, o que nos indicará a ordem da equação diferencial que se pretende obter, procedendo-se do seguinte modo: derivar a função que representa a família de curvas dada, até à ordem que coincida com a ordem da equação diferencial procurada; eliminar as constantes arbitrárias entre a equação da família de curvas dada e as equações obtidas por derivação. Capítulo 3 3 de 8
4 EXEMPLO: Determinar a equação diferencial associada à família de curvas + y = cx y. A equação procurada é de primeira ordem, derivando em ordem a x, tem-se yy ' = c + y ' ou c = y '(y 1), eliminando a constante arbitrária vem + y = xy '(y 1) y. Teorema da existência e unicidade da solução ( n ) TEOREMA: Se na equação y = f x,y, y',y '',...,y, a função n 1 f x,y,y',y'',...,y e as suas derivadas parciais em ordem a n 1 y,y',y '',...,y forem funções contínuas num certo domínio n +1 D R e se ( a,a,a,...,a ) D, então existe uma solução única y ϕ( 0 1 n = da equação diferencial que satisfaz as ( a ) a 0 1 y ' ( a ) = a,..., y ( n 1) ( a ) = a. 0 0 n n 1 y =, Forma Diferencial ou Forma Canónica de uma equação diferencial Uma equação diferencial de primeira ordem, na forma normal, tem a estrutura y ' = f ( x, y ). Como f ( x,y ) pode sempre ser considerada um quociente da forma f ( M( x,y ) x,y ) =, a equação diferencial pode também escrever-se N( x,y ) ou seja dy dx = M( x,y ) N( x, y ) M ( x, y )dx+ N( x, y ) dy = 0 Capítulo 3 4 de 8
5 EQUAÇÕES DIFERENCIAIS DE VARIÁVEIS SEPARÁVEIS Se numa equação diferencial da forma M ( x, y )dx+ N( x, y ) dy = 0, é possível decompor os coeficientes M ( x,y ) e N( x,y ) em factores tais que as variáveis x e y aparecem separadas, isto é, M ( x, y ) = a( x ). b( y ) e N ( x,y ) = c( x ). d( y ), a equação classifica-se de variáveis separáveis. Resolução de Equações Diferenciais de Variáveis Separáveis Se a equação é de variáveis separáveis então podemos passar da forma canónicam ( x, y )dx+ N( x, y ) dy = 0 para a forma a ( x ). b( y )dx+ c( x ). d( y ) dy= 0. Separando as variáveis x e y, de forma a que os coeficientes de dx e dy sejam respectivamente funções de x e de y, resulta uma equação de variáveis separadas. Assim vem: a( x ) d( y ) dx+ dy = 0 c( x ) b( y ) Integrando temos: a( x ) c( x ) d( y ) + c b( y ) dx dy = A equação obtida é a solução geral de uma equação de variáveis separáveis. Capítulo 3 5 de 8
6 EQUAÇÕES DIFERENCIAIS HOMOGÉNEAS DEFINIÇÃO: Uma função diz-se homogénea, de grau n, nas variáveis x e y, se para todo o real λ se tiver f ( λ x, λy ) = λ f ( x, y ). n Consideremos uma equação diferencial na forma canónica M ( x, y )dx+ N( x, y ) dy = 0 e sejam M ( x,y ) e N ( x,y ) funções homogéneas e do mesmo grau, a equação classifica-se de equação homogénea. Resolução de Equações Diferenciais Homogéneas Para resolver uma equação diferencial homogénea fazemos a substituição y=xt. Substituindo a variável y teremos de substituir dy. Como y=xt vem dy=tdx+xdt, diferencial de uma função de duas variáveis. A equação transformada que se obtém da equação homogénea é uma equação de variáveis separáveis. No final eliminamos t, fazendo y t =. x Capítulo 3 6 de 8
7 EQUAÇÕES DIFERENCIAIS LINEARES Uma equação de primeira ordem diz-se linear se é do primeiro grau na função incógnita e na sua primeira derivada, podendo representar-se simbolicamente por y' + P( x )y = Q( x ) com P( e Q(, funções contínuas. Se Q(=0, y' + P( x ) y = 0 diz-se uma equação linear homogénea, que é uma equação de variáveis separáveis. Se Q( 0, a equação linear é não homogénea, completa ou com segundo membro. Resolução de Equações Diferenciais Lineares Para resolver equações diferenciais lineares utilizamos expressão y = e P( x )dx e P( x )dx Q( x )dx+ c 1 com c 1 constante arbitrária. Capítulo 3 7 de 8
8 EQUAÇÕES DE BERNOUILLI Uma equação de primeira ordem diz-se de Bernouilli se pode ser reduzida à forma canónica y ' + P( y = Q( y n com P( e Q(, funções contínuas e n constante. Resolução de Equações de Bernouilli Para resolver uma Equação de Bernouilli primeiro que tudo multiplicamos ambos os membros da equação por n y e obtemos y n y' + P( y1 n = Q( Seguidamente fazemos a mudança de variável n n z = y 1 com z' = (1 n) y y' e obtemos z' + P( z = Q( 1 n z' + (1 n) P( z = (1 n) Q( que é uma equação diferencial linear de primeira ordem. Integra-se e seguidamente regressa-se à variável y fazendo z = y 1 n Capítulo 3 8 de 8
d [xy] = x cos x. dx y = sin x + cos x + C, x
Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral
xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x,
Seção 4: Equações Exatas Fator Integrante Introduzimos a idéia de equação exata, através de dois exemplos simples. Note que nesses dois exemplos, além de exata, a EDO também é separável, podendo alternativamente
Equações Diferenciais Noções Básicas
Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo
1 Definição de uma equação diferencial linear de ordem n
Equações diferenciais lineares de ordem superior 1 1 Definição de uma equação diferencial linear de ordem n Equação diferencial linear de ordem n é uma equação da forma: a n (x) dn y dx n + a n 1(x) dn
EXAMES DE ANÁLISE MATEMÁTICA III
EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,
Matemática 2 Engenharia Eletrotécnica e de Computadores
Matemática Engenharia Eletrotécnica e de Computadores Eercícios Compilados por: Alzira Faria Ana Cristina Meira Ana Júlia Viamonte Carla Pinto Jorge Mendonça Teórico-prática. Indique o domínio das funções:
Sistemas de Equações Diferenciais Lineares
Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x
Equações Diferenciais Noções Básicas
Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas
y (n) (x) = dn y dx n(x) y (0) (x) = y(x).
Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.
Sessão 1: Generalidades
Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar
Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica
Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia
Cálculo Diferencial e Integral C. Me. Aline Brum Seibel
Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno
Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.
Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.
Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica
Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia
d [xy] = x arcsin x. dx + 4x
Instituto de Matemática e Estatística da USP MAT456 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 01-6/11/01 Turma A Questão 1. a (1,0 ponto Determine a solução geral da equação
Equações Diferenciais Ordinárias
Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet
7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.
7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4
Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados.
17 Equações Diferenciais de Segunda Ordem Copyright Cengage Learning. Todos os direitos reservados. 17.2 Equações Lineares Não Homogêneas Copyright Cengage Learning. Todos os direitos reservados. Equações
Resolução 2 o Trabalho de Análise Matemática I ETI/LEI (02 de Dezembro de 2010)
Resolução o Trabalho de Análise Matemática I ETI/LEI ( de Dezembro de ) Diana A. Mendes a). Z ( + e ) d Z Z µ () d + (e ) d +(e ) µ + e e +e +e b). µ Z +4 +5 d Z µ d +4 +4+ Z µ +( +) d (arctan ( +)) arctan
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique
Aula: Equações diferenciais lineares de ordem superior
Aula: Equações diferenciais lineares de ordem superior Profa. Ariane Piovezan Entringer DMA - UFV Problema de Valor Inicial - EDO de ordem n Problema de Valor Inicial - EDO de ordem n a n (x) d n y dx
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
Seção 10: Redução de ordem de EDOLH s de 2 a ordem se for conhecida uma solução não trivial
Seção 0: Redução de ordem de EDOLH s de a ordem se for conhecida uma solução não trivial Método de D Alembert Se for conhecida uma solução não trivial de uma EDOLH de a ordem, empregando o método de D
Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2
Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y
Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32
1 Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / 2012. 1 a LISTA DE MAT-32 Nos exercícios de 1 a 9, classi car e apresentar, formalmente, solução (ou candidata a solução)
Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017
Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0
INTRODUÇÃO AO CÁLCULO AULA 04: EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES TÓPICO 02: SISTEMA DE EQUAÇÕES DO 1º GRAU 1. SISTEMA DE EQUAÇÕES DO PRIMEIR
INTRODUÇÃO AO CÁLCULO AULA 04: EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES TÓPICO 02: SISTEMA DE EQUAÇÕES DO 1º GRAU 1. SISTEMA DE EQUAÇÕES DO PRIMEIRO GRAU COM DUAS INCÓGNITAS 1.1 Definição: Um sistema
Mini-teste 1 (Licenciatura em Matemática) 12/01/2007 Duração: 15 mn (Sem consulta)
Mini-teste 1 (Licenciatura em Matemática) 12/01/2007 1. O campo de direcções (na região rectangular [ 4, 4] [ 4, 4]) representado na figura 1 corresponde à equação diferencial Figure 1: y = t(1 y) ; y
ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS
Introdução às Equações Diferenciais e Ordinárias
Introdução às Equações Diferenciais e Ordinárias - 017. Lista - EDOs lineares de ordem superior e sistemas de EDOs de primeira ordem 1 São dadas trincas de funções que são, em cada caso, soluções de alguma
EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM
EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2
c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).
Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas
DERIVADAS PARCIAIS. y = lim
DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x
Análise Matemática II TESTE/EXAME
Instituto Superior Técnico Departamento de Matemática o Semestre 4-5 a Data Análise Matemática II TESTE/EXAME CURSOS: LEAMB, LEEC, LCI, LQ, LEQ, LEBL Obtenha uma primitiva de cada uma das funções definidas
Equações Ordinarias 1ªOrdem - Lineares
Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
21 de Junho de 2010, 9h00
Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de
Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.
1. FUNÇÕES REAIS DE VARIÁVEL REAL
1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções
Exercícios. de Equações Diferenciais Ordinárias. Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas
Exercícios de Equações Diferenciais Ordinárias Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas Departamento de Matemática UNIVERSIDADE DE AVEIRO 2 Prefácio A presente publicação tem
Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo
CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa
Análise Complexa e Equações Diferenciais Exame B de 30 de junho de 2014 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec
Análise Complexa e Equações Diferenciais Exame B de 3 de junho de 4 Cursos: LEAN, LMAC, MEBiom, MEFT, MEMec [ val.] RESOLUÇÃO INÍCIO DA PRIMEIRO PARTE. Considere a função u(x, y) = 3xy x 3. (a) Escreva
Autovetor e Autovalor de um Operador Linear
Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é
Equações Diferenciais com Derivadas Parciais
1/13 Equações Diferenciais com Derivadas Parciais Chamam-se equações principais da física matemática às seguintes equações diferenciais com derivadas parciais de segunda ordem: 2/13 2 u t 2 = a 2 2 u x
Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.
Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar
Equações Diferenciais Ordinárias de Ordem Superior a Um
Capítulo 2 Equações Diferenciais Ordinárias de Ordem Superior a Um 2.1 EDOs lineares homogéneas de ordem dois. Redução de ordem. Exercício 2.1.1 As seguintes equações diferenciais de 2 a ordem podem ser
CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof.
Prof. Chico Vieira MATEMÁTICA da ANPEC Tudo Passo a Passo Teoria e Questões FICHA com LIMITES, DERIVADAS, INTEGRAIS, EDO, SÉRIES Integrais Dupla e Tripla LIMITES ANPEC QUESTÕES JÁ GRAVADAS DERIVADAS ANPEC
Seção 9: EDO s lineares de 2 a ordem
Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y
Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química
Notas de Aula da Disciplina Cálculo 3 Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química André Luiz Galdino Departamento de Matemática do Campus Catalão da Universidade Federal
ANÁLISE MATEMÁTICA IV
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV o Teste do 1 o semestre de 04/05 cursos: LEAm, LEBl, LEQ, LQ, LEIC, LEM, LEMat, LEGM, LEAN e LEC
Diferenciabilidade de funções reais de várias variáveis reais
Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de
Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace
Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Transformada de Laplace da Derivada de uma Função Teorema 1:
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE Se y representa a posição de um corpo, o seu movimento é dado por
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 24 27 DE ABRIL DE 2018 EQUAÇÕES DIFERENCIAIS LINEARES DE SEGUNDA ORDEM São da forma d 2 y dt 2 + p(t)dy + q(t)y = g(t) dt Um exemplo destas equações
Antiderivadas e Integrais Indefinidas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique
Equações Diferenciais Ordinárias de 1 a ordem - II AM3D
20 2 Equações Diferenciais Ordinárias de a ordem - II AM3D EDOs de a ordem lineares Definição Uma equação diferencial ordinária de a ordem diz-se linear se for da forma y (x)+p(x)y(x) = b(x). Se p(x) =
Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado
Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.
Exponencial de uma matriz
Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2
y y(y + 3x) em frações parciais: 1 u + 1 A(u + 1) + Bu = 1 A = 1, B = 1 du u(u + 1) u + 1 u 2 u + 1
Turma A Questão : (3,5 pontos) Instituto de Matemática e Estatística da USP MAT455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 03-0//03 (a) Determine a solução y da equação
SISTEMAS DE EQUAÇÕES LINEARES
SISTEMAS DE EQUAÇÕES LINEARES Álgebra Linear e Geometria Analítica Prof. Aline Paliga 8.1 DEFINIÇÕES Equação linear é uma equação na forma: a1x 1 a2x2 a3x3... anxn b x1, x2, x3,..., xn a1, a2, a3,...,
ANÁLISE MATEMÁTICA IV
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série
depende apenas da variável y então a função ṽ(y) = e R R(y) dy
Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas
Conceitos Básicos de Matemática. Aula 1. ISCTE - IUL, Mestrados de Continuidade. Diana Aldea Mendes. 12 de Setembro de 2011
Conceitos Básicos de Matemática Aula 1 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes [email protected] 12 de Setembro de 2011 DMQ, ISCTE-IUL ([email protected]) Matemática 12 de Setembro
Método de Diferenças Finitas
Método de Diferenças Finitas Câmpus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Aplicações Quase todos os problemas em ciências físicas e engenharia podem ser reduzidos a uma equação diferencial.
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de
Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:
46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y
Derivada - Parte 2 - Regras de derivação
Derivada - Parte 2 - Wellington D. Previero [email protected] http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada
Polinômios de Legendre
Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.
TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) =
Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito seg. prova unificada - Escola Politécnica / Escola de Química - 1/06/018 Questão 1: (.5 pontos) Seja f : [0,] R a função
Seção 27: Pontos Singulares Método de Frobenius
Seção 27: Pontos Singulares Método de Frobenius Definição. Seja x 0 um ponto singular para a equação diferencial y + P x y + Qx y = 0. Dizemos que x 0 é um ponto singular regular se P x é analítica em
4 SOLUÇÕES ANALÍTICAS
4 SOLUÇÕES ANALÍTICAS 4 Desenvolvimento Dentre os mais diversos tipos de estruturas que fazem uso de materiais compósitos, os tubos cilindricos laminados são um caso particular em que soluções analíticas,
Departamento de Matemática da Universidade de Aveiro. Cálculo II. - Texto de Apoio - Alexandre Almeida
Departamento de Matemática da Universidade de Aveiro Cálculo II - Texto de Apoio - Alexandre Almeida fevereiro de 2017 Nota prévia Este texto foi escrito com o propósito de apoiar as aulas de Cálculo II
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:
TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA
TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação
2 Sistemas de Equações Lineares
2 Sistemas de Equações Lineares 2.1 Introdução Definição (Equação linear): Equação linear é uma equação da forma: a 1 x 1 +a 2 x 2 + +a n x n = b (1) na qual x 1,x 2,...,x n são as incógnitas; a 1,a 2,...,a
Instituto de Matemática Departamento de Métodos Matemáticos
?????? @ @ @@ @@?????? @ @ @@ @@ Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Métodos Matemáticos Prova Final Unificada de Cálculo II Politécnica,Escola Química - 03/12/2013
EDP: Método das Características
EDP: Método das Características Lucio S. Fassarella DMA/CEUNES/UFES August 27, 2018 Contents 0 Introdução 1 0.1 Denições, Terminologia e Notação................................. 2 1 Método das Características
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Derivada e Diferencial de uma Função Professora Renata Alcarde Sermarini Notas de aula
MAT Cálculo Diferencial e Integral para Engenharia IV
MAT456 - Cálculo Diferencial e Integral para Engenharia IV Parte A: Equações Diferenciais de 1 a Ordem o Semestre de 018-3 a Lista de exercícios 1) Os gráficos de duas soluções de y = x + y podem se cruzar
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar
