ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE Se y representa a posição de um corpo, o seu movimento é dado por

Tamanho: px
Começar a partir da página:

Download "ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE Se y representa a posição de um corpo, o seu movimento é dado por"

Transcrição

1 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2018 EQUAÇÕES DIFERENCIAIS LINEARES DE SEGUNDA ORDEM São da forma d 2 y dt 2 + p(t)dy + q(t)y = g(t) dt Um exemplo destas equações é a Lei de Newton: Se y representa a posição de um corpo, o seu movimento é dado por m d2 y dt 2 = i F i, onde m é a massa do corpo e F i são as forças que nele actuam. Se g(t) = 0, a equação é homogénea. Para definir completamente uma solução (particular) da equação, precisamos de duas condições iniciais, por exemplo y(t 0 ) = y 0 e y (t 0 ) = y 0. Tal como para as equações de primeira ordem, temos neste contexto o seguinte resultado. Teorema de Existência e Unicidade Se p(t) e q(t) são contínuas no intervalo ]a, b[, então o problema y + p(t)y + q(t)y = 0 y(t 0 ) = y 0 y (t 0 ) = y 0 tem uma solução única no mesmo intervalo. Escrevemos L[y] = y + p(t)y + q(t)y. 1

2 2 Para cada função y, L[y] é também uma função. Suponhamos que p(t) = 0 e q(t) = 1. Então L[y] = y + y. Se y = sen t, L[y] = (sen t) + (sen t) = 0 Se y = t, L[y] = (t) + t = t Em qualquer caso, L transforma funções em funções, e por isso é chamado operador (se transformasse funções em valores reais, seria chamado funcional. Um exemplo é L[y] = b a y(t) dt.) O operador L verifica as propriedades L[cy] = cl[y], c R L[y 1 + y 2 ] = L[y 1 ] + L[y 2 ], donde é um operador linear. Voltando a L[y] = y + p(t)y + q(t)y: As soluções da equação homogénea y + p(t)y + q(t)y = 0 são precisamente as funções y tais que L[y] = 0. Por causa disto, se y é solução também cy o é (para qualquer c R) e, se y 1 e y 2 são soluções, também o é y 1 + y 2. y + y = 0 (portanto, p(t) = 0 e q(t) = 1) Duas soluções são y 1 (t) = sen t e y 2 (t) = cos t.

3 3 y = c 1 y 1 + c 2 y 2 = c 1 sen t + c 2 cos t também é solução (para quaisquer c 1 e c 2.) Como veremos no teorema seguinte, esta é a solução geral da equação: qualquer solução é desta forma. Teorema Sejam y 1 e y 2 duas soluções de y + p(t)y + q(t)y = 0 (com p e q contínuas) no intervalo ]a, b[ tais que y 1 y 2 y 1 y 2 = y 1(t)y 2(t) y 2 (t)y 1(t) 0 neste intervalo. Então y(t) = c 1 y 1 (t) + c 2 y 2 (t) (c 1, c 2 R) é a solução geral da equação. Demonstração. Seja y uma qualquer solução e definamos y 0 = y(t 0 ) e y 0 = y (t 0 ) (para t 0 escolhido em ]a, b[.) Queremos ver que existem c 1 e c 2 em R tais que y = c 1 y 1 + c 2 y 2. Devemos ter então { c 1 y 1 (t 0 ) + c 2 y 2 (t 0 ) = y 0 c 1 y 1(t 0 ) + c 2 y 2(t 0 ) = y 0 Este sistema tem solução (única) (c 1, c 2 ) se e só se y 1(t 0 ) y 2 (t 0 ) y 1(t 0 ) y 2(t 0 ) 0 Esta é precisamente a condição do teorema. Devido à unicidade de soluções, y = c 1 y 1 + c 2 y 2. A quantidade anterior é denotada por W [y 1, y 2 ] = y 1 y 2 y 1 y 2 = y 1(t)y 2(t) y 2 (t)y 1(t) e chama-se wronskiano. {y 1, y 2 } é chamado um conjunto fundamental de soluções, e dizemos que y 1 e y 2 são soluções linearmente independentes.

4 4 Lema de Abel O wronskiano satisfaz a equação W + p(t)w = 0. Para além disso, W é zero para todo o t ]a, b[ ou nunca é zero para nenhum t ]a, b[. Demonstração. Como W = y 1 y 2 y 2 y 1, temos W = (y 1 y 2 y 2 y 1) = y 1y 2 + y 1 y 2 y 2y 1 y 2 y 1 = y 1 ( py 2 qy 2 ) y 2 ( py 1 qy 1 ) = p(y 2y 1 y 2 y 1) = pw, como queríamos obter. A equação é linear homogénea (em W ), e por isso a sua solução é W (t) = c e p(t)dt para algum c R, logo ou é sempre zero ou nunca se anula. O lema de Abel permite-nos obter o wronskiano só a partir dos coeficientes da equação, e não das soluções y 1 e y 2 que entram na sua definição. Ou seja, não precisamos de resolver a equação original para sabermos o wronskiano de quaisquer duas soluções y 1 e y 2. y + y = 0 p(t) = 0, por isso (dadas duas soluções y 1 e y 2 ) o wronskiano é W (y 1, y 2 ) = c e 0dt = c para algum c. y 1 = sen t e y 2 = cos t são soluções. W [y 1, y 2 ] = sen t cos t cos t sen t = sen2 cos 2 = 1 Como W [y 1, y 2 ] 0, pelo teorema anterior a solução geral é y(t) = c 1 y 1 + c 2 y 2 = c 1 sen t + c 2 cos t (c 1, c 2 R). Todas as soluções são desta forma. y 1 = sen t e y 2 = cos t são linearmente independentes. {sen t, cos t} é um conjunto fundamental de soluções para a equação.

5 5 EQUAÇÕES DIFERENCIAIS COM COEFICIENTES CONSTANTES Como exemplo das equações de segunda ordem, começamos pelas lineares homogéneas com coeficientes constantes. São da forma ay + by + cy = 0, Com a, b e c em R (e a 0.) Devido à forma especial destas equações, faz sentido procurar para elas soluções da forma exponencial (que são funções cuja derivada é da mesma natureza original.) As funções reais sen e cos também têm como derivada funções da mesma classe - note-se que estão relacionadas com exponenciais complexas. Testamos y = e rt, e queremos saber para que valores de r teremos soluções da equação anterior. Substituindo na equação: a(r 2 e rt ) + b(r e rt ) + ce rt = 0 e rt [ar 2 + br + c] = 0 Obtemos portanto o polinómio característico da equação: ar 2 + br + c = 0 Este polinómio tem como raízes r = b ± b 2 4ac 2a e, de acordo com a natureza destas raízes, teremos diferentes soluções da equação original. Caso 1: = b 2 4ac > 0 Temos duas raízes reais, r 1 = b + b 2 4ac 2a e r 2 = b b 2 4ac, 2a

6 6 Que correspondem a duas soluções da equação: y 1 = e r1t y 2 = e r2t As duas soluções são linearmente independentes se não for nulo o seu wronskiano, dado por W (y 1, y 2 ) = y 1 y 2 y 1 y 2. Neste caso, temos W (y 1, y 2 ) = er1t e r2t r 1 e r1t r 2 e r2t = e(r1+r2)t (r 2 r 1 ), que é não nulo porque r 1 r 2. A solução geral da equação é y = c 1 e r1t + c 2 e r2t (c 1, c 2 R.) y + 5y + 4y = 0 O polinómio característico é r 2 + 5r + 4 = 0, que tem como raízes r = 5 ± Temos como soluções y 1 = e t e y 2 = e 4t. = 5 ± 3 2 = 1 ou 4 A solução geral é y = c 1 e t + c 2 e 4t (c 1, c 2 R.)

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE NOVEMBRO DE dt + a 0(t)y = 0

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE NOVEMBRO DE dt + a 0(t)y = 0 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 24 16 DE NOVEMBRO DE 2016 EQUAÇÕES LINEARES HOMOGÉNEAS DE ORDEM SUPERIOR A DOIS São da forma a n (t) dn y dt n + a n 1(t) dn 1 y dt n 1 + + a 1(t)

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2011

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2011 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 27 18 DE ABRIL DE 2011 y 2y + y 2y = 0 O polinómio característico é r 3 2r 2 + r 2, que tem r = 2 como raiz. Obtemos então r 3 2r 2 + r 2 = (r 2) (r

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2016

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2016 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 25 27 DE ABRIL DE 2016 Aniquiladores A tabela seguinte mostra aniquiladores para diversas funções elementares. e αt D α (α R) t e αt (D α) 2 (α R)

Leia mais

de Coeficientes Constantes

de Coeficientes Constantes Seção 12: Equações Diferenciais Lineares não Homogêneas de Coeficientes Constantes O objetivo desta seção é estudar as equações lineares não homogêneas de coeficientes constantes No entanto, a versão do

Leia mais

Uma e.d.o. de segunda ordem é da forma

Uma e.d.o. de segunda ordem é da forma Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear

Leia mais

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes:

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: caso não Homogêneo Vamos estudar as equações da forma: ay + by + cy = G(x), onde G(x) é uma função polinomial, exponencial,

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

Aula: Equações diferenciais lineares de ordem superior

Aula: Equações diferenciais lineares de ordem superior Aula: Equações diferenciais lineares de ordem superior Profa. Ariane Piovezan Entringer DMA - UFV Problema de Valor Inicial - EDO de ordem n Problema de Valor Inicial - EDO de ordem n a n (x) d n y dx

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

ORDINÁRIAS. Víctor Arturo Martínez León

ORDINÁRIAS. Víctor Arturo Martínez León INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Víctor Arturo Martínez León September 3, 2017 Súmario 1 Equações diferenciais lineares de primeira ordem 2 2 Equações diferenciais lineares de segundo ordem

Leia mais

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO I por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2017 16 e 18 de outubro de 2017 Definição 1 Uma equação diferencial é qualquer relação entre uma função e suas derivadas.

Leia mais

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012 Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem A C Tort 22 de outubro de 2012 Uma equação diferencial ordinária linear de segunda ordem

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 (Cursos: 2 o Teste, versão A LEAN, LEGM, LMAC, MEBiom, MEC, MEFT, MEMec) 30 de Maio de 2015, 9h Duração: 1h 30m INSTRUÇÕES Não é permitida

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet

Leia mais

Introdução às Equações Diferenciais e Ordinárias

Introdução às Equações Diferenciais e Ordinárias Introdução às Equações Diferenciais e Ordinárias - 017. Lista - EDOs lineares de ordem superior e sistemas de EDOs de primeira ordem 1 São dadas trincas de funções que são, em cada caso, soluções de alguma

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

Synergismus Scyentifica UTFPR. XIII ERMAC Mini Curso. Diferenciais

Synergismus Scyentifica UTFPR. XIII ERMAC Mini Curso. Diferenciais Synergismus Scyentifica UTFPR Mini Curso Aplicações da Álgebra Linear a Equações Diferenciais Gilson Tumelero Marieli Musial Colegiado de Matemática - FAFIUV Pato Branco, setembro de 2009 Sumário Introdução

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados.

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados. 17 Equações Diferenciais de Segunda Ordem Copyright Cengage Learning. Todos os direitos reservados. 17.2 Equações Lineares Não Homogêneas Copyright Cengage Learning. Todos os direitos reservados. Equações

Leia mais

Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio

Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio Material Teórico - Módulo de Função Exponencial Inequações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Generalidades sobre inequações Recordemos

Leia mais

Parte II. Análise funcional II

Parte II. Análise funcional II Parte II Análise funcional II 12 Capítulo 5 Produto de Operadores. Operadores inversos Neste capítulo vamos introduzir a noção de produto de operadores assim como a de operador invertível. Para tal precisamos

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS MATEMÁTICAS DE SÃO CARLOS DEPARTAMENTO DE MATEMÁTICA APLICADA E ESTATÍSTICA EQUAÇÕES DIFERENCIAIS ORDINÁRIAS NOTAS DE AULAS Herminio Cassago Junior Luiz

Leia mais

Métodos Numéricos em Equações Diferenciais Aula 01 - Problema de Valor Inicial

Métodos Numéricos em Equações Diferenciais Aula 01 - Problema de Valor Inicial Métodos Numéricos em Equações Diferenciais Aula 01 - Problema de Valor Inicial Profa. Vanessa Rolnik curso: Matemática Aplicada a Negócios Modelagem Exemplo: Determinação do valor de revenda de uma máquina

Leia mais

TRANSFORMADA DE LAPLACE E PVI

TRANSFORMADA DE LAPLACE E PVI Inversa Solução de PVI via TRANSFORMADA DE LAPLACE E PVI por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 21 e 23 de novembro de 2018 Inversa Solução de PVI via Propriedades

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32 1 Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / 2012. 1 a LISTA DE MAT-32 Nos exercícios de 1 a 9, classi car e apresentar, formalmente, solução (ou candidata a solução)

Leia mais

EDO Linear de 2a. Ordem com Coecientes Constantes Homogênea

EDO Linear de 2a. Ordem com Coecientes Constantes Homogênea EDO Linear de 2a. Ordem com Coecientes Constantes Homogênea Laura Goulart UESB 27 de Março de 2018 Laura Goulart (UESB) EDO Linear de 2a. Ordem com Coecientes Constantes 27 de Março Homogênea de 2018 1

Leia mais

um polinômio de grau menor ou igual a n. Consideremos a edo na variável t

um polinômio de grau menor ou igual a n. Consideremos a edo na variável t MAT 216 - Cálculo III - 1 o SEMESTRE de 2014 - IFUSP EQUAÇÕES DIFERENCIAIS COM COEFICIENTES CONSTANTES Referência: A Formula Substituting the Undetermined Coefficients and the Annihilator Methods, Oswaldo

Leia mais

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade. 7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4

Leia mais

Integral na reta com Álgebra Linear: caso particular

Integral na reta com Álgebra Linear: caso particular Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 20 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Integral na reta com

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL -. EXAME FINAL Nome Legível RG CPF Respostas sem justificativas não serão aceitas. Além

Leia mais

Equações Diferenciais (M2011)

Equações Diferenciais (M2011) Equações Diferenciais (M2011) ICruz - FCUP Aula 16-16 abr 18 (ICruz - FCUP) Equações Diferenciais (M2011) Aula 16-16 abr 18 1 / 12 Estabilidade de pontos de equilíbrio de sistemas LHCC No caso de sistemas

Leia mais

Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace

Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Transformada de Laplace da Derivada de uma Função Teorema 1:

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 3 7 DE MAIO DE 27 A = 2 2 2 A matriz tem como valor próprio λ = 2 (triplo. Para os vectores próprios: { z = y + z = v = A matriz não é diagonalizável,

Leia mais

A PLICAÇÕES DE EQUAÇÕES DIFERENCIAIS OR DINÁRIAS À E NGENHARIA C IVIL

A PLICAÇÕES DE EQUAÇÕES DIFERENCIAIS OR DINÁRIAS À E NGENHARIA C IVIL V OLUME 4 - N ÚMERO 1 M ARÇO DE 2016 PÁGINAS : 16 A 29 A PLICAÇÕES DE EQUAÇÕES DIFERENCIAIS OR DINÁRIAS À E NGENHARIA C IVIL Laís Sousa Leão Universidade Federal de Uberlândia laah.sama@gmail.com Luciana

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo

Leia mais

Se a população está isolada (ou seja, se não há outras espécies que com ela interajam),

Se a população está isolada (ou seja, se não há outras espécies que com ela interajam), APLICAÇÕES DE EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Modelos Populacionais Denotemos por p(t) o número de elementos de uma certa população no instante t e por r(t, p) a taxa de crescimento da população

Leia mais

Diferenciais em Série de Potências

Diferenciais em Série de Potências Existência de Soluções de Equações Diferenciais em Série de Potências Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/ regi 0 de julho de

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017 3 de janeiro de 7 Instruções: INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA o SEMESTRE 6/7 Resolução do o Teste Duração: hm É obrigatória

Leia mais

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são:

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são: APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DE SEGUNDA ORDEM Como aplicação das equações diferenciais de segunda ordem, vamos considerar o movimento oscilatório de uma mola de comprimento l e constante de elasticidade

Leia mais

Conteúdo. 3 Transformada de Laplace Aplicações em equações diferenciais de primeira ordem... 34

Conteúdo. 3 Transformada de Laplace Aplicações em equações diferenciais de primeira ordem... 34 Conteúdo 1 Introdução/Revisão a integral 3 1.1 Integral de funções primitivas......................... 3 1.1.1 Integral de uma constante:...................... 3 1.1.2 Integral de um função:.........................

Leia mais

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias MAP2310 14/03/2005 Análise Numérica e Equações Diferenciais I 1 o Semestre de 2005 1 1 Equações Diferenciais Ordinárias 1.1 Introdução Equações envolvendo uma variável independente real t, uma função desconhecida

Leia mais

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações AP3 Introdução às Equações Diferenciais Ordinárias e Aplicações Lista semestre de 017 Prof Claudio H Asano 1 Equações Diferenciais de Primeira Ordem 11 Utilize a mudança de variável y = v, dy = vd+dv para

Leia mais

2 ō Semestre 2015/2016

2 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 15/16 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ) 1 (a) Resolva o problema de valor inicial 8 de Maio de 16, 11h 3m Duração: 1h 3m y +6x+4xy

Leia mais

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro MAT 1202 ÁLGEBRA LINEAR II 2012.2 SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro 1. Subespaços Fundamentais de uma Matriz (1.1) Definição. Seja A uma matriz retangular m

Leia mais

Circuitos de Primeira Ordem

Circuitos de Primeira Ordem Circuitos de Primeira Ordem Magno T. M. Silva e Flávio R. M. Pavan, 5 Introdução Em geral, um circuito de primeira ordem tem um único elemento armazenador de energia (um capacitor ou um indutor) e é descrito

Leia mais

Seção 27: Pontos Singulares Método de Frobenius

Seção 27: Pontos Singulares Método de Frobenius Seção 27: Pontos Singulares Método de Frobenius Definição. Seja x 0 um ponto singular para a equação diferencial y + P x y + Qx y = 0. Dizemos que x 0 é um ponto singular regular se P x é analítica em

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência

Leia mais

d [xy] = x cos x. dx y = sin x + cos x + C, x

d [xy] = x cos x. dx y = sin x + cos x + C, x Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral

Leia mais

31 a Aula AMIV LEAN, LEC Apontamentos

31 a Aula AMIV LEAN, LEC Apontamentos 31 a Aula 20041126 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 311 Métoo os coeficientes ineterminaos 3111 Funamentação Vamos agora aborar a EDO e coeficientes constantes, mas não homogénea:

Leia mais

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema

Leia mais

EDO III. por Abílio Lemos. 07, 09 e 14 de novembro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO III. por Abílio Lemos. 07, 09 e 14 de novembro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO III por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 07, 09 e 14 de novembro de 2018 Teorema (D Alembert): Sejam y 1 (x) uma solução, não nula, da EDO y + p(x)y

Leia mais

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

Capítulo Propriedades das operações com vetores

Capítulo Propriedades das operações com vetores Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:

Leia mais

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS CONCEITOS BÁSICOS Definição: Uma Equação Diferencial Ordinária (EDO) de ordem n é uma igualdade do tipo ( n) F(, y, y,, y ) 0 () n ( n dy Onde F é uma função de n+ variáveis

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Revisão de Cálculo Diferencial e Integral

Revisão de Cálculo Diferencial e Integral Cálculo Numérico Diferencial e Integral Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Limite, continuidade e derivadas Uma das noções mais básicas e importantes

Leia mais

Equações Diferenciais Ordinárias de Ordem Superior a Um

Equações Diferenciais Ordinárias de Ordem Superior a Um Capítulo 2 Equações Diferenciais Ordinárias de Ordem Superior a Um 2.1 EDOs lineares homogéneas de ordem dois. Redução de ordem. Exercício 2.1.1 As seguintes equações diferenciais de 2 a ordem podem ser

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas

Leia mais

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação

Leia mais

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais:

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais: UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0021 7 a Lista de exercícios

Leia mais

Exemplos de equações diferenciais

Exemplos de equações diferenciais Transformadas de Laplace - EDO's Prof. E.T.Galante Denição. Uma equação diferencial é uma equação na qual: a incógnita é uma função; há ao menos uma derivada da função incógnita. Antes de mais nada, vamos

Leia mais

Modelagem Computacional. Aula 5 2

Modelagem Computacional. Aula 5 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Aula 5 2 Prof. Thiago Alves de Queiroz 2 [Cap. 5] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS Uma equação diferencial é aquela em que a função incógnita aparece sob a forma da sua derivada. Havendo uma só variável independente as derivadas são ordinárias e a equação é denominada

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Notas de Equações Diferenciais Ordinárias

Notas de Equações Diferenciais Ordinárias Notas de Equações Diferenciais Ordinárias Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 28/29 Estas notas constituem um material de apoio ao curso de Análise Complexa e

Leia mais

1 Subespaços Associados a uma Matriz

1 Subespaços Associados a uma Matriz 1 Subespaços Associados a uma Matriz Seja V = R n e para quaisquer u, v, e w em V e quaisquer escalares r,s em R 1, 1. u + v é um elemento de V sempre que u e v são elementos de V a adição é fechada, 2.

Leia mais

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

32 a Aula AMIV LEAN, LEC Apontamentos

32 a Aula AMIV LEAN, LEC Apontamentos 32 a Aula 2429 AMIV LEAN, LEC Apontamentos (RicardoCoutinho@mathistutlpt) 32 Fórmula da variação das constantes Temos então pela fórmula dos da variação das constantes (para sistemas de equações - Teorema

Leia mais

Convergência em espaços normados

Convergência em espaços normados Chapter 1 Convergência em espaços normados Neste capítulo vamos abordar diferentes tipos de convergência em espaços normados. Já sabemos da análise matemática e não só, de diferentes tipos de convergência

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

Exercícios Complementares 6.3

Exercícios Complementares 6.3 Exercícios Complementares 6.3 6.3A Usando a De nição 6.1.3 ou o Teorema 6.1.9, mostre que as funções dadas são soluções LI da edo indicada. y 1 (x) = sen x; y (x) = cos x; y 00 + y = 0; y 1 (x) = ; y (x)

Leia mais

MAT Aula 14/ 30/04/2014. Sylvain Bonnot (IME-USP)

MAT Aula 14/ 30/04/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 14/ 30/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Derivada de sen, cos 3 Regra da cadeia 4 Funções inversas 5 Derivada da função

Leia mais

CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db,

CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db, CAPÍTULO 3 TEOREMA DA FUNÇÃO INVERSA 3 Introdução A função identidade em R n é a função que a cada elemento de R n associa o próprio elemento ie I d : R n R n X x x n I d X X x x n A função identidade

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

3 a Lista para auto-avaliação (com um exercício resolvido)

3 a Lista para auto-avaliação (com um exercício resolvido) Álgebra Linear Cursos: Engenharia Civil, Engenharia de Minas, Engenharia do Território 1 ō ano/1 ō Semestre 21/211 3 a Lista para auto-avaliação (com um exercício resolvido) 1. Indique a característica

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

Polinômio Mínimo e Operadores Nilpotentes

Polinômio Mínimo e Operadores Nilpotentes Capítulo 9 Polinômio Mínimo e Operadores Nilpotentes Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

Cap. 3 - Observabilidade e desacoplamento da Saída

Cap. 3 - Observabilidade e desacoplamento da Saída Cap. 3 - Observabilidade e desacoplamento da Saída Visão geral do capítulo No capítulo 2 mostramos que a controlabilidade está relacionada com o menor subespaço A-invariante que contém a imagem de B. Mostramos

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013 Solução numérica de Equações Diferenciais Ordinárias: Método de Euler Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires;

Leia mais