Equações Diferenciais
|
|
|
- Kléber Freire Chagas
- 8 Há anos
- Visualizações:
Transcrição
1 IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013
2 Aula 16 Objetivos - Modelar matemáticamente fenômenos naturais utilizando os conceitos vistos em equações diferenciais. 0.1 Introdução É bastante comum encontrarmos relações matemáticas que descrevem certos fenômenos naturais. O uso da equações diferenciais tem se mostrado bastante solucionador em algumas questões. Modelos matemáticos para fenômenos como decrescimento radioativo, crescimento populacional, propagação de epidemias ou movimento amortecido são frequentemente modelados por equações diferenciais. 0.2 Trajetórias Ortogonais Considere a seguinte pergunta: Dada uma família a n-parâmetros de curvas, é possível encontrar uma equação diferencial de n-ésima ordem associada a essa família? Na maioria das vezes a resposta é sim. Exemplo 1. Encontre a equação diferencial da família y = c(x 2 + 1). (1) Solução: Temos que Isolando c em (1), temos Igualando (2) e (3), temos dx = 2cx c = 1 2x 1 2x dx = c = dx. (2) y x (3) y x dx = 2xy x Sabemos do cálculo que, duas curvas L 1 e L 2 são ortogonais em x 0 se suas retas tangentes T 1 e T 2 são ortogonais neste ponto, isto é, seus coeficientes angulares m 1 e m 2 são tais que m 1 m 2 = 1. Exemplo 2. Mostre que as curvas L 1 : y = x e L 2 : x 2 + y 2 = 4 são ortogonais nos pontos de interseção. Solução: i) Primeiro achemos os pontos de inteseção L 1 L 2 x 2 + x 2 = 4 2x 2 = 4 x 2 = ± 2. Logo, os pontos de interseção são ( 2; 2), ( 2; 2). ii) Mostraremos que m 1 ( 2).m 2 ( 2) = 1 e m 1 ( 2).m 2 ( 2) = 1. y L 1 = 1 y L 1 ( 2) = 1, y L 2 = x y y L 2 ( 2 2) = = 1. 2 Logo, m 1 ( 2)m 2 ( 2) = 1.( 1) = 1. Da mesma forma substituindo ( 2; 2) em y L 1 = 1 e y L 2 = x y, temos m 1( 2)m 2 ( 2) = 1.( 1) = 1. 1
3 Definição 3. Trajetórias Ortogonais Quando todas as curvas de uma família G(x, y, c 1 ) = 0 interceptam ortogonalmente todas as curvas de outra família H(x, y, c 2 ) = 0, então dizemos que as famílias são trajetórias ortogonais uma da outra. Um método geral para a obtenção de trajetórias ortogonais de uma dada família de curvas é o seguinte: Encontramos a equação diferencial = f(x, y) dx que descreve a família. A equação diferencial da família ortogonal é então dx = 1 f(x, y). Exemplo 4. Encontre as trajetórias ortogonais da família de hipérboles Solução: A derivada de y = c x A equação diferencial da família ortogonal é dada por Portanto, dx = x y = xdx y = y Logo, as trajetórias ortogonais são y = c x. é dada por dx = c x. Substituindo c = xy nesta última equação, temos 2 dx = c x 2 dx = xy x 2 dx = y x. dx = x y. y 2 x 2 = c. xdx y2 2 = x2 2 + c y 2 x 2 = c. 0.3 Meia-Vida Em física, meia-vida é uma medida de estabilidade de uma substância radioativa. A meia-vida é o tempo gasto para a metade dos átomos de uma quantidade inicial A 0 se desintegrar ou se transmutar em átomos de outro elemento. Um modelo para tal situação é dado por da = ka, A(t 0) = A 0. Exemplo 5. Um reator converte urânio 238 em um isótopo de plutônio 239. Após 20 anos, foi detectado que 0, 1433 g de uma quantidade inicial de 250 g havia se desintegrado. encontre a meia-vida desse isótopo, se a taxa de desintegração é proporcional à quantidade remanescente. Solução: Temos que o qual tem solução Temos que da = ka, A(t) = 250e kt , 1433 = A(20) 250e k.20 = 249, 8567 e k.20 = 0, k = 0, Logo, A(t) = 250e 0, t. O tempo de meio-vida é então dado por 250e 0, t = 125 e 0, t = 0, 5 0, t = ln 0, 5 t = 24, 18 anos. 2
4 0.4 Resfriamento A lei do resfriamento de Newton diz que a taxa de variação da temperatura T (t) de um corpo em resfriamaneto é proporcional à diferençaentre a temperatura do corpo e a temperatura constante T m do meio ambiente, isto é, em que k é uma constante de proporcionalidade. = k(t T m), Exemplo 6. Quando um bolo é retirado do forno, sua temperatura é de 300 o F. Três minutos depois, sua temperatura passa para 200 o F. Quanto tempo levará para sua temperatura chegar a 70 o, se a temperatura do meio ambiente em que ele foi colocado for exatamente 70 o F. Solução: Temos que Como T m = 70 o, temos = k(t 70) = k(t T m). T 70 = k ln T 70 = kt + k T 70 = cekt T = 70 + ce kt. Portanto, Logo, Por fim, T (0) = = 70 + ce k = c T = e kt. T (3) = = e k.3 e 3k = 13 k = 0, T (t) = e 0,19018t. 80 = e 0,19018t = e 0,19018t 0, 19018t = ln t = 16, 49 min. 0.5 Circuitos em Série Em um circuito em série contendo somente um resistor e um indutor, a segunda lei de Kirchhoff diz que a soma da queda de tensão no indutor (L di ) e da queda de tensão no resistor (ir) é igual à voltagem (E(t)) no circuito. Temos portanto a seguinte equação diferencial linear para a corrente i(t), L di + Ri = E(t), em que L e R são constantes conhecidas como a indutância e a resistência, respectivamente. Exemplo 7. Uma bateria de 12 volts é conectada a um circuito em série no qual a indutâcia é de 0, 5 henry e a resistência, 10 ohms. Determine a corrente i se a corrente inicial é zero. Solução: Substituindo os dados em nosso modelo, temos Multiplicando (4) por 2, temos 0, 5 di + 10i = 12, i(0) = 0. (4) di di + 20i = 24 = 24 20i di 24 20i = 1 ln 24 20i = t + k 20 ln 24 20i = 20t 20k 24 20i = e 20t 20k 20i = 24 e 20t e 20k i = e 20k e 20t i = ce 20t. 3
5 Como i(0) = 0, temos que Assim, a corrente i é dada por 0 = ce 20.0 c = 6 5. i(t) = e 20t. 0.6 Sistemas Oscilatórios Os sistemas oscilatórios podem ser estudados mediante equações diferenciais ordinárias lineares de segunda ordem, proveniente da aplicação de leis físicas, como as leis de Newton e a lei de Hooke. Vejamos o caso das oscilações livres sem amortecimento. Considere um sistema massa-mola composto por uma massa m acoplada a uma mola cuja constante elástica é k, conforme Figura (5). (5) Na parte (a) tem-se uma mola de comprimento l suspensa na vertical. Em (b) observa-se que o corpo de massa m deforma a mola em um comprimento igual a l, de modo que ocorre o equilíbrio entre a força restauradora da mola e o peso do corpo na posição x = 0. Na parte (c), observa-se que a mola exerce uma força para cima igual a k( l kx) = mg kx, sendo que x é a elongação (ou compressão) da mola. Logo, a força resultante é igual a (mg kx) mg = kx. Fazendo x = x(t), temos, pela segunda lei de Newton mx (t) = kx(t). (6) Movimento Livre Dividindo (6) por m e trazendo os termos para o primeiro membro, temos x (t) + k x(t) = 0. (7) m Fazendo ω 2 = k m x (t) + ω 2 x(t) = 0. (8) Adotando as condições iniciais x(0) = α e x (0) = β, temos o seguinte PVI x (t) + ω 2 x(t) = 0, x(0) = α, x (0) = β. 4
6 Observe que as soluções da equação característica p 2 + ω 2 = 0 associada a (8) são p 1 = ωi e p 2 = ωi. Assim, a solução geral de (8) é x(t) = c 1 cos(ωt) + c 2 sen(ωt). (9) O período de vibrações livres descrito em (9) é T = 2π/ω, e a frequência é f = 1/T. Exemplo 8. Resolva o seguinte PVI x (t) + 25x = 0, x(0) = 10, x (0) = 0. Solução: Temos a seguinte equação característica p = 0 cujas soluções são 5i e 5i. Assim, temos a seguinte solução geral x(t) = c 1 cos(5t) + c 2 sen(5t). Aplicando as condições iniciais x(0) = 10 e x (0) = 0, temos x(0) = = c 1 cos(5.0) + c 2 sen(5.0) 10 = c 1. x (t) = 10sen(5t) + c 2 cos(5t) 0 = 10sen(5.0) + c 2 cos(5.0) c 2 = 0. Logo, a solução do PVI é x(t) = 10cos(5t). O PVI resolvido assima equivale a puxar uma massa atada a uma mola para baixo 10 unidades abaixo da posição de equilíbrio, e soltando-a, a partir do repouso, no instante t = 0. Em particular, o período de oscilação é de cerca de 2π/5 segundos. 5
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
UNIDADE 15 OSCILAÇÕES
UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito
LISTA DE EXERCÍCIOS 2
LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés
5.1 Exercícios Complementares
5.1 Exercícios Complementares 6.4A Usando a De nição 6.1.3 ou o Teorema 6.1.9, mostre que as funções dadas são soluções LI da EDO indicada. (a) y 1 (x) = sen x; y (x) = cos x; y 00 + y = 0; (b) y 1 (x)
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes
Exercícios Complementares 5.2
Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da EDO indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C 1 e 2t + C 2 e 3t ; :: x 10 : x + 6x = 0: (c) y = ln
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento
O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos:
Capítulo 2 Modelos O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos: 2.1 Molas Considere uma mola, de massa desprezível,
(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0.
Lista de Exercícios de Cálculo I para os cursos de Engenharia - Funções 1. Dado o gráfico de uma função: (a) Obtenha o valor de f( 1). (b) Estime o valor de f(). (c) f(x) = para quais valores de x? (d)
y (n) (x) = dn y dx n(x) y (0) (x) = y(x).
Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.
Oscilador Harmônico. 8 - Oscilador Harmônico. Oscilador Harmônico. Oscilador Harmônico Simples. Oscilador harmônico simples
Oscilador Harmônico 8 - Oscilador Harmônico Mecânica Quântica Em Física, o oscilador harmônico é qualquer sistema que apresenta movimento oscilatório, de forma harmônica, em torno de um ponto de equilíbrio.
massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.
Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.
Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas
Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples
Exemplos de Aplicações das Funções Exponencial e Logarítmica em Biologia (com uma introdução às equações diferenciais)
Exemplos de Aplicações das Funções Exponencial e Logarítmica em Biologia (com uma introdução às equações diferenciais) Vejamos o seguinte exemplo retirado do livro de Kaplan e Glass (veja a bibliografia
Tópico 8. Aula Prática: Pêndulo Simples
Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora
CÁLCULO I. 1 Crescimento e Decaimento Exponencial
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada
UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS
UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 28/06/2015 Física
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais
Entre os pontos A e B temos uma d.d.p. no indutor dada por V L = L d i e entre os pontos C e D da d.d.p. no capacitor é dada por V L V C = 0
Um circuito elétrico LC é composto por um indutor de mh e um capacitor de 0,8 μf. A carga inicial do capacitor é de 5 μc e a corrente no circuito é nula, determine: a) A variação da carga no capacitor;
Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D
www.engenhariafacil.weebly.com Resolução da ª Prova de Física II -UFRJ do Período- 014. (1/11/014). Versão D OBS: Esse não é o gabarito oficial. O gabarito oficial será lançado no site do Instituto de
Experimento 10 Circuitos RLC em corrente alternada: ressonância
Experimento 10 Circuitos RLC em corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC em presença de uma fonte de alimentação de corrente alternada.
Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante.
Seção 18: Equação da Onda Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente EDP s. Começamos pela equação da onda. Um exemplo de situação em que a equação da
Aula do cap. 16 MHS e Oscilações
Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento
Exercícios Matemática I (M193)
Exercícios Matemática I (M93) Funções. Associe a cada uma das seguintes funções o gráfico que a representa. a) f(x) = 2x + 4. b) f(x) = 3x +. c) f(x) = x 2. d) f(x) = 2x 3. e) f(x) = 0 x. f) f(x) = (0,
Capí tulo 6 Movimento Oscilato rio Harmo nico
Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de
Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por:
Sistema Corpo-Mola Um corpo de massa m se apóia sobre uma superfície horizontal sem atrito e está preso a uma mola (de massa desprezível) de constante elástica k (Fig.18). Se o corpo é abandonado com a
Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.
Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 Aproximações
onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado).
Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Um cavalo pua uma carroça para cima num plano inclinado, com velocidade constante. A força de atrito entre a carroça e o plano inclinado é desprezível.
Experimento 9 Circuitos RL em corrente alternada
1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO
ELEMENTOS DE EQUAÇÕES DIFERENCIAIS
ELEMENTOS DE EQUAÇÕES DIFERENCIAIS AULA 05: MODELAGEM E PROBLEMAS DIVERSOS TÓPICO 01: MODELAGEM No tópico 03 da aula 01 vimos alguns exemplos de equações diferenciais que serviam de modelo matemático para
CCI-22 LISTA DE EXERCÍCIOS
CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador
A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:
AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
Campos dos Goytacazes/RJ Maio 2015
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
Física Geral e Experimental III
Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola
CÁLCULO I. 1 Derivada de Funções Elementares
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar
Algumas aplicações das equações diferenciais ordinárias de primeira ordem
Algumas aplicações das equações diferenciais ordinárias de primeira ordem Rebello Out/1999 (rev. Mar/2015, Ago/2015) - Modelamento - Crescimento e decrescimento Admitindo que uma quantidade Q de uma substância
Exemplos de aplicação das leis de Newton e Conservação da Energia
Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo
Noções Básicas de Física Arquitectura Paisagística LEI DE HOOKE (1)
LEI DE HOOKE INTRODUÇÃO A Figura 1 mostra uma mola de comprimento l 0, suspensa por uma das suas extremidades. Quando penduramos na outra extremidade da mola um corpo de massa m, a mola passa a ter um
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de
ÁLGEBRA LINEAR: aplicações de sistemas lineares
ÁLGEBRA LINEAR: aplicações de sistemas lineares SANTOS, Cleber de Oliveira dos RESUMO Este artigo apresenta algumas aplicações de sistemas lineares, conteúdo estudado na disciplina de Álgebra linear da
Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado.
Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado. Quando o circuito é puramente resistivo essas variações são instantâneas, porém
Física II para a Escola Politécnica ( ) - P2 (26/06/2015) [0000]
Física II para a Escola Politécnica (3310) - P (6/06/015) [0000] NUSP: 0 0 0 0 0 0 0 1 1 1 1 1 1 1 3 3 3 3 3 3 3 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preena
Aula 26 Separação de Variáveis e a Equação da Onda.
Aula 26 Separação de Variáveis e a Equação da Onda. MA311 - Cálculo III Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade
FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I
FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I Professor Dr. Jair Silvério dos Santos 1 Teorema de Michel Rolle Teorema 0.1. (Rolle) Se f : [a;b] R for uma função contínua em
1 a Questão: (2,0 pontos)
a Questão: (, pontos) Um bloco de massa m, kg repousa sobre um plano inclinado de um ângulo θ 37 o em relação à horizontal. O bloco é subitamente impulsionado, paralelamente ao plano, por uma marretada,
Elementos de Circuitos Elétricos
Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A
Prof. Oscar 2º. Semestre de 2013
Cap. 16 Ondas I Prof. Oscar º. Semestre de 013 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando
Lista de Exercícios - OSCILAÇÕES
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração
Eletromagnetismo - Instituto de Pesquisas Científicas
ELETROMAGNETISMO Vimos que a dissipação de energia num circuito nos fornece uma condição de amortecimento. Porém, se tivermos uma tensão externa que sempre forneça energia ao sistema, de modo que compense
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Correntes e Tensões Alternadas Senoidais Prof. Clóvis Antônio Petry. Florianópolis, julho de 2007. Bibliografia
Dinâ micâ de Mâ quinâs e Vibrâçõ es II
Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014
UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Segunda Verificação
Cinética Química. c) A opção (C) está correta. B 3+ e B 4+ não aparecem na reação global, portanto, são intermediários da reação.
Capítulo 6 Cinética Química 1. (ITA) Considere o seguinte mecanismo de reação genérica: A 4+ + B 2+ A 3+ + B 3+ (etapa lenta) A 4+ + B 3+ A 3+ + B 4+ (etapa rápida) C + + B 4+ C 3+ + B 2+ (etapa rápida)
Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781
Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito
Corrente Alternada. Circuitos Monofásicos (Parte 2)
Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO
da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4
Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2
O Movimento Harmônico Simples
O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento
Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas
Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?
LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:42. Jason Alfredo Carlson Gallas, professor titular de física teórica,
LISTA 3 - Prof. Jason Gallas, DF UFPB 0 de Junho de 203, às 7:42 Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade
Olimpíada Brasileira de Física das Escolas Públicas Prof. Robson Preparação para a 2ª Fase 1ª lista de Exercícios GABARITO
Olimpíada Brasileira de Física das Escolas Públicas Prof. Robson Preparação para a 2ª Fase 1ª lista de Exercícios GABARITO 1 - Um trem e um automóvel caminham paralelamente e no mesmo sentido, um trecho
CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.
Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois
Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO
Universidade Federal do Espírito Santo Centro de Ciências Eatas Departamento de Física FIS09066 Física Prof. Anderson Coser Gaudio Prova /3 Nome: Assinatura: Matrícula UFES: Semestre: 03/ Curso: Física
Experimento 7 Circuitos RC em corrente alternada
1. OBJETIVO Experimento 7 Circuitos RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação de corrente alternada.. 2. MATERIAL
Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.
Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa
Série IV - Momento Angular (Resoluções Sucintas)
Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme
NONA LISTA DE EXERCÍCIOS Cálculo III. MATEMÁTICA DCET UESC Humberto José Bortolossi Derivadas Parciais
NONA LISTA DE EXERCÍCIOS Cálculo III MATEMÁTICA DCET UESC Humberto José Bortolossi http://www.arbelos.kit.net Derivadas Parciais (Entregar os exercícios [02] (a), [03], [07], [14] e [30] até o dia 14/07/2003)
CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função
Cálculo Diferencial e Integral I CDI I
Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão [email protected] Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa
REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS
REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito
c il a ções Física 2 aula 9 2 o semestre, 2012
Os c il a ções Física aula 9 o semestre, 1 Movimento Harmônico simples: coneão entre vibrações e ondas Energia no MHS Energia Mecânica Total: 1 1 Quando =A ou =-A (etremos): E mv k 1 1 1 E m() k( A) ka
CURSO de FÍSICA - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 8 e 1 o semestre letivo de 9 CURSO de FÍSICA - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém: PROVA DE REDAÇÃO enunciada
Corda Elástica Presa Somente em uma das Extremidades
Corda Elástica Presa Somente em uma das Extremidades Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos determinar
Experimento 4 Indutores e circuitos RL com onda quadrada
Experimento 4 Indutores e circuitos RL com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.
FÍSICA CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2014 1 a QUESTÃO Valor: 1,0 O cérebro humano determina a direção de onde provém um som por meio da diferença de fase entre
Fís. Semana. Leonardo Gomes (Guilherme Brigagão)
Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
Equações Diferenciais Ordinárias de Ordem Superior a Um
Capítulo 2 Equações Diferenciais Ordinárias de Ordem Superior a Um 2.1 EDOs lineares homogéneas de ordem dois. Redução de ordem. Exercício 2.1.1 As seguintes equações diferenciais de 2 a ordem podem ser
Trabalho. 1.Introdução 2.Resolução de Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho Prof.: Rogério
Ressonador de Helmholtz.
Ressonador de Helmholtz. Modelo mecânico do ressonador de Helmholtz O ressonador é composto por um volume V, esférico no caso mostrado na figura, e um gargalo de seção reta S e comprimento l. A primeira
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE)
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) Concurso Público - NÍVEL SUPERIOR CARGO: Tecnologista da Carreira de Desenvolvimento Tecnológico Classe: Tecnologista Junior Padrão I TEMA: CADERNO DE PROVAS
ADL A Representação Geral no Espaço de Estados
ADL14 3.3 A Representação Geral no Espaço de Estados definições Combinação linear: Uma combinação linear de n variáveis, x i, para r = 1 a n, é dada pela seguinte soma: (3.17) onde cada K i é uma constante.
MOVIMENTO HARMÔNICO SIMPLES (MHS)11
MOVIMENTO HARMÔNICO SIMPLES (MHS)11 Gil da Costa Marques 11.1 Introdução 11. Movimentos periódicos 11.3 Movimento Oscilatório 11.4 A Força Elástica 11.5 Equação do movimento 11.6 Período e Frequência 11.7
DIVISOR DE TENSÃO COM CARGA
DIVISOR DE TENSÃO COM CARGA OBJETIVOS: a) observar os efeitos causados por uma carga em um circuito divisor de tensão; b) aprender a calcular a distribuição de tensão na rede de resistores em um divisor
7. Diferenciação Implícita
7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.
Experimento 4 Indutores e circuitos RL com onda quadrada
Experimento 4 Indutores e circuitos RL com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.
Circuitos Elétricos I EEL420
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 2 - Elementos básicos de circuito e suas associações...1 2.1 - Resistores lineares e invariantes...1 2.1.1 - Curto circuito...2
8. Estabilidade e bifurcação
8. Estabilidade e bifurcação Os sistemas dinâmicos podem apresentar pontos fixos, isto é, pontos no espaço de fase onde o sistema permanece sempre no mesmo estado. Para identificar os pontos fixos e estudar
Química Geral e Experimental II: Cinética Química. Prof. Fabrício Ronil Sensato
Química Geral e Experimental II: Cinética Química Prof. Fabrício Ronil Sensato Resolução comentada de exercícios selecionados. Versão v2_2005 2 1) Para a reação em fase gasosa N 2 + 3H 2 2NH 3, 2) A decomposição,
O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.
Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são
FIS1053 Projeto de Apoio Eletromagnetismo 23-Maio Lista de Problemas 12 -Circuito RL, LC Corrente Alternada.
FIS53 Projeto de Apoio Eletromagnetismo 23-Maio-2014. Lista de Problemas 12 -Circuito RL, LC Corrente Alternada. QUESTÃO 1: Considere o circuito abaixo onde C é um capacitor de pf, L um indutor de μh,
Experimento 4 Indutores e circuitos RL com onda quadrada
1. OBJETIVO Experimento 4 Indutores e circuitos RL com onda quadrada O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.
ELETROTÉCNICA ENGENHARIA
Aquino, Josué Alexandre. A657e Eletrotécnica : engenharia / Josué Alexandre Aquino. Varginha, 2015. 50 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World Wide Web 1. Eletrotécnica.
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA
UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA Um circuito série é aquele que permite somente um percurso para a passagem da corrente. Nos
