Aula do cap. 16 MHS e Oscilações
|
|
|
- Theodoro Bacelar Franca
- 9 Há anos
- Visualizações:
Transcrição
1 Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento harmônico simples. Noções sobre o movimento harmônico amortecido. Aplicações do movimento harmônico simples e Ressonância. Referência: Halliday, David; Resnick, Robert & Walker, Jearl. Fundamentos de Física, Vol. Cap. 16 da 6 a. ed. Rio de Janeiro: LTC, Nº na biblioteca (53 H188ff).
2 Movimento Oscilatório Sempre que um sistema sofre uma perturbação da sua posição de equilíbrio estável, ocorre um movimento de oscilação. Modos de Oscilação Modo Antissimétrico Torção Modo Simétrico Oscilação
3 Exemplos de sistemas que executam MHS Modo Simétrico
4 Oscilador massa-mola O oscilador massa-mola é constituído de um corpo de massa m ligado a uma mola de constante elástica k, presa a uma parede. O corpo executa MHS sobre uma superfície horizontal sem atrito. Quando a mola é comprimida (ou esticada) e liberada, o corpo passa a executar um movimento unidimensional de vai-e-vem, dirigido pela força restauradora exercida pela mola: F = -kx. Frequência, f número de oscilações completadas por unidade de tempo (Hz, s -1 ). Período, T tempo necessário para completar uma oscilação (s). T = 1 f Amplitude deslocamento máximo em relação à posição de equilíbrio produzido pela oscilação.
5 Oscilador Massa- mola Características Principais: 1. É periódico;. Ocorre sempre na presença de uma força restauradora; 3. Ocorre sempre ao redor do ponto de equilíbrio do sistema. Quando um movimento se repete em intervalos de tempo regulares é chamado Movimento Harmónico Simples (MHS) M H S
6 Análise Dinâmica do M.H.S. em todos os instantes do movimento. F = - k x Δx = x x 0 com x 0 = 0
7 Período de oscilação: Τ = π r F = m k r F e ma ω = = kx π T m d x dt = kx d x dt k + x m = 0 ω
8 Sol, água, areia, pêndulo, quartzo e césio, são os principais meios de que o homem já utilizou para a contagem do tempo. Pêndulo Simples Medição do Tempo (Galileu);
9 Pêndulo Simples - Aplicações Sismógrafos:
10 Pêndulos - Aplicações Pêndulo de Torção:
11 The Foucault pendulum at the Franklin Institute in Philadelphia. Um pêndulo de Foucault, assim chamado em referência ao físico francês Jean Bernard Léon Foucault, é uma experiência concebida para demonstrar a rotação da Terra em relação a um referencial. A primeira demonstração data de 1851, quando um pêndulo foi fixado ao teto do Panthéon de Paris. A originalidade do pêndulo reside no fato de ter liberdade de oscilação em qualquer direção, ou seja, o plano pendular não é fixo. A rotação do plano pendular é devida (e prova) a rotação da Terra. A velocidade e a direção de rotação do plano pendular permitem igualmente determinar a latitude do local da experiência.
12 Movimento Pendular - Pêndulo Simples Força resultante no movimento de um pêndulo simples: F restauradora = - mg senθ
13 Movimento Pendular - Pêndulo Simples Τ = π m k senθ = x /L x Força resultante no movimento de um pêndulo simples: F restauradora = - mg senθ Período de oscilação: F rest = - mg x/l Com k = mg /L Τ = π L g
14 Relações entre MHS e movimento circular uniforme. Há uma relação entre os movimentos circular uniforme (MCU) e harmônico simples (MHS) tal que enquanto um ponto P se movimenta sobre a circunferência, a projeção deste ponto se movimenta em MHS.
15 Relações entre MHS e movimento circular uniforme. x (t) = x m cos (ω t + Φ 0 ) x m = amplitude do movimento e, ω = velocidade angular ou freqüência angular e Φ 0 fase inicial do movimento.
16 Posição x (cm) em função do tempo. x (t) = x m cos (ω t + Φ 0 ) ω = πf = π T
17 Movimento Harmônico Simples Velocidade de uma partícula a oscilar será dada por: v () t ( t) dx = = ω xm t + dt sin ( ω φ)
18 Posição x (cm) t (seg) Para este gráfico a fase inicial é 70º Nas pos. centrais a decl. é máxima Nas pos. centrais a vel. é máxima
19 Posição x (cm) t (seg) Nas posições extremas a decl.é Nas posições extremas a velc.é nula nula
20 Movimento Harmônico Simples A aceleração de uma partícula a oscilar será dada por: a () t ( t) dv d x = = = ω xm t + dt dt cos a ( ) t = ω x( t) ( ω φ) Sempre que a aceleração de um objeto é proporcional ao seu deslocamento e é oposta à sua direção, o objecto move-se com um MHS.
21 Movimento Harmônico Simples x (t) = x m cos (ω t + Φ 0 ), v (t) = dx (t)/dt = - x m ω sen (ω t + Φ 0 ) a (t) = d x (t)/dt = - x m ω cos (ω t + Φ 0 ) Valores Máximos e Mínimos v máx = ± x m ω a máx = ± x m ω
22 Gráficos do MHS x (t) = x m cos (ω t + Φ 0 ), v (t) = dx (t)/dt = - x m ω sen (ω t + Φ 0 ) a (t) = d x (t)/dt = a= - x m ω cos (ω t + Φ 0 )
23 90 o movimento da projeção ou sombra de um ponto em movimento circular uniforme é um MHS. 180 M.C.U M.H.S.
24 90 A velocidade do MHS é a projeção do vetor velocidade do MCU. M.C.U M.H.S.
25 90 A velocidade do MHS é a projeção do vetor velocidade do MCU. M.C.U. 0 veloc. nula veloc. máxima
26 90 A aceleração do MHS é a projeção do vetor aceleração centrípeta do MCU. 0 Acel. máxima acel. nula
27 Exemplo Uma partícula está em movimento harmônico simples em uma dimensão e move-se de acordo com a equação: x(t) = (6,0m)cos[(3π rad / s)t + π 3 rad] a) Em t = s, quais são: o deslocamento (elongação) ; b) a velocidade ; e c) a aceleração? d) Qual a fase do movimento em t =,0 s? Também, quais são e) a freqüência e f) o período do movimento?
28 Energia Movimento Harmônico Simples Energia cinética E E C C = 1 Energia Potencial E E P mv Energia Mecânica = m 1 m ( ( )) ωx 1 = k X sin ωt P = 1 kx = m 1 k m ( ) + φ sin ωt + ( ( )) X m 1 = kx cos ωt E = E + E = M C P cos ( ) 1 kx + φ m ωt + φ φ Se x = x, v = 0
29 Movimento Oscilatório Amortecido MHS amortecido Em diversas situações do nosso cotidiano, os movimentos oscilatórios têm uma duração finita, eles têm um começo e um fim. Não ficam se movendo indefinidamente. Isso acontece, basicamente, devido a atuação de forças dissipativas tais como as forças de atrito. Em uma situação simples as forças dissipativas podem ser representadas por uma função que depende linearmente da velocidade.
30 Movimento Oscilatório Amortecido Vamos considerar um sistema composto de uma mola de constante elástica k com uma das extremidades presa ao teto e a outra suspendendo um corpo de massa m. Nesse corpo está presa uma haste vertical que tem a sua outra extremidade presa a um anteparo que está mergulhado em um líquido. Quando o anteparo se move no líquido esse movimento é amortecido por uma força que surge devido à viscosidade do líquido.
31 Movimento Oscilatório Amortecido suporte rígido F = ma = kx bv const. mola, k massa, m d dt x + b m dx dt + k m x = 0 disco amortecimento, λ
32 Movimento Oscilatório Amortecido Essa força dissipativa pode ser descrita por uma equação do tipo: F A = - b v onde b é chamado de constante de amortecimento. A equação da posição em função do tempo tem a forma: x (t) = x m e -bt/m cos (w t + θ 0 )
33 Oscilação amortecida: a amplitude diminui até zero: pêndulo Oscilação permanente: a amplitude permanece constante: pêndulo de relógio mecânico
34 Movimento Oscilatório Forçado d x m dt d x dt d x dt A = Força dissipativa descrita por uma equação do tipo: x dx + λ + kx = F0 cosω f t dt λ dx + + m dt k m x = F0 m cos dx F0 + γ + ω0 x = cos dt m = Acos f 0 ( ω α ) ( ω ω ) + γ ω f F 0 m F A = - λ v 4 f ω f ω f t t ω f ω0 tanα = γω f suporte rígido const. mola, k massa, m disco amortecimento, λ
35 Movimento Oscilatório Forçado RESSONÂNCIA A máximo quando ω f = ω 0 ( ) ω α x = Acos ( ) f ω f ω0 + 4γ f A = F 0 m ω tanα = ω f γω ω f 0
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência
Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.
Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
1. Movimento Harmônico Simples
Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009
Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão
Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas
Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade
Movimento harmônico simples (MHS)
Movimento harmônico simples (MHS) Movimento periódico: movimento que se repete em intervalos de tempo sucessivos e iguais. Ex.: movimento circular uniforme (MCU). Período (T): menor intervalo de tempo
Física Geral e Experimental III
Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola
Dinâ micâ de Mâ quinâs e Vibrâçõ es II
Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.
FEP Física para Engenharia II
FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes
MHS Movimento Harmônico Simples
2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade
UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física
UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A I Capítulo 16 Oscilações 1. Um oscilador
FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia
FÍSICA Professor Sérgio Gouveia MÓDULO 17 OSCILAÇÕES E ONDAS MOVIMENTO HARMÔNICO SIMPLES (MHS) 1. MHS DEFINIÇÃO É o movimento oscilatório e retilíneo, tal que a aceleração é proporcional e de sentido contrário
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento
O Movimento Harmônico Simples
O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS FÍSICA GERAL E EXPERIMENTAL II-E
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 122 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis122 LISTA DE EXERCÍCIOS: OSCILAÇÕES 2014.1 01)
Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância
Oscilações II Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações - Pêndulo Considere um corpo de massa m, presso a extremidade livre de um fio inextensível de comprimento L, como indicado
Física para Engenharia II - Prova P a (cm/s 2 ) -10
4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis
Exercícios de Física Movimento Harmônico Simples - MHS
Exercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função x = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o
Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.
Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
Lista de Exercícios - OSCILAÇÕES
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração
Física I 2010/2011. Aula 10. Movimento Oscilatório II
Física I 2010/2011 Aula 10 Movimento Oscilatório II Sumário Capítulo 15: Oscilações 15-3 A Energia no Movimento Harmónico Simples 15-4 Um Oscilador Harmónico Simples Angular 15-5 O Pêndulo simples 15-7
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física
Resumo e Lista de Exercícios. Física II Fuja do Nabo P
Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante
Física I Prova 3 19/03/2016
Nota Física I Prova 3 19/03/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais
Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.
591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola
Lista Básica Aulas 22 e 23 Frente 3
TEXTO PARA A PRÓXIMA QUESTÃO: Considere os dados abaixo para resolver a(s) questão(ões), quando for necessário. Constantes físicas Aceleração da gravidade próximo à superfície da Terra: Aceleração da gravidade
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para
TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS
TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16
, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.
Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que
OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira
FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira
Exercício 1. Exercício 2.
Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,
TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS
TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16
Física 2. Guia de Estudos P1
Física 2 Guia de Estudos P1 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em
Oscilações, Coerência e Ressonância
, Coerência e Ressonância 1. Por que alguns sistemas físicos oscilam e outros não?. O que caracteriza um sistema oscilatório? 3. Como se mede o período de um pêndulo? parâmetros internos Oscilaç A determinação
Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto
Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância Prof. Ettore Baldini-Neto 1610: Galileu, usando um telescópio recém construído, descobre
Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.
Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes
Oscilações. Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta.
Oscilações Movimento Harmônico Simples Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta. Dinâmica do MCU As oscilações
Oscilações 15-1 MOVIMENTO HARMÔNICO SIMPLES CAPÍTULO 15. Objetivos do Aprendizado. Ideias-Chave. Depois de ler este módulo, você será capaz de...
CAPÍTULO 15 Oscilações 15-1 MOVIMENTO HARMÔNICO SIMPLES Objetivos do Aprendizado Depois de ler este módulo, você será capaz de... 15.01 Conhecer a diferença entre movimento harmônico simples (MHS) e outros
Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013
GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L
Capítulo 18 Movimento ondulatório
Capítulo 18 Movimento ondulatório 18.1 Ondas mecânicas Onda: perturbação que se propaga Ondas mecânicas: Por exemplo: som, ondas na água, ondas sísmicas, etc. Se propagam em um meio material. No entanto,
Aula do cap. 10 Rotação
Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:
LISTA DE EXERCÍCIOS 2
LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés
Lista 14: Oscilações. Questões
Lista 14: Oscilações NOME: Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para resolução
Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.
Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)
[0000]-p1/7 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s. (1) [1,0] Um móvel executa MHS e obedece à função horária x=cos(0,5πt+π), no SI. O tempo necessário para que este
Exercícios de Física Movimento Harmônico Simples - MHS
Eercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período,
FÍSICA II OSCILAÇÕES - MHS EVELINE FERNANDES
FÍSICA II OSCILAÇÕES - MHS EVELINE FERNANDES Suário Moviento Moviento Harônico Siples (MHS) Velocidade e Aceleração MHS Energia MHS Moviento Circular Moviento Quando o oviento varia apenas nas proxiidades
c il a ções Física 2 aula 9 2 o semestre, 2012
Os c il a ções Física aula 9 o semestre, 1 Movimento Harmônico simples: coneão entre vibrações e ondas Energia no MHS Energia Mecânica Total: 1 1 Quando =A ou =-A (etremos): E mv k 1 1 1 E m() k( A) ka
Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva
Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações Professor: Gustavo Silva 1 1.Movimentos Movimento oscilatório é qualquer movimento onde o sistema observado move-se em torno de uma certa
2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J).
FÍSICA BÁSICA II - LISTA 1 - OSCILAÇÕES - 2019/1 1. Em um sistema massa-mola temos k = 200 N/m, m = 1 kg, x(0) = A = 10 cm. Calcule ω, T, f, v m, a m, E (14,14 rad/s; 0,44 s; 2,25 Hz; 1,41 m/s; 20 m/s
A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:
AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui
Problemas sobre osciladores simples
Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto
Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por:
Sistema Corpo-Mola Um corpo de massa m se apóia sobre uma superfície horizontal sem atrito e está preso a uma mola (de massa desprezível) de constante elástica k (Fig.18). Se o corpo é abandonado com a
Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.
Lista 14: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão
Questão 1. YODER, J. G. Unrolling Time: Christiaan Huygens and the mathematization of nature.
SE18 - Física LFIS5A4 - Movimento Harmônico Simples Questão 1 (Enem 2014) Christiaan Huygens, em 1656, criou o relógio de pêndulo. Nesse dispositivo, a pontualidade baseia-se na regularidade das pequenas
Bacharelado Engenharia Civil
Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento
Primeira Lista de Exercícios.
Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m
Tópico 8. Aula Prática: Pêndulo Simples
Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora
Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário
1 de 8 05/05/2008 11:32 Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário Aplicações do Movimento Harmônico Simples, Amortecimento, Oscilações Forçadas e Ressonância) Guia de
Prova P3 Física para Engenharia II, turma nov. 2014
Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)
[0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s 2. Respostas da questões por versão de prova: E7Hx: (1) A; (2) E; (3) A; (4) E; 112F: (1) E; (2) B; (3) D; (4) B;
FEP Física Geral e Experimental para Engenharia I
FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado
Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão):
Page 1 of 6 Oscilações Guia de Estudo (Formato para Impressão): Após o estudo deste tópico você deve: Entender os conceitos de Frequência, Período, Amplitude e Constante de Fase; Conhecer e saber resolver
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P3 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [2,5 pontos] Um bloco de massamestá pendurado por um fio ideal que está enrolado em uma polia fixa, mas que pode girar em torno
Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30.
Física para Engenharia II 4320196 (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Profa. Márcia Regina Dias Rodrigues Depto. Física Nuclear IF USP Ed.
Física 1. 3 a prova 08/07/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 3 a prova 08/07/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017
Vibrações Movimento harmônico Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 02 Londrina, 2017 1
Física I VS 18/07/2015
Física I VS 18/07/2015 NOME MATRÍCULA TURMA PROF. Lembrete: 20 questões de múltipla escolha. Cada questão vale 0,5 ponto Utilize: g = 9,80 m/s 2, exceto se houver alguma indicação em contrário. Nota 1.
FÍSICA. Prof. RICARDO FAGUNDES PROMILITARES AFA/EFOMM/EN MÓDULO 11 SUMÁRIO 1. MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) 3 2. EXERCÍCIOS DE COMBATE 10
SUMÁRIO 1. MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) 3. EXERCÍCIOS DE COMBATE 10 MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) Quando a força resultante que atua em uma partícula apresentar a forma abaixo F kr rˆ Podemos
Física para Engenharia II
Física para Engenharia II 430196 (FEP196) Turma 01111 Sala C-13 3as 15h00 / 5as 9h0. Prof. Antonio Domingues dos Santos Depto. Física Materiais e Mecânica IF USP Ed. Mário Schemberg, sala 05 [email protected]
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico
DISPOSITIVO DIDÁTICO MOVIMENTO HARMÔNICO SIMPLES VERSUS MOVIMENTO CIRCULAR UNIFORME
DISPOSITIVO DIDÁTICO MOVIMENTO HARMÔNICO SIMPLES VERSUS MOVIMENTO CIRCULAR UNIFORME Sandra Maria Couto Moreira Ronaldo Luiz Neves Pinheiro Luiz Carlos de Alvarenga Depto. de Física UFV Viçosa MG I. Introdução
UNIDADE 15 OSCILAÇÕES
UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito
Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA
Ano lectivo 1-11 Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 8 Movimento Vibratório e Ondulatório Capítulo 5 Conhecimentos e capacidades a adquirir pelo aluno Aplicação dos conceitos
Física I Prova 3 29/11/2014
Nota Física I Prova 3 9/11/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões
Lista 12: Oscilações NOME:
Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão
Curso de Complementos de Física
Aula 2 Curso de Engenharia Civil Faculdade Campo Grande 27 de Agosto de 2015 Plano de Aula 1 Exemplo 1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude
Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013
OSCILAÇÕES FORÇADAS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 3 de abril de 013 Roteiro 1 Forçadas Roteiro 1 Resultado M: 66 DP: 0 Conceito N L 3 MB 4 B 7 R 3 I 1 D 5 Roteiro Forçadas
Capítulo 7 Movimento Vibratório
Capítulo 7 Movimento Vibratório Dos movimentos encontrados na natureza, um dos mais importantes é o movimento oscilatório (ou vibratório). Uma partícula tem oscilação quando se move periodicamente em torno
Cada questão objetiva vale 0,7 ponto
Instituto de Física Segunda Prova de Física I 2017/1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a resistência
Prof. Dr. Ronaldo Rodrigues Pelá. 24 de julho de 2018
OSCILAÇÕES Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 24 de julho de 2018 MHS, Roteiro 1 Organização do curso Motivação Definições Gerais 2 Formulação geral Sistema Massa-Mola 3 Pêndulo
Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000]
Física I para a Escola Politécnica (330) - SUB (03/0/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número
