Física Geral e Experimental III
|
|
|
- Regina Cabreira Alvarenga
- 9 Há anos
- Visualizações:
Transcrição
1 Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola de beisebol, o taco pode sofrer uma oscilação suficiente para machucar a mão do batedor ou mesmo se partir em dois. - o vento faz um edifício oscilar ligeiramente e tal movimento pode passar despercebido, mas se as oscilações se repetem mais de 10 vezes por segundo tornam-se desagradáveis e podem causar tonturas e náuseas nos moradores. - quando um trem faz uma curva, as rodas oscilam horizontalmente quando são forçadas a mudar de direção, produzindo um som peculiar. - quando se deixa cair uma moeda em um prato metálico a moeda oscila de uma forma tão característica que é possível saber o valor da moeda pelo som produzido. - ocorre oscilações das moléculas de ar em uma onda sonora e as oscilações das correntes elétricas em rádios. - quando o vento fustiga uma linha de transmissão de energia elétrica, a linha às vezes oscila com tanta intensidade que pode se romper, interrompendo o fornecimento de energia elétrica a toda uma região. - Quando acontece um terremoto nas vizinhanças de uma cidade os edifícios sofrem oscilações tão intensas que podem desmoronar. A palavra oscilação significa um balanço para frente e para trás. Oscilação ocorre quando um sistema é perturbado a partir de uma posição de equilíbrio estável.
2 Movimento Harmônico Simples (MHS) É o tipo de movimento mais simples, mais comum, muito importante e básico em se falando de oscilações. É o movimento que ocorre quando um corpo sólido está preso a uma mola. Neste tipo de oscilação, a força restauradora é diretamente proporcional ao deslocamento da posição de equilíbrio. Algumas propriedades são importantes quando se fala em MHS: Frequência (f): é o número de oscilações completas (ciclos) por segundo. É sempre positiva. 1 hertz = 1 Hz = 1 oscilação por segundo = 1s -1 Período (T): é uma grandeza relacionada à frequência e é o tempo necessário para completar uma oscilação completa (ou um ciclo). T = 1 f [s] Amplitude (x m ): é o módulo máximo do vetor deslocamento do corpo a partir da posição de equilíbrio. A amplitude depende do modo como o movimento foi produzido. O índice m indica o valor máximo, já que a amplitude representa o deslocamento máximo da partícula em um dos sentidos. É sempre positiva. O deslocamento x(t) varia entre os limites ±xm. Unidade da amplitude = metro = [m] Frequência angular ( ) do movimento é a taxa de variação temporal de um ângulo. ω = 2πf ou ω = 2π T [ rad/s]
3 Todo movimento que se repete a intervalos regulares é chamado de movimento periódico ou movimento harmônico. O movimento harmônico simples (MHS) é o movimento periódico que é uma função senoidal do tempo. No movimento harmônico simples, o deslocamento x da partícula em relação à origem é dado por uma função do tempo da forma x(t) = x m cos (ωt + φ) (deslocamento) Onde: x m, ω e φ são constantes. x(t) = deslocamento no instante t xm = amplitude = frequência angular t = tempo = constante de fase ou ângulo de fase (ωt + φ) = fase do movimento A grandeza dependente do tempo (ωt + φ) é chamada de fase do movimento, e a constante φ é chamada de constante de fase (ou ângulo de fase). O valor φ depende do deslocamento e da velocidade da partícula no instante t = 0.
4 A velocidade do MHS Derivando a equação de deslocamento obtemos uma expressão para a velocidade de uma partícula em movimento harmônico simples: v(t) = ωx m sen(ωt + φ) (velocidade) v m = ω. x m [m/s] (velocidade máxima) Quando o módulo do deslocamento é máximo (isto é, quando x(t) = xm), o módulo da velocidade é mínimo (isto é, v(t) = 0) A aceleração do MHS Conhecendo a velocidade v(t) do MHS, podemos obter uma expressão para a aceleração da partícula derivando essa velocidade. Obtemos a seguinte equação: a(t) = ω 2 x m cos(ωt + φ) [m/s 2 ] (aceleração) Combinado as Equações do deslocamento e da aceleração, obtemos a(t) = ω 2 x(t) Que é a relação característica do movimento harmônico simples. No MHS, a aceleração é proporcional ao negativo do deslocamento, e as duas grandezas estão relacionadas pelo quadrado da frequência angular. Quando o deslocamento está passando pelo maior valor positivo a aceleração possui o maior valor negativo e vice-versa. Quando o deslocamento é nulo, a aceleração é nula também.
5 A Lei do Movimento Harmônico Simples Conhecida como a aceleração de uma partícula varia com o tempo, podemos usar a segunda lei de Newton para descobrir qual é a força que deve agir sobre a partícula para que ela adquira essa aceleração. Combinando a segunda lei de Newton com a equação da aceleração, encontramos a seguinte relação: F = ma = (mω 2 )x Este resultado, uma força restauradora proporcional ao deslocamento, é a expressão matemática da lei de Hooke: F = kx para uma mola, sendo que neste caso a constante elástica é dada por k = mω 2 [N/m]
6 O movimento harmônico simples é o movimento executado por uma partícula sujeita a uma força proporcional ao deslocamento da partícula e de sinal oposto. O sistema bloco-mola constitui um oscilador harmônico simples linear, onde o termo linear indica que F é proporcional a x e não a alguma outra potência de x. A frequência angular do MHS do bloco está relacionada à constante elástica k e à massa m do bloco, resultando na seguinte equação: ω = k m Combinando as equações de frequência angular, podemos escrever: T = 2 m k Todo sistema oscilatório, seja ele um trampolim ou uma corda de violino, possui uma certa elasticidade e uma certa inércia e, portanto, se parece com um oscilador linear. No oscilador linear, a elasticidade está inteiramente na mola, cuja massa desprezamos, e a inércia está inteiramente no bloco, cuja elasticidade é ignorada. A Energia do Movimento Harmônico Simples A força de uma mola é a única força horizontal que atua sobre o corpo. A força que a mola ideal exerce sobre um corpo é uma força conservativa, e as forças verticais não realizam trabalho, de modo que a energia mecânica total do sistema é conservada. Vamos também supor que a massa da mola seja desprezível.
7 Figura 1. Oscilador harmônico simples linear. Não há atrito com a superfície. A energia potencial de um oscilador linear (Figura 1) está inteiramente associado à mola. Seu valor depende do grau de alongamento ou compressão da mola, ou seja, de x(t). Obtemos a seguinte expressão para a energia potencial (U): U(t) = 1 2 kx2 A energia cinética do sistema da Figura 1 está inteiramente associada ao boco. Seu valor depende da rapidez com a qual o bloco está se movendo, ou seja, de v(t). Obtemos a seguinte expressão para a energia cinética (K): K(t) = 1 2 mv2 De acordo com as Equações acima, a energia mecânica é dada por E = U + K Quando a energia de um oscilador harmônico simples está em repouso, v=0, e temos a amplitude xm da oscilação, podemos considerar: E = U + K = 1 2 kx m 2 A energia mecânica de um oscilador linear é de fato constante e independente do tempo. Um sistema oscilatório normalmente contém um elemento de elasticidade e um elemento de inércia: o primeiro armazena energia potencial e o segundo armazena energia cinética. A grande peça que foi apresentada no primeiro dia de aula (Halliday), para evitar que o vento faça o prédio de 92 andares oscilar, está pendurada em quatro cabos e oscila como um pêndulo quando o vento faz o edifício balançar. Quando o edifício se inclina em uma direção (leste, por exemplo) a peça faz o mesmo, mas com um certo retardo, de modo que quando
8 finalmente oscila para leste o edifício está se inclinando para oeste. Na verdade, o movimento do pêndulo se mantém sempre defasado do movimento do edifício, e tende a compensá-lo. Outros edifícios utilizam tipos diferentes de amortecedor de massa, como são chamados esses dispositivos para combater oscilações. Alguns, como o do edifício John Hancock, em Boston, possuem um grande bloco que oscila na extremidade de uma mola, movendo-se em um trilho lubrificado. O princípio é o mesmo do pêndulo: o movimento do bloco está sempre defasado em relação ao movimento do edifício. Bibliografia HALLIDAY, D.; RESNICK, R. Fundamentos da física vol 2. 8ª. ed. Rio de Janeiro: LTC, 2009.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência
Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.
Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
1. Movimento Harmônico Simples
Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto
Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas
Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
O Movimento Harmônico Simples
O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento
Aula do cap. 16 MHS e Oscilações
Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento
Lista de Exercícios - OSCILAÇÕES
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração
Primeira Lista de Exercícios.
Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento
UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física
UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A I Capítulo 16 Oscilações 1. Um oscilador
Exercício 1. Exercício 2.
Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,
MHS Movimento Harmônico Simples
2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade
TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS
TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais
UNIDADE 15 OSCILAÇÕES
UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito
OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira
FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira
A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:
AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui
Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.
Lista 14: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
EXPERIMENTO V DETERMINAÇÃO DA CONSTANTE ELÁSTICA E DO PERÍODO PARA O OSCILADOR MASSA MOLA NA HORIZONTAL
EXPERIMENTO V DETERMINAÇÃO DA CONSTANTE ELÁSTICA E DO PERÍODO PARA O OSCILADOR MASSA MOLA NA HORIZONTAL Introdução Oscilações Estamos cercados por fenômenos que se repetem. Existem lustres que se balançam,
Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.
Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes
Resumo e Lista de Exercícios. Física II Fuja do Nabo P
Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante
Física I Prova 3 19/03/2016
Nota Física I Prova 3 19/03/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10
2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J).
FÍSICA BÁSICA II - LISTA 1 - OSCILAÇÕES - 2019/1 1. Em um sistema massa-mola temos k = 200 N/m, m = 1 kg, x(0) = A = 10 cm. Calcule ω, T, f, v m, a m, E (14,14 rad/s; 0,44 s; 2,25 Hz; 1,41 m/s; 20 m/s
Física para Engenharia II - Prova P a (cm/s 2 ) -10
4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis
Ondas. Lucy V. C. Assali. Física II IO
Ondas Física II 2016 - IO O que é uma onda? Qualquer sinal que é transmitido de um ponto a outro de um meio, com velocidade definida, sem que haja transporte direto de matéria. distúrbio se propaga leva
TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS
TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16
FEP Física para Engenharia II
FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.
Lista 12: Oscilações NOME:
Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão
Lista 14: Oscilações. Questões
Lista 14: Oscilações NOME: Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para resolução
Primeira Lista de Exercícios.
Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m
Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por:
Sistema Corpo-Mola Um corpo de massa m se apóia sobre uma superfície horizontal sem atrito e está preso a uma mola (de massa desprezível) de constante elástica k (Fig.18). Se o corpo é abandonado com a
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS FÍSICA GERAL E EXPERIMENTAL II-E
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 122 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis122 LISTA DE EXERCÍCIOS: OSCILAÇÕES 2014.1 01)
Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30.
Física para Engenharia II 4320196 (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Profa. Márcia Regina Dias Rodrigues Depto. Física Nuclear IF USP Ed.
Movimento harmônico simples (MHS)
Movimento harmônico simples (MHS) Movimento periódico: movimento que se repete em intervalos de tempo sucessivos e iguais. Ex.: movimento circular uniforme (MCU). Período (T): menor intervalo de tempo
Exercícios de Física Movimento Harmônico Simples - MHS
Exercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função x = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o
Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.
Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes
Dinâ micâ de Mâ quinâs e Vibrâçõ es II
Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.
Curso de Complementos de Física
Aula 2 Curso de Engenharia Civil Faculdade Campo Grande 27 de Agosto de 2015 Plano de Aula 1 Exemplo 1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude
Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009
Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)
[0000]-p1/7 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s. (1) [1,0] Um móvel executa MHS e obedece à função horária x=cos(0,5πt+π), no SI. O tempo necessário para que este
FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia
FÍSICA Professor Sérgio Gouveia MÓDULO 17 OSCILAÇÕES E ONDAS MOVIMENTO HARMÔNICO SIMPLES (MHS) 1. MHS DEFINIÇÃO É o movimento oscilatório e retilíneo, tal que a aceleração é proporcional e de sentido contrário
Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.
591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola
Física I 2010/2011. Aula 10. Movimento Oscilatório II
Física I 2010/2011 Aula 10 Movimento Oscilatório II Sumário Capítulo 15: Oscilações 15-3 A Energia no Movimento Harmónico Simples 15-4 Um Oscilador Harmónico Simples Angular 15-5 O Pêndulo simples 15-7
Física 2. Guia de Estudos P1
Física 2 Guia de Estudos P1 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em
Física I VS 18/07/2015
Física I VS 18/07/2015 NOME MATRÍCULA TURMA PROF. Lembrete: 20 questões de múltipla escolha. Cada questão vale 0,5 ponto Utilize: g = 9,80 m/s 2, exceto se houver alguma indicação em contrário. Nota 1.
Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão):
Page 1 of 6 Oscilações Guia de Estudo (Formato para Impressão): Após o estudo deste tópico você deve: Entender os conceitos de Frequência, Período, Amplitude e Constante de Fase; Conhecer e saber resolver
Departamento de Física - ICE/UFJF Laboratório de Física II
Movimentos Periódicos 1 Objetivos Gerais: Verificar experimentalmente o comportamento da força exercida por uma mola em função do alongamento da mola; Determinar a constante de rigidez k da mola; Determinar
Oscilações 15-1 MOVIMENTO HARMÔNICO SIMPLES CAPÍTULO 15. Objetivos do Aprendizado. Ideias-Chave. Depois de ler este módulo, você será capaz de...
CAPÍTULO 15 Oscilações 15-1 MOVIMENTO HARMÔNICO SIMPLES Objetivos do Aprendizado Depois de ler este módulo, você será capaz de... 15.01 Conhecer a diferença entre movimento harmônico simples (MHS) e outros
F = K.x. Vale também para distensão!!! Lei de Hooke:
Lei de Hooke: A força necessária para se comprimir uma mola, depende de dois fatores: a dureza da mola (constante elástica) e a deformação a ser causada. F K.x Vale também para distensão!!! ATENÇÃO: o
Ondas. Lucy V. C. Assali. Física II IO
Ondas Física II 2015 - IO Não é possível exibir esta imagem no momento. O que é uma onda? Qualquer sinal que é transmitido de um ponto a outro de um meio, com velocidade definida, sem que haja transporte
Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.
Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com
Movimento Harmônico Simples e Amortecido
Movimento Harmônico Simples e Amortecido INTRODUÇÃO Ana Arruda, Caio Monteiro, Lineu Parra, Vitor Rocha Professor: Marcelo Reyes, CMCC Campus Santo André Resumo O estudo dos Movimentos Harmônicos permite
Ondas e oscilações. 1. As equações de onda
Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico
Ondas e oscilações. 1. As equações de onda
Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS Prof. Bruno Farias Ondas Uma onda surge quando um sistema é deslocado de sua posição
Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância
Oscilações II Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações - Pêndulo Considere um corpo de massa m, presso a extremidade livre de um fio inextensível de comprimento L, como indicado
Figura 1.1: Diagrama esquemático ilustrando o sistema do problema.
Figura 1.1: Diagrama esquemático ilustrando o sistema do problema. 1 Exemplos 1.1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude de 7 centímetros.
FÍSICA. Prof. RICARDO FAGUNDES PROMILITARES AFA/EFOMM/EN MÓDULO 11 SUMÁRIO 1. MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) 3 2. EXERCÍCIOS DE COMBATE 10
SUMÁRIO 1. MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) 3. EXERCÍCIOS DE COMBATE 10 MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) Quando a força resultante que atua em uma partícula apresentar a forma abaixo F kr rˆ Podemos
, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.
Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que
Tópico 8. Aula Prática: Pêndulo Simples
Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora
LISTA DE EXERCÍCIOS 2
LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés
Física I Prova 3 29/11/2014
Nota Física I Prova 3 9/11/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões
Universidade Estadual do Sudoeste da Bahia
Universidade Estadual do Sudoeste da Bahia Departaento de Estudos Básicos e Instruentais 5 Oscilações Física II Ferreira 1 ÍNDICE 1. Alguas Oscilações;. Moviento Harônico Siples (MHS); 3. Pendulo Siples;
Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA
Ano lectivo 1-11 Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 8 Movimento Vibratório e Ondulatório Capítulo 5 Conhecimentos e capacidades a adquirir pelo aluno Aplicação dos conceitos
Prova P3 Física para Engenharia II, turma nov. 2014
Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com
7. Movimentos Oscilatórios
7.1. Uma massa m = 90 g ligada a uma mola é largada com velocidade inicial zero de um ponto a 2 cm da posição de equilíbrio. A constante da mola é k = 81 N /m. Considere o movimento no plano horizontal
Lista Básica Aulas 22 e 23 Frente 3
TEXTO PARA A PRÓXIMA QUESTÃO: Considere os dados abaixo para resolver a(s) questão(ões), quando for necessário. Constantes físicas Aceleração da gravidade próximo à superfície da Terra: Aceleração da gravidade
Exercícios de Física Movimento Harmônico Simples - MHS
Eercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período,
Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000]
Física I para a Escola Politécnica (330) - SUB (03/0/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número
CINEMÁTICA E DINÂMICA
PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)
FEP Física para Engenharia II
FEP2196 - Física para Engenharia II Prova P1-25/10/2007 - Gabarito 1. Um corpo de massa 50 g está preso a uma mola de constante k = 20 N/m e oscila, inicialmente, livremente. Esse oscilador é posteriormente
Problemas sobre osciladores simples
Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto
Mecânismos A06. Prof. Nilton Ferruzzi. Prof. Nilton Ferruzzi 1
Mecânismos A06 Prof. Nilton Ferruzzi Prof. Nilton Ferruzzi 1 Definição de Vibração Mecânica: É qualquer movimento que se repete, regular ou irregularmente, depois de um intervalo de tempo. O movimento
Oscilações. Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta.
Oscilações Movimento Harmônico Simples Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta. Dinâmica do MCU As oscilações
Física 1. 3 a prova 08/07/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 3 a prova 08/07/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
FORÇA ELÁSTICA. Onde: F: intensidade da força aplicada (N); k: constante elástica da mola (N/m); x: deformação da mola (m).
FORÇA ELÁSTICA Imagine uma mola presa em uma das extremidades a um suporte, e em estado de repouso (sem ação de nenhuma força). Quando aplicamos uma força F na outra extremidade, a mola tende a deformar
Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013
GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L
AULA 45 O OSCILADOR HARMÔNICO FORÇADO
AULA 45 O OSCILADOR HARMÔNICO FORÇADO OBJETIVOS: ESTUDAR O MOVIMENTO HARMÔNICO FORÇADO 45.1 MOVIMENTO HARMÔNICO FORÇADO Este oscilador está na base de um grande número de fenômenos da Natureza e aplicações
Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009
Universidade de São Paulo nstituto de Física FEP11 - FÍSCA para o nstituto Oceanográfico 1º Semestre de 009 Segunda Lista de Exercícios Oscilações 1) Verifique quais funções, entre as seguintes, podem
Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Física Experimental I Prof. Dra. Ângela Cristina Krabbe
Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU Física Experimental I Prof. Dra. Ângela Cristina Krabbe 1. Qual o período de oscilação de um pêndulo simples de
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10
597 Física II Ondas, Fluidos e Termodinâmica USP Prof. ntônio Roque ula Oscilações acopladas e modos normais Os sistemas naturais não são isolados, mas interagem entre si. Em particular, se dois ou mais
7 Movimentos Oscilatórios
7 Movimentos Oscilatórios 7.1. Uma massa m = 90 g ligada a uma mola é largada com velocidade inicial zero de um ponto a 2 cm da posição de equilíbrio. A constante da mola é k = 81 N /m. Considere o movimento
