Ondas e oscilações. 1. As equações de onda

Tamanho: px
Começar a partir da página:

Download "Ondas e oscilações. 1. As equações de onda"

Transcrição

1 Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico ou periódico. Vamos começar analisando a função seno: A imagem acima nos mostra como y varia com o ângulo x. A trigonometria ensina que a amplitude, ou o valor máximo da função, é igual ao valor do raio de um ciclo. No caso da função seno, a amplitude A tem maior valor quando o x = π/ ou x = 3π/, já que nesses ângulos o seno é máximo ou mínimo, respectivamente. Pelo gráfico acima, a amplitude é máxima quando A = 1. Portanto, uma função seno tem a forma: y = Asen(x) (1) No caso de uma função cosseno: y = Acos(x) () Já a função cosseno tem a amplitude máxima quando x = 0 ou x = π ou x = π. Pelo gráfico acima, podemos dizer que o ciclo tem raio igual a 1, ou seja, a amplitude A = 1. Enquanto a função seno nos diz sobre o eixo vertical, a função cosseno descreve o eixo horizontal.

2 Primeiro você tem que perceber que x é um valor adimensional, já que quando você obtém o valor do seno e do cosseno ela também é adimensional. A segunda coisa é: está livre para trabalhar com seno ou cosseno em qualquer situação, mas deve observar com cuidado o gráfico. Por exemplo, você decidiu fazer uma função cosseno para o primeiro gráfico. É claro que os valores serão totalmente diferentes dos valores da função seno. Para corrigir esse erro existe a fase φ, que é um ângulo complementar à x, isto é y = cos(x + φ) (3) Observe que no primeiro gráfico y = 0 quando x = 0 (0 = sen(0)). Se usarmos uma função cosseno fica y = cos(0 + π/) = 0 Entendo como se comporta essas funções periódicas tudo (ou quase tudo) fica mais fácil. Se uma onda varia em relação ao tempo: A amplitude A é a altura máxima alcançada pela onda e λ o comprimento de onda. Se T é o período de oscilação (descrito entre o começo e o fim do comprimento de onda), a função de descreve a onda será y(t) = Asen ( π T t) (4) Podemos dizer que a frequência angular ω é ω = π T (5)

3 Então a equação (4) fica y(t) = Asen(ωt) Se quisermos descrever a velocidade da onda em cada instante, basta fazer a primeira derivada : v(t) = dy = ωacos(ωt) (6) dt E a segunda derivada mostra a aceleração da onda em cada instante: a(t) = d y dt = ω Asen(ωt) (7). Movimento harmônico simples Vamos começar analisando os casos mais simples. Imagine um objeto de massa m presa em uma mola de constante elástica k sobre uma superfície sem atrito. Se o conjunto objeto + mola estiver em equilíbrio, então todas as forças que atuam no conjunto se anulam, portanto F elastica = F Lembrando que F = ma e que F elastica = kx, e pela equação (7): m( ω x) = kx k = mω ω = π T = k m (8) Exemplos:.1) O deslocamento de um objeto oscilando em função do tempo é mostrado na figura abaixo:

4 a) O período Observe que o período de oscilação está compreendido entre a ida e a volta ao mesmo ponto. A oscilação começou quando x = 4 cm e para completar uma oscilação, o objeto deve voltar à x = 4 cm. Portanto, o período de oscilação T = 16,0 s. b) Amplitude A amplitude é a altura máxima alcançada. A = 10,0 cm. c) Frequência Não confunda com frequência angular ω, que nos diz a velocidade de um ciclo. A frequência é simplesmente a medida de uma oscilação por período. Logo f = 1 T = 1 16 Hz.) Uma partícula, em movimento harmônico simples, se move em torno de um ponto, que um certo sistema de referencias é x = 0. Seu movimento é unidimensional, e, em um certo instante t = 0 um conjunto de medidas são feitas, descobrindo-se que seu deslocamento é x = 0,5 cm, sua velocidade é nula e a frequência do movimento é f = 0,5 Hz. a) Qual o período, a frequência angular e a amplitude do movimento? O período é: A frequência angular: T = 1 f = 1 0,5 = 4 s ω = πf = 0,5π rad/s Se em t = 0 a velocidade é nula, então a partícula está em um ponto de máxima posição: A = 0,5 cm

5 b) Escreva a equação do deslocamento x(t) e da velocidade v(t) em função do tempo, nesse sistema de coordenadas. Como em t = 0 a partícula está em posição máxima, podemos trabalhar com cosseno: E a velocidade x(t) = Acos(ωt) = 0,5cos (0,5π t) v(t) = dx = ωasen(ωt) = 0,5πsen(0,5π t) dt 3. Ondas A partir de agora só vamos discutir um pouco das formulas que usamos nas listas. Meu principal objetivo é explicar como chega a algumas equações mais usadas, o que pode parecer meio chato, mas fazer o que né? Uma onda é qualquer sinal que se transmite de um ponto a outro de um meio com velocidade definida. Fala-se de onda quando essa transmissão entre dois pontos distantes ocorre sem que haja transporte de matéria entre eles. Agora imagine uma onda de duas dimensões (D) progressiva y(x, t), isto é, indo para a direita, com velocidade v e dependendo da posição x e do tempo t. Então a função terá a forma y(x, t) = y(x vt) para uma onda progressiva, no caso de onda regressiva y(x, t) = y(x + vt). Supondo que em uma corda vibrante a variação do comprimento da corda seja desprezível e a magnitude da tensão permaneça T. A componente y da tensão no ponto x + x devida à porção da corda à direita de x + x, é (quando o ângulo θ entre a porção de corda e um eixo horizontal for muito pequena): Tsenθ Ttgθ = T No ponto x, temos uma força análoga de sinal contrário devido à porção da corda à esquerda de x. Logo, a força vertical resultante sobre x da corda é T y( x + x, t) T = y(x + x, t) = T x [ ] x

6 Sabendo que a definição de derivada é y(x,t) x vale = y(x+ x,t) y(x,t) x, então a força vertical sobre T y(x, t) x Se a densidade linear da corda é μ = m/ x e lembrando a ª lei de Newton (F = ma): xμ y(x, t) t y(x, t) = T y(x, t) = μ y(x, t) T t Já que a velocidade no eixo horizontal é dada por v = x t, a velocidade da corda é: v = T μ (9) 3.1 Intensidade de onda Num dado instante t, a porção da corda à esquerda de um ponto x atua sobre um elemento da corda no ponto x com uma força transversal F y : F y = T O trabalho realizado sobre esse elemento por unidade de tempo (potencia instantânea) que corresponde à energia transmitida através de x por unidade de tempo é P(x, t) = F y t = T t (10) Na prática o que interessa é a média da energia (ou potência) sobre o período, e chamamos isso de intensidade. Por exemplo, se existir uma onda progressiva harmônica com a forma

7 y(x, t) = Acos[k(x vt)] = Acos(kx ωt) Se fizermos as derivadas: t = Aksen(kx ωt) = Aωsen(kx ωt) Podemos obter uma equação da intensidade sonora para a onda utilizando a relação (10): I = P(x, t) = P = TA kωsen (kx ωt) Lembrando da equação (9) e que ω = kv; como a média de sen (kx ωt) é igual a ½, então I = 1 μva ω (11) 3. Superposição de ondas Considerando que as ondas se propagam em sentidos opostos: y 1 (x, t) = Acos(kx ωt) y (x, t) = Acos(kx + ωt) A onda resultante é a soma das duas ondas: y(x, t) = y 1 (x, t) + y (x, t) y(x, t) = A[cos(kx ωt) + cos(kx + ωt)] Como cos(a + b) = cos(a) cos(b) sen(a)sen(b) e cos(a b) = cos(a) cos(b) + sen(a)sen(b):

8 y(x, t) = A[cos(kx) cos(ωt) + sen(kx) sen(ωt) + cos(kx) cos(ωt) sen(kx)sen(ωt)] = Acos(kx) cos(ωt) (1) Como a resultante é o produto de uma função de x por uma função de t, não há propagação! A forma da corda permanece sempre semelhante com o deslocamento mudando apenas de amplitude e, eventualmente, de sinal. Isso se chama onda estacionária. 3.3 Interferência de ondas Considerando a superposição de duas ondas progressivas harmônicas de mesma frequência e no mesmo sentido: y 1 (x, t) = A 1 cos(kx ωt + φ 1 ) y (x, t) = A cos(kx ωt + φ ) O ângulo resultante é φ = φ φ 1. E pela lei dos cossenos, a amplitude resultante será: A = A 1 + A + A 1 A cos φ Então a interferência resultante será y(x, t) = y 1 (x, t) + y (x, t) = Acos(kx ωt + φ) (13) Se observar a equação (11), a intensidade da onda é proporcional à A, temos que I = I 1 + I + I 1 I cosφ (14) A interferência resultante é máxima (interferência construtiva) para cosφ = 1 e é mínima quando cosφ = Batimentos Se existirem ondas no mesmo sentido, mesma amplitude, mas frequências diferentes:

9 y 1 (x, t) = Acos(k 1 x ω 1 t) y (x, t) = Acos(k x + ω t) Existem duas condições para existir um batimento: ω = ω 1 ω << ω = ω 1 + ω k = k 1 k << k = k 1 + k Supondo que ω 1 > ω e k 1 > k, temos então y(x, t) = y 1 (x, t) + y (x, t) y(x, t) = A {cos [(k + k ) x (ω + ω k ) t] + cos [(k ) x (ω ω ) t]} (15) Simplificando, y(x, t) = a(x, t)cos (kx ωt) Onde a(x, t) = Acos ( k x ω t). Se reparar bem, a(x, t) descreve a amplitude do batimento. É essa amplitude que nos diz a quão larga é a banda (ou amplitude) do batimento. A banda larga que a gente usa na internet é exatamente isso: como a amplitude é alta, há maior frequência e então uma onda pode carregar mais informação que uma banda curta. Considerando y(x, t) como uma onda de frequência ω elevada cuja amplitude a é modulada por outra onda de frequência ω bem mais baixa, temos então um grupo de ondas.

10 Seja a fase de y(x, t) como φ(x, t) = kx ωt, a velocidade de fase (ou da onda portadora) é v φ = ω k (16) E a velocidade do grupo (ou da onda moduladora): v g = ω k (17) 3.5. Reflexão de ondas Reflexão em extremidade fixa: o pulso volta invertido após a reflexão. A reflexão numa extremidade fixa produz uma defasagem de 180. A razão física disso é que, se atingir a origem, o pulso iria provocar um determinado deslocamento. Para permanecer fixa, a extremidade causa uma reação de suporte à onda, produzindo um deslocamento igual e de sinal invertido. Reflexão em extremidade livre: não atua nenhuma força transversal. Numa extremidade livre, um pulso é refletido sem mudança de fase. 3.6 Exemplos 3.1) A função de onda de uma corda é y(x, t) = 1,0cm sen(6,8 x m + 314t s ) a) Em que direção a onda avança e qual a sua velocidade? Olhe o sinal dentro função seno. Como existe um mais, então a onda avança para a esquerda (onda retrograda).

11 Como k = 6,8 m 1 e ω = 314 s 1, então v = ω k = 314 = 5,0 m/s 6,8 b) Calcule o comprimento de onda, a frequência e o período da onda. O comprimento de onda: A frequência é da dada por: E o período: λ = π k = π = 0,1 m = 10 cm 6,8 f = v λ = 5,0 = 50 Hz 0,1 T = 1 = 0,0 s 50 c) Qual a aceleração máxima de um ponto da corda? A aceleração da corda é obtida fazendo a segunda derivada de y(x, t) em relação ao tempo. Para não se perder, recomendo a primeira derivada (a velocidade) e depois faz a segunda: t y(x, t) t Logo a aceleração é: = v = ωacos(kx + ωt) = 3,14cos (6,8x + 314t) = ω Asen(kx + ωt) = 985,96sen(6,8x + 314t) a(x, t) = 985,96sen(6,8x + 314t) A aceleração é máxima quando sen(6,8x + 314t) = 1 ou sen(6,8x + 314t) = 1. Logo, a aceleração máxima é, em módulo: a max = 985,96 m/s 3.) A figura ao lado mostra duas fotografias tiradas em instantes de tempo diferentes de uma corda na qual se propaga, no sentido positivo do eixo x, uma corda transversal y(x, t). A primeira fotografia (linha cheia) foi tirada num certo instante e a segunda (linha tracejada) 0,50s depois.

12 a) Determine a velocidade de propagação da onda na corda. então Como as linhas mostram a posição da onda depois de um intervalo de tempo de 0,50s, v = Δx Δt = 1 =,0 m/s 0,50 b) Determine a amplitude, o número de onda, a frequência angular, a constante de fase e escreva a equação do perfil de onda y(x, t). A onda varia entre o máximo de 0,10m e -0.10m. Logo a amplitude é A = 0,10m Observando os ventres da onda, o comprimento de onda é λ = 4,0 m. Então o número de onda é A frequência angular é k = π λ = π 4,0 = π m 1 ω = kv = π = π rad/s Como a onda começou no máximo e a equação de onda será uma função cosseno, então a constante de fase φ = 0. E a equação de onda: y(x, t) = Acos(kx ωt + φ) = 0,1cos ( π x πt) c) Determine a velocidade transversal máxima de um ponto da corda A velocidade é dada pela primeira derivada de y(x, t) em relação ao tempo. Logo: t = v = ωasen(kx ωt) = 0,1πsen ( π x πt) A velocidade é máxima quando sen ( π x πt) = 1, portanto v max = 0,1π m/s 3.3) Uma corda de comprimento L presa nas extremidades x = 0 e x = L, submetida a uma tensão T = 96, oscila no terceiro harmônico de uma corda estacionária. O deslocamento transversal da corda é dada por Onde k = 0,50π m 1 e ω = 6,0π rad/s. y(x, t) = 5,0cm sen(kx)sen(ωt)

13 a) Qual é o comprimento L da corda? Sendo n o número do harmônico, existe a seguinte relação λ = π k = L n L = nπ k = 3π = 6,0 m 0,5π b) Qual a massa da corda? Sendo a densidade μ = m/l, então v = T μ = ω k ( ω k ) = TL m m = (k ω ) FL m = ( 0,5π 6,0π ) 96 6 m = 40 kg

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Lista de exercícios n 2 - Ondas Prof. Marco

Lista de exercícios n 2 - Ondas Prof. Marco o Lista de exercícios n 2 - Ondas Prof. Marco Ondas periódicas 1 Uma onda tem velocidade escalar igual a 240 m/s e seu comprimento de onda é 3,2 m. Quais são: (a) A freqüência; (b) O período da onda? [Resp.

Leia mais

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com

Leia mais

6.0 Ondas Mecânicas

6.0 Ondas Mecânicas www.engenhariafacil.net 6.0 Ondas Mecânicas Fisicamente, uma onda é um pulso energético que se propaga através do espaço ou através de um meio (líquido, sólido ou gasoso), com velocidade definida.sua principal

Leia mais

Física para Engenharia II - Prova P2-2012

Física para Engenharia II - Prova P2-2012 430196 Física para Engenharia II - Prova P - 01 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de horas. Não somos responsáveis

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

LISTA DE EXERCÍCIOS - ONDAS

LISTA DE EXERCÍCIOS - ONDAS UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 1 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis1 LISTA DE EXERCÍCIOS - ONDAS 013.1 1. Considere

Leia mais

Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço.

Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. 16 ONDAS 1 16.3 Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. Onda transversal: a deformação é transversal à direção de propagação. Deformação Propagação 2 Onda longitudinal:

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. A equação de uma onda transversal se propagando ao longo de uma corda muito longa é, onde e estão expressos em centímetros e em segundos. Determine (a) a amplitude, (b) o comprimento de onda,

Leia mais

A Equação de Onda em Uma Dimensão (continuação) Consequências do Princípio de Superposição

A Equação de Onda em Uma Dimensão (continuação) Consequências do Princípio de Superposição A Equação de Onda em Uma Dimensão (continuação) Consequências do Princípio de Superposição O princípio de superposição nos diz que quando houver mais de uma onda se propagando em uma corda, a onda resultante

Leia mais

Aula 18: Cordas Vibrantes e Intensidade de Uma Onda. Prof a Nair Stem Instituto de Física da USP

Aula 18: Cordas Vibrantes e Intensidade de Uma Onda. Prof a Nair Stem Instituto de Física da USP Aula 18: Cordas Vibrantes e Intensidade de Uma Onda Prof a Nair Stem Instituto de Física da USP Cordas Vibrantes Considere vibrações transversais em uma corda distendida como as que encontramos em instrumentos

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Universidade Federal Rural do Semi-Árido - UFERSA Ondas Subênia Karine de Medeiros Mossoró, Outubro de 2009 Ondas Uma ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio

Leia mais

Centro Federal de Educação Tecnológica de Minas Gerais

Centro Federal de Educação Tecnológica de Minas Gerais Centro Federal de Educação Tecnológica de Minas Gerais Graduação em Engenharia da Computação Prática 09 - Ondas Estacionárias Alunos: Egmon Pereira; Igor Otoni Ripardo de Assis Leandro de Oliveira Pinto;

Leia mais

Lista de Exercícios - OSCILAÇÕES

Lista de Exercícios - OSCILAÇÕES UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP196 - Física para Engenharia II Prova REC - Gabarito 1. Considere um cilindro oco de massa, raio externo R e raio interno r. (a) (1,0) Calcule o momento de inércia desse cilindro com relação ao eixo

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

Aula 19: Interferência de Ondas, Reflexão e Modos Normais de Vibração. Prof a Nair Stem Instituto de Física da USP

Aula 19: Interferência de Ondas, Reflexão e Modos Normais de Vibração. Prof a Nair Stem Instituto de Física da USP Aula 19: Interferência de Ondas, Reflexão e Modos Normais de Vibração Prof a Nair Stem Instituto de Física da USP Interferência de Ondas - Mesmo Sentido Considere a superposição de duas ondas progressivas

Leia mais

fig. III.1. Exemplos de ondas.

fig. III.1. Exemplos de ondas. Unidade III - Ondas fig III Exemplos de ondas Situando a Temática Nesta unidade temática daremos algumas ideias do fenômeno ondulatório e sua introdução como modelo matemático, especialmente em uma corda

Leia mais

Na crista da onda Velocity of propagation Velocidade de propagação 6.4 The motion of water elements on the surface of deep water in Em nenhum destes processos há transporte de matéria... mas há transporte

Leia mais

LISTA DE EXERCÍCIOS Nº 3

LISTA DE EXERCÍCIOS Nº 3 LISTA DE EXERCÍCIOS Nº 3 Questões 1) Na Figura 1, três longos tubos (A, B e C) são preenchidos com diferentes gases em diferentes pressões. A razão entre o módulo da elasticidade volumar e a densidade

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

LISTA DE EXERCÍCIOS Nº 2

LISTA DE EXERCÍCIOS Nº 2 LISTA DE EXERCÍCIOS Nº 2 Questões 1) A Figura 1a apresenta o retrato de uma onda propagante ao longo do sentido positivo do eixo x em uma corda sob tensão. Quatro elementos da corda são designados por

Leia mais

1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI)

1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI) 1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI) a) Quais são a velocidade e a direção de deslocamento da onda? b) Qual é o deslocamento vertical da corda em t=0, x=0,100

Leia mais

Luz e Ondas Eletromagnéticas ONDAS MECÂNICAS. Licenciatura em Ciências USP/ Univesp. Luiz Nunes de Oliveira Daniela Jacobovitz

Luz e Ondas Eletromagnéticas ONDAS MECÂNICAS. Licenciatura em Ciências USP/ Univesp. Luiz Nunes de Oliveira Daniela Jacobovitz 7 ONDAS MECÂNICAS Luiz Nunes de Oliveira Daniela Jacobovitz 71 Introdução 72 Oscilação simples 73 Corda vibrante 74 Características da onda na corda 741 Velocidade 742 Comprimento de onda 75 Som 76 Velocidade

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 23 (pág. 78) AD TM TC. Aula 24 (pág. 79) AD TM TC. Aula 25 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 23 (pág. 78) AD TM TC. Aula 24 (pág. 79) AD TM TC. Aula 25 (pág. Física Setor A Prof.: Índice-controle de Estudo Aula 3 (pág. 78) AD M C Aula (pág. 79) AD M C Aula 5 (pág. 79) AD M C Aula 6 (pág. 8) AD M C Aula 7 (pág. 8) AD M C Aula 8 (pág. 83) AD M C Revisanglo Semi

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Primeira Lista de Exercícios.

Primeira Lista de Exercícios. Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENO OSCILAÓRIO Força proporcional ao deslocamento Movimento periódico ou oscilatório Conservação da energia mecânica Movimento harmónico simples MOVIMENO HARMÓNICO SIMPLES (MHS) Um movimento diz-se

Leia mais

Ondas (Aula 1) Prof. Ettore Baldini-Neto

Ondas (Aula 1) Prof. Ettore Baldini-Neto Ondas (Aula 1) Prof. Ettore Baldini-Neto Tipos de ondas: Ondas mecânicas: Ondas sonoras, sísmicas, na água. São governadas pelas leis da mecânica e propagam-se em meios materiais: rochas, cordas, ar, água.

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez Versão 1

ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez Versão 1 ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez. 2015 Versão 1 11º Ano Turma A e B Duração da prova: 90 minutos. Este teste é constituído por 10 páginas e termina na palavra FIM Nome:

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por:

Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por: Sistema Corpo-Mola Um corpo de massa m se apóia sobre uma superfície horizontal sem atrito e está preso a uma mola (de massa desprezível) de constante elástica k (Fig.18). Se o corpo é abandonado com a

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

MHS Movimento Harmônico Simples

MHS Movimento Harmônico Simples 2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade

Leia mais

8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude

8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude Constantes Velocidade do som no ar: v som = 344 m /s Velocidade da luz no vácuo c = 3 10 8 m/s 8.1. Considere uma corda de comprimento L e densidade linear µ = m/l, onde m é a massa da corda. Partindo

Leia mais

Física. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior.

Física. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior. Física 01. Uma haste de comprimento L e massa m uniformemente distribuída repousa sobre dois apoios localizados em suas extremidades. Um bloco de massa m uniformemente distribuída encontra-se sobre a barra

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva Superposição de ondas harmônicas Um importante aspecto do comportamento das ondas é o efeito combinado de duas ou mais ondas que se propagam num mesmo meio. Princípio

Leia mais

EXERCÍCIOS PARA A LISTA 6 CAPÍTULO 20 ONDAS MECÂNICAS. NOME: Turma:

EXERCÍCIOS PARA A LISTA 6 CAPÍTULO 20 ONDAS MECÂNICAS. NOME: Turma: Exercícios Conceituais QUESTÃO 1. As crianças montam um telefone de brinquedo fazendo passar as extremidades de um fio através de um orifício feito em um copo de papel e amarrando-as de modo que o fio

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

Ondas Mecânicas - Movimento Ondulatório

Ondas Mecânicas - Movimento Ondulatório Page 1 of 7 Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário Movimento Ondulatório GE Completo em PDF para Download ou Impressão Guia de Estudo Após o estudo deste tópico você

Leia mais

FNT AULA 6 FUNÇÃO SENO E COSSENO

FNT AULA 6 FUNÇÃO SENO E COSSENO FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD PISM III- TRIÊNIO PROVA DE FÍSICA

COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD PISM III- TRIÊNIO PROVA DE FÍSICA PISM III- TRIÊNIO 008-00 Na solução da prova, use quando necessário: Aceleração da gravidade g = 0 m / s 8 ;Velocidade da luz no vácuo c = 3,0 0 m/s Permeabilidade magnética do vácuo = 7 µ T m A 0 4π 0

Leia mais

As principais formas de oscilação são: Massa - mola Pêndulo Ondas em uma superfície.

As principais formas de oscilação são: Massa - mola Pêndulo Ondas em uma superfície. Tudo ao nosso redor oscila!!! As principais formas de oscilação são: Ondas Massa - mola Pêndulo Ondas em uma superfície. O que é um pêndulo? Um corpo suspenso por um fio, afastado da posição de equilíbrio

Leia mais

1ª Prova de Física I - FCM0101

1ª Prova de Física I - FCM0101 1ª Prova de Física I - FCM11 #USP: Nome: Instruções: 1. Escreva seu nome e número USP no espaço acima.. A duração da prova é de horas. A prova tem 4 questões. 3. Não é permitido consultar livros, anotações

Leia mais

Física para Engenharia II - Prova P3-2011

Física para Engenharia II - Prova P3-2011 4320196 Física para Engenharia II - Prova P3-2011 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura.

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura. 1) Uma barra delgada homogênea de comprimento L e massa M está inicialmente em repouso como mostra a figura. Preso a uma de suas extremidades há um objeto de massa m e dimensões desprezíveis. Um segundo

Leia mais

Capí tulo 6 Movimento Oscilato rio Harmo nico

Capí tulo 6 Movimento Oscilato rio Harmo nico Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de

Leia mais

Física I Reposição 2 3/12/2014

Física I Reposição 2 3/12/2014 Nota Física I Reposição 3/1/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 14

Leia mais

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para

Leia mais

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D www.engenhariafacil.weebly.com Resolução da ª Prova de Física II -UFRJ do Período- 014. (1/11/014). Versão D OBS: Esse não é o gabarito oficial. O gabarito oficial será lançado no site do Instituto de

Leia mais

Introdução às Medidas em Física 11 a Aula *

Introdução às Medidas em Física 11 a Aula * Introdução às Medidas em Física 11 a Aula * http://fge.if.usp.br/~takagui/fap0152_2010/ Marcia Takagui Ed. Ala 1 * Baseada em Suaide/ Munhoz 2006 sala 216 ramal 6811 1 Cordas vibrantes Parte 1! Objetivos:

Leia mais

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16

Leia mais

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16

Leia mais

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora, esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,

Leia mais

FIS-26 Prova 03 Maio/2013

FIS-26 Prova 03 Maio/2013 FIS-26 Prova 03 Maio/2013 Nome: Turma: Duração máxima da prova: 120 min. Responda às questões de forma clara, completa e concisa. Uma parte da pontuação de cada questão será atribuída para o resultado

Leia mais

Lista Básica Aulas 22 e 23 Frente 3

Lista Básica Aulas 22 e 23 Frente 3 TEXTO PARA A PRÓXIMA QUESTÃO: Considere os dados abaixo para resolver a(s) questão(ões), quando for necessário. Constantes físicas Aceleração da gravidade próximo à superfície da Terra: Aceleração da gravidade

Leia mais

Física B Extensivo V. 5

Física B Extensivo V. 5 Física B Extensivo V. 5 Exercícios 0) B Porque o que se transporta é a perturbação, e não matéria. 0) E Uma onda é uma pertubação que se propaga através de um meio e que, durante sua propagação, transmite

Leia mais

Cap. 21 Superposição 1º/2012

Cap. 21 Superposição 1º/2012 Cap. 21 O princípio da superposição distingue partículas e ondas Partículas não se sobrepõem Ondas sim! Ondas Progressivas O que irá acontecer quando essas ondas se cruzarem? Evolução temporal Qual o valor

Leia mais

Física. Prof. Edelson Moreira

Física. Prof. Edelson Moreira Física Prof. Edelson Moreira FENÔMENOS ONDULATÓRIOS Os fenômenos ondulatórios mais comuns são: REFLEXÃO: ocorre quando uma onda incide sobre um obstáculo e retorna ao meio original de propagação. A onda

Leia mais

Capítulo 17 Ondas II. Neste capítulo vamos estudar ondas sonoras e concentrar-se nos seguintes tópicos:

Capítulo 17 Ondas II. Neste capítulo vamos estudar ondas sonoras e concentrar-se nos seguintes tópicos: Capítulo 17 Ondas II Neste capítulo vamos estudar ondas sonoras e concentrar-se nos seguintes tópicos: Velocidade de ondas sonoras Relação entre deslocamento e amplitude Interferência da onda de som Intensidade

Leia mais

Física I 2010/2011. Aula 13 Rotação I

Física I 2010/2011. Aula 13 Rotação I Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e

Leia mais

Capítulo 16. Ondas 1

Capítulo 16. Ondas 1 Capítulo 6 Ondas Outline Tipo de Ondas Ondas Longitudinais e Transversais Copriento de Onda e Frequência A velocidade de ua Onda Progressiva Energia e Potencia de ua Onda Progressiva A equação de Onda

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Objetivo Geral: Determinar a velocidade de propagação do som no ar através da interpretação do padrão de ondas estacionárias formadas em um tubo sonoro fechado. *Anote a incerteza dos instrumentos de medida

Leia mais

Parte 2 - PF de Física I NOME: DRE Teste 1

Parte 2 - PF de Física I NOME: DRE Teste 1 Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS MAF- 04.05.2012 Prof. Dr. Antônio Newton Borges 1. Na caixa de 2,0 kg da figura abaixo são aplicadas duas forças, mais somente uma é mostrada. A aceleração da

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 1 Essa prova destina-se exclusivamente a alunos do 1 o e o anos e contém vinte (0) questões. Os alunos do 1 o ano devem escolher livremente oito (8) questões para

Leia mais

Ressonador de Helmholtz.

Ressonador de Helmholtz. Ressonador de Helmholtz. Modelo mecânico do ressonador de Helmholtz O ressonador é composto por um volume V, esférico no caso mostrado na figura, e um gargalo de seção reta S e comprimento l. A primeira

Leia mais

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS DINÂMICA É a parte da Mecânica que estuda as causas e os movimentos. LEIS DE NEWTON 1ª Lei de Newton 2ª Lei de Newton 3ª Lei de Newton 1ª LEI LEI DA INÉRCIA Quando a resultante das forças que agem sobre

Leia mais

Lista 12: Oscilações NOME:

Lista 12: Oscilações NOME: Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

1. (Fuvest 2012) A figura abaixo representa imagens instantâneas de duas cordas flexíveis idênticas, C

1. (Fuvest 2012) A figura abaixo representa imagens instantâneas de duas cordas flexíveis idênticas, C 1. (Fuvest 2012) A figura abaixo representa imagens instantâneas de duas cordas flexíveis idênticas, C 1 e C 2, tracionadas por forças diferentes, nas quais se propagam ondas. Durante uma aula, estudantes

Leia mais

Problemas de Mecânica e Ondas 7

Problemas de Mecânica e Ondas 7 Problemas de ecânica e Ondas 7 P 7. Considere que as vagonetas de massa m e m (ver figur podem ser representadas por dois pontos materiais localizados nos centros de massa respectivos, para efeito da descrição

Leia mais

ONDAS. Ondas Longitudinais: Ondas Transversais: Ondas Eletromagnéticas: Ondas Mecânicas:

ONDAS. Ondas Longitudinais: Ondas Transversais: Ondas Eletromagnéticas: Ondas Mecânicas: ONDAS Uma onda é uma perturbação oscilante de alguma grandeza física no espaço e periódica no tempo. Fisicamente, uma onda é um pulso energético que se propaga através do espaço ou através de um meio (líquido,

Leia mais

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE 1. (Unesp 89) Um cubo de aço e outro de cobre, ambos de massas iguais a 20 g estão sobre um disco de aço horizontal, que pode girar em torno de seu centro. Os coeficientes de atrito estático para aço-aço

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Ondas As ondas são um dos principais assuntos da física. Para se ter uma ideia da importância das ondas basta considerar a indústria musical. Cada peça musical que escutamos

Leia mais

Ondas Estacionárias em uma Corda

Ondas Estacionárias em uma Corda Ondas Estacionárias em uma Corda INTRODUÇÃO Ondas estacionárias em uma corda finita Em uma corda uniforme de densidade linear de massa, submetida a uma tensão T, a velocidade de propagação v de um pulso

Leia mais

LISTA DE EXERCÍCIOS 1

LISTA DE EXERCÍCIOS 1 LISTA DE EXERCÍCIOS 1 Esta lista trata dos conceitos de cinemática 1D, cinemática 2D, leis de Newton e aplicações. Tais temas são abordados nos capítulos 2, 3, 4 e 5 do livro-texto: Moysés Nussenzveig,

Leia mais

Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo:

Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo: 01 Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo: 7 T = T = 2 s 3,5 Resposta: E 1 02 Sabemos que o período de uma oscilação é proporcional a L é o comprimento;

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

Aula 17: Ondas. Prof a Nair Stem Instituto de Física da USP

Aula 17: Ondas. Prof a Nair Stem Instituto de Física da USP Aula 17: Ondas Prof a Nair Stem Instituto de Física da USP Conceito de Onda Onda: qualquer sinal que se transmite de um ponto a outro de um meio com velocidade definida. Transmissão de sinais entre dois

Leia mais

CAPÍTULO VII ONDAS MECÂNICAS

CAPÍTULO VII ONDAS MECÂNICAS CAPÍTULO VII ONDAS MECÂNICAS 7.1. INTRODUÇÃO As ondas mecânicas são fenómenos ondulatórios que necessitam de um meio material para se propagarem. Como exemplos destas ondas, vamos estudar neste capítulo

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L

Leia mais

F = K.x. Vale também para distensão!!! Lei de Hooke:

F = K.x. Vale também para distensão!!! Lei de Hooke: Lei de Hooke: A força necessária para se comprimir uma mola, depende de dois fatores: a dureza da mola (constante elástica) e a deformação a ser causada. F K.x Vale também para distensão!!! ATENÇÃO: o

Leia mais

Olimpíada Brasileira de Física ª Fase Prova para alunos de 3º ano

Olimpíada Brasileira de Física ª Fase Prova para alunos de 3º ano Leia atentamente as instruções abaixo antes de iniciar a prova: 1 Esta prova destina-se exclusivamente a alunos de 3 o ano. 2 A prova contem vinte questões. 3 Cada questão contem cinco alternativas, das

Leia mais

Capítulo 3 O Oscilador Hamônico

Capítulo 3 O Oscilador Hamônico Capítulo 3 O Oscilador Hamônico Uma força unidimensional, que depende somente da posição x, tem uma expansão de Taylor em torno da sua posição de equilíbrio x=0 (onde F=0) Quando somente o termo linear

Leia mais

LISTA DE EXERCÍCIOS Nº 9

LISTA DE EXERCÍCIOS Nº 9 LISTA DE EXERCÍCIOS Nº 9 Questões 1) A Figura 1 apresenta a vista superior de 3 partículas sobre as quais forças externas agem. A magnitude e a direção das forças sobre 2 partículas são apresentadas. Quais

Leia mais

Dado: g = 10 m/s 2. (A) 5,6 x 10 2 J (D) 1,4 x 10 2 J (B) 1,4 x 10 3 J (C) 3,5 x 10 3 J

Dado: g = 10 m/s 2. (A) 5,6 x 10 2 J (D) 1,4 x 10 2 J (B) 1,4 x 10 3 J (C) 3,5 x 10 3 J 41 A quantidade de calor Q transferida para o ar durante o tempo t através da superfície aquecida de um ferro de passar roupa de área A é dada por Q = h t A (q - q 0 ), onde q é a temperatura da superfície

Leia mais

FIS-26 Prova 03 Maio/2011

FIS-26 Prova 03 Maio/2011 FIS-26 Prova 03 Maio/2011 Nome: Turma: Duração máxima: 120 min. As questões 1 e 5 valem 20 pontos cada, e as demais valem 15 pontos (cada). 1. Para os problemas (i) a (iii) desta questão, assinale a alternativa

Leia mais

Chapter 2 Movimento Retilíneo (movimento unidimensional)

Chapter 2 Movimento Retilíneo (movimento unidimensional) Chapter 2 Movimento Retilíneo (movimento unidimensional) (2-1) 1. Vamos supor que o movimento se dá ao longo de uma linha reta. A trajetória pode ser vertical, horizontal ou inclinada, mas deve ser retilínea.

Leia mais

AULA 45 O OSCILADOR HARMÔNICO FORÇADO

AULA 45 O OSCILADOR HARMÔNICO FORÇADO AULA 45 O OSCILADOR HARMÔNICO FORÇADO OBJETIVOS: ESTUDAR O MOVIMENTO HARMÔNICO FORÇADO 45.1 MOVIMENTO HARMÔNICO FORÇADO Este oscilador está na base de um grande número de fenômenos da Natureza e aplicações

Leia mais

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova.

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Problema Licenciatura em Engenharia e Arquitetura Naval Mestrado Integrado

Leia mais

PROCESSO SELETIVO TURMA DE 2015 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2015 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE 2015 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,

Leia mais