Capítulo 6 Transformação de tensão no plano
|
|
|
- Adelina Candal Aveiro
- 8 Há anos
- Visualizações:
Transcrição
1 Capítulo 6 Transformação de tensão no plano Resistência dos Materiais I SLIDES 06 Prof. MSc. Douglas M. A. Bittencourt [email protected]
2 Objetivos do capítulo Transformar as componentes de tensão associadas a um determinado sistema de coordenadas em componentes associadas a um sistema de coordenadas com uma orientação diferente Obter a tensão normal máima e a tensão de cisalhamento máima em um ponto e determinar a orientação dos elementos sobre os quais elas agem
3 6.1 Transformação de tensão no plano O estado geral de tensão no plano em um ponto é representado por uma combinação de duas componentes de tensão normal, σ e σ, e uma componente de tensão de cisalhamento, τ. 3
4 6.1 Transformação de tensão no plano = O estado plano de tensão em um ponto é representado eclusivamente por três componentes que agem sobre um elemento que tenha uma orientação específica neste ponto. 4
5 Tensões em planos inclinados = 5
6 Tensões em planos inclinados Eemplo 6.1 Represente o estado de tensão no ponto em um elemento orientado a 30º no sentido horário em relação à posição mostrada. 6
7 Eemplo 6.1 Represente o estado de tensão no ponto em um elemento orientado a 30º no sentido horário em relação à posição mostrada. Tensões no plano a-a: DCL 7
8 Eemplo 6.1 Equilíbrio: ΣF = 0 e ΣF = 0 DCL 8
9 Eemplo 6.1 Tensões no plano b-b (ortogonal ao plano a-a) DCL 9
10 Eemplo 6.1 Equilíbrio: ΣF = 0 e ΣF = 0 DCL 10
11 Eemplo 6.1 Apresentação da Solução: Etra 1º Invariante de tensões A soma de tensão normais em quaisquer dois planos mutualmente normais é invariante, isto é: ' ' constante 11
12 6. Equações gerais de transformação de tensão no plano Objetivo: Transformar as componentes de tensão normal (σ) e de cisalhamento (τ) dos eios, para os eios coordenados, por meio de equações. 1
13 6. Equações gerais de transformação de tensão no plano Convenção de sinal positivo: 13
14 6. Equações gerais de transformação de tensão no plano Componentes de tensão normal e de cisalhamento (a) (b) 14
15 6. Equações gerais de transformação de tensão no plano Componentes de tensão normal e de cisalhamento (c) 15
16 6. Equações gerais de transformação de tensão no plano Componentes de tensão normal e de cisalhamento Aplicando as equações de equilíbrio ao diagrama de corpo livre (c), obtêm-se: ' cos sin (6.1) ' ' sin cos (6.) 16
17 6. Equações gerais de transformação de tensão no plano Componentes de tensão normal e de cisalhamento Para a obtenção das tensões no plano normal ao eio, faz-se a substituição de θ por θ+90º nas equações anteriores: 17
18 6. Equações gerais de transformação de tensão no plano Componentes de tensão normal e de cisalhamento Para a obtenção das tensões no plano normal ao eio, faz-se a substituição de θ por θ+90º nas equações anteriores: ' cos sin (6.3) ' ' sin cos (6.4) 18
19 6. Equações gerais de transformação de tensão no plano Eemplo 6. Represente o estado de tensão no ponto em um elemento orientado a 30º no sentido horário em relação à posição mostrada. Utilizar as equações de transformação de tensão. 19
20 6. Equações gerais de transformação de tensão no plano Eemplo 6. 0
21 6.3 Tensões principais e tensão de cisalhamento máima no plano Na prática da engenharia é importante determinar a orientação dos planos que fazem com que a tensão normal seja máima e mínima ou o plano em que a tensão de cisalhamento seja máima. 1
22 Tensões principais no plano Diferencia-se a equação (6.1) em relação a θ e igua-la a zero para obter σ ma e σ min. cos sin (6.1 ' d ' d sin ) cos 0 Resolvendo-se essa equação, obtém-se a orientação dos planos de tensão normal máima e mínima: tan p (6.5)
23 Tensões principais no plano A solução tem duas raízes, θ p1 e θ p, cujos valores de seno e de cosseno podem ser atribuídos à equação (6.1) e obter: 1, (6.6) Nota : 1 Os valores de σ 1 e σ são denominados tensões principais no plano e os planos correspondentes sobre os quais agem são denominados planos principais de tensão (ver figura). Substituindo θ p1 e θ p na equação (6.) obtém-se τ = 0, isto é, nenhuma tensão de cisalhamento age nos planos principais. 3
24 Tensões principais no plano 4
25 Tensão de cisalhamento máima no plano A orientação de um elemento cujas faces estão submetidas à tensão de cisalhamento máima é obtida tomando-se a derivada da equação (6.) em relação a θ e igualando a zero: Usando qualquer uma das duas raízes θ s1 ou θ s, podese determinar a τ ma tomando os valores de sen (θ s ) e de cos(θ s ) e substituindo na equação (6.). Resultado: tan s (6.7) ma (6.8) 5
26 Tensão de cisalhamento máima no plano Substituindo os valores de sen (θ s ) e de cos (θ s ) na equação (6.1), obtém-se a tensão normal nos planos em que ocorre a τ ma : Cisalhamento Puro: Corresponde ao estado de tensão em que o elemento está sujeito a apenas tensões de cisalhamento. med (6.9) Desta forma, não há tensões normais atuando nas faces do elemento. 6
Capítulo 7 Transformação de deformação no plano
Capítulo 7 Transformação de deformação no plano Resistência dos Materiais I SLIDES 08 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Transformar as componentes
Capítulo 6 Círculo de Mohr para tensões
Capítulo 6 Círculo de Mohr para tensões Resistência dos Materiais I SLIDES 07 Prof. MSc. Douglas M. A. Bittencourt [email protected] 6.4 Círculo de Mohr - Tensão no plano Consiste na solução
Capítulo 1 Transformação de Tensão
Capítulo 1 Transformação de Tensão slide 1 009 Pearson Prentice Hall. Todos os direitos reservados. Transformação de tensão no plano O estado geral de tensão em um ponto é caracterizado por seis componentes
Capítulo 2 Tração, compressão e cisalhamento
Capítulo 2 Tração, compressão e cisalhamento Resistência dos materiais I SLIDES 02 Prof. MSc. Douglas M. A. Bittencourt [email protected] 2.1 Cargas resultantes internas A distribuição de forças
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. Beer E. Russell Johnston, Jr. Análise de Tensões no Estado Plano Capítulo 6 Análise de Tensões no Estado Plano 6.1 Introdução 6. Estado Plano
Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão
Departamento de Engenharia Mecânica Parte 3 Estado Plano de Tensão Prof. Arthur M. B. Braga 15.1 Mecânica dos Sólidos Problema F 1 Corpo sujeito a ação de esforços eternos (forças, momentos, etc.) F 7
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2012-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
Vetores Forças Cap. 2
Eemplo.B MECÂNICA - ESTÁTICA Decomponha a força horizontal de 600 N da igura nas componentes que atuam ao londo dos eios u e v e determine as intensidades dessas componentes Vetores orças Cap. Prof Dr.
massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.
Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.
SOLICITAÇÕES COMBINADAS (FLEXÃO COMPOSTA)
Versão 2009 (FLEXÃO COMPOSTA) As chamadas Solicitações Simples são: a) Tração e Compressão (Solicitação Aial): age somente esforço normal N na seção b) Torção: age somente momento torsor T na seção c)
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD
Eemplo. MEÂNIA - ESTÁTIA esenhar todos os diagramas de corpo livre possíveis para o problema mostrado na figura abaio, considerando todos os nomes de forças como vetores. Equilíbrio de uma Partícula ap.
carga do fio: Q. r = r p r q figura 1
Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema
teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos.
EME311 Mecânica dos Sólidos Objetivo do Curso: ornecer ao aluno os fundamentos teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos. 1-1 EME311
Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2
Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:
Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais
Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite. 1 de setembro de Nesta aula, serão apresentados os seguintes conceitos:
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite 1 de setembro de 2016 1 Plano da aula. Nesta aula, serão apresentados os seguintes conceitos: Determinação do torque pelos métodos da decomposição
Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:
Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama
Entre os pontos A e B temos uma d.d.p. no indutor dada por V L = L d i e entre os pontos C e D da d.d.p. no capacitor é dada por
Um circuito elétrico LC é composto por um indutor de mh e um capacitor de 0,8 μf e é alimentado por uma fonte de tensão alternada V = 9 cos.10 4 t V. A carga inicial do capacitor é de 30 μc e a corrente
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CÍTULO RESISTÊNCI DOS MTERIIS erdinand. Beer E. Russell Johnston Jr. Conceito de Tensão Capítulo 1 Conceito de Tensão 1.1 Introdução 1.2 orças e Tensões; 1.3 orças iais: Tensões Normais;
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-1 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
Estados de Tensão e Critérios de ruptura
Estados de Tensão e Critérios de ruptura GEOTECNIA II SLIDES 09 / AULAS 17 e 18 Prof. MSc. Douglas M. A. Bittencourt [email protected] Tópicos abordados Coeficiente de empuxo em repouso Tensões
Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II
Estado Triaxial de Tensões Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o.
Empuxos de Terra. Teoria de Coulomb Teoria de Rankine. Prof. MSc. Douglas M. A. Bittencourt GEOTECNIA II SLIDES 15.
Empuxos de Terra Teoria de Coulomb Teoria de Rankine GEOTECNIA II SLIDES 15 Prof. MSc. Douglas M. A. Bittencourt [email protected] EMPUXOS DE TERRA Força que uma massa de solo exerce sobre alguma
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
Introdução cargas externas cargas internas deformações estabilidade
TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781
Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito
Olimpíada Brasileira de Física a Fase Gabarito Comentado para a prova de 3º ano
Olimpíada Brasileira de Física 2003-2 a Fase Gabarito Comentado para a prova de 3º ano Observações: 1 A prova tem valor total de 44 pontos. Cada questão tem valor total de 6 pontos. A questão 7 tem valor
Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é.
Um disco de raio R rola, sem deslizar, com velocidade angular ω constante ao longo de um plano horizontal, sendo que o centro da roda descreve uma trajetória retilínea. Suponha que, a partir de um instante
Empuxos de Terra. Teoria de Coulomb Teoria de Rankine. Prof. MSc. Douglas M. A. Bittencourt GEOTECNIA II SLIDES 12.
Empuxos de Terra Teoria de Coulomb Teoria de Rankine GEOTECNIA II SLIDES 1 Prof. MSc. Douglas M. A. Bittencourt [email protected] EMPUXOS DE TERRA Força que uma massa de solo exerce sobre alguma
F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x
Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A
( ) Novo Espaço Matemática A, 11.º ano Proposta de resolução [maio 2019] CADERNO 1 (É permitido o uso de calculadora gráfica.) 1.1.
CADERNO (É permitido o uso de calculadora gráfica 887 = 5+ u u = 09 wn = u 3n + = 09 n = 363 Resposta: Opção (C 363 O primeiro dos 5 termos consecutivos é w 8 e o último é w 3 Seja S a soma desses 5 termos
Limites, derivadas e máximos e mínimos
Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,
RESOLUÇÃO DOS EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA - 1ª série do EM 3º BIM
RESOLUÇÃO DOS EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA - 1ª série do EM 3º BIM 01. RESOLUÇÃO : a) f() = 3. 0 = 18 0 = f() = b) f( 1) = ( 1). ( 1) = 1 + = 3 f( 1) = 3 c) f(10) = 10 +. 10 = 100 + 0 = f(10)
Estado triplo de tensão
Estado triplo de tensão Tensões em um ponto Seja um ponto qualquer, pertencente a um corpo em equilíbrio, submetido às tensões representadas na figura. Com esta consideração, a força resultante no plano
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Mecânica Geral I / Aula 8-1 Análise Estrutural Antonio Dias 2017 Antonio Dias / Mecânica Geral I / Aula 8-2 Objetivos do capítulo Mostrar como
A Segunda Derivada: Análise da Variação de Uma Função
A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada
ADL A Representação Geral no Espaço de Estados
ADL14 3.3 A Representação Geral no Espaço de Estados definições Combinação linear: Uma combinação linear de n variáveis, x i, para r = 1 a n, é dada pela seguinte soma: (3.17) onde cada K i é uma constante.
Determine o módulo do campo elétrico de uma esfera condutora maciça carregada com uma carga Q em todo o espaço. carga da esfera: Q.
Determine o módulo do campo elétrico de uma esfera condutora maciça carregada com uma carga Q em todo o espaço. Dados do problema carga da esfera: Q. Esquema do problema Vamos assumir que a esfera está
raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.
Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Funções Hiperbólicas:
Funções Hiperbólicas: Estas funções são parecidas as funções trigonométricas e possuem muitas aplicações como veremos ao longo da disciplina. Definiremos primeiro as funções seno hiperbólico e cosseno
Estado duplo ou, Estado plano de tensões.
Estado duplo ou, Estado plano de tensões. tensão que atua em um ponto é função do plano pelo qual se faz o estudo. Esta afirmação pode ficar mais clara quando analisa, por exemplo, um ponto de uma barra
Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período
UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor:
Tensão de Cisalhamento Máxima Absoluta
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensão de Cisalhamento
GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira:
GAAL - Terceira Prova - /junho/3 SOLUÇÕES Questão : Analise se a afirmação abaio é falsa ou verdadeira: [ A matriz A é diagonalizável SOLUÇÃO: Sabemos que uma matriz n n é diagonalizável se ela possuir
Gabarito - Matemática Grupos I e J
1 a QUESTÃO: (1,0 ponto) Avaliador Revisor Um dos tetos chineses mais antigos é o I-King, ou livro das permutações. Nele aparece um diagrama numérico lo-shu, conhecido como quadrado mágico. A soma dos
AULA 16 Esboço de curvas (gráfico da função
Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo
Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II
Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 011 Flávia Bastos
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
Empuxos de Terra. Teoria de Coulomb Teoria de Rankine. Prof. MSc. Douglas M. A. Bittencourt GEOTECNIA II SLIDES 11 / AULA 22
Empuxos de Terra Teoria de Coulomb Teoria de Rankine GEOTECNIA II SLIDES 11 / AULA Prof. MSc. Douglas M. A. Bittencourt [email protected] EMPUXOS DE TERRA Força que uma massa de solo exerce
Entre os pontos A e B temos uma d.d.p. no indutor dada por V L = L d i e entre os pontos C e D da d.d.p. no capacitor é dada por V L V C = 0
Um circuito elétrico LC é composto por um indutor de mh e um capacitor de 0,8 μf. A carga inicial do capacitor é de 5 μc e a corrente no circuito é nula, determine: a) A variação da carga no capacitor;
Exercícios sobre Trigonometria
Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:
Substituição Trigonométrica
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica
Seno e cosseno de arcos em todos os. quadrantes
Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos
Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é.
Um disco de raio R rola, sem deslizar, com velocidade angular ω constante ao longo de um plano horizontal, sendo que o centro da roda descreve uma trajetória retilínea. Suponha que, a partir de um instante
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015
MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base
CAPÍTULO 3: DIMENSIONAMENTO DE VIGAS
Curso de Engenharia Civil Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CPÍTULO 3: DIMENSIONMENTO DE VIGS 3.1 - Introdução Escolher o material e as dimensões da
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.
Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para
Clique para editar o estilo do subtítulo mestre
Capítulo 3 Equilíbrio de uma partícula slide 1 Objetivos do capítulo Introduzir o conceito do diagrama de corpo livre (DCL) para uma partícula. Mostrar como resolver problemas de equilíbrio de uma partícula
LOM Introdução à Mecânica dos Sólidos. Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina
LOM 3081 - Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina DEMAR USP Professores responsáveis: Viktor Pastoukhov, Carlos A.R.P. Baptista Ref. 1: F.P. BEER, E.R. JOHNSTON,
CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS
CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade
Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton
Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 5 Heaviside Dirac Newton Conteúdo 5 - Circuitos de primeira ordem...1 5.1 - Circuito linear invariante de primeira ordem
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
Resultantes de um sistema de forças
Resultantes de um sistema de forças Objetivos da aula Discutir o conceito do momento de uma força e mostrar como calculá-lo em duas e três dimensões. Fornecer um método para determinação do momento de
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento
massa do corpo: m; constante elástica da mola: k.
Um corpo, de massa m, está preso a extremidade de uma mola, de constante elástica k, e apoiado sobre uma superfície horizontal sem atrito. A outra extremidade da mola se encontra presa em ponto fixo. Afasta-se
Conceito de tensões Exercícios O Tensor de tensões Exercício. Tensões. 24 de agosto de Profa. Patrícia Habib Hallak Prof Afonso Lemonge.
24 de agosto de 2016 Profa. Patrícia Habib Hallak Prof Afonso Lemonge Conceito de tensão Conceito de tensões 2 F 2 Com os conceitos da física a pressão P no interior do duto é constante e tem valor: P=
Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 3: FLEXÃO
Curso de Engenharia Civil Universidade Estadual de aringá Centro de Tecnologia Departamento de Engenharia Civil CÍTULO 3: FLEXÃO 3. Revisão de Esforços nternos étodo das Seção: 3. Revisão de Esforços nternos
4 Estática das estruturas espaciais 1
35 4 Estática das estruturas espaciais 4. omponentes Retangulares de uma orça Espacial. Vamos discutir os problemas que envolvem as três dimensões do espaço. onsideremos uma força atuante na origem de
Aula 08 - Tensão de Cisalhamento Média
Aula 08 - Tensão de Cisalhamento Média Prof. Wanderson S. Paris, M.Eng. [email protected] Tensão de Cisalhamento Sob a ação de forças de tração P, a barra e a junta irão exercer uma pressão cortante
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA VIGÉSIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, consideraremos mais uma técnica de integração, que é conhecida como substituição trigonométrica. Esta técnica pode
