Estado triplo de tensão
|
|
|
- Laura Bugalho Cipriano
- 9 Há anos
- Visualizações:
Transcrição
1 Estado triplo de tensão Tensões em um ponto Seja um ponto qualquer, pertencente a um corpo em equilíbrio, submetido às tensões representadas na figura. Com esta consideração, a força resultante no plano inclinado, epressa pelas suas componentes nas direções, e, pode ser determinada por: ( da) = da cos da cos da cos ( da) = da cos da cos da cos ( da) = da cos da cos da cos () Com isto, os três componentes ortogonais da tensão resultante são: = cos cos cos = cos cos cos () Figura Estado geral de tensões em um ponto. = cos cos cos Sabe-se que uma tensão é função de ponto e plano. Assim, para um plano inclinado, em relação aos apresentados na figura, irão atuar outras tensões, como mostra a figura. As três componentes da tensão, podem ser assim determinadas pelo produto de duas matries: = X = cos cos cos Observa-se, então, que qualquer seja o plano inclinado, a tensão nele resultante é igual ao produto entre a matri das tensões dos planos ortogonais e a matri dos co-senos dos ângulos do plano. Figura Tensão resultante em um plano qualquer de um estado geral de tensões. Os ângulos entre o plano considerado e os eios ; e, são, e, respectivamente. Os co-senos são chamados de co-senos diretores, e sua matri é chamada de matri dos co-senos diretores. A matri das tensões se dá o nome de Tensor (Τ). Ao tensor, não é possível se dar uma interpretação geométrica simples. Ele é encarado, apenas, Prof. José Carlos Morilla Estado triplo de tensão
2 como uma matri onde cada elemento representa uma das tensões encontradas na epressão. Desta maneira o tensor Τ, para um estado geral de tensões fica: mesma. Observa-se ainda que neste elemento inclinado ocorrem transformações nas tensões atuantes em cada plano já que ocorre mudança de plano. Τ = () Eios e Tensões Principais. A tensão que atua no plano inclinado pode ser representada por suas componentes: normal () e de cisalhamento (), como mostra a figura. Figura 4 inclinação do elemento em relação à posição inicial Figura tensão normal e de cisalhamento, componentes da tensão. A tensão normal resultante (), neste plano inclinado, é obtida por: = cos cos cos cos cos cos cos cos cos Note-se que, se o elemento inicial estiver inclinado em relação ao sistema apresentado, como se observa na figura 4, a tensão no plano inclinado deve permanecer a Assim, é possível eistir uma posição para o elemento, nestes planos tri-ortogonais, onde as tensões de cisalhamento sejam iguais a ero. A esta posição se dá o nome de posição principal, aos planos ortogonais se dá o nome de planos principais e às tensões normais que neles atuam se dá o nome de tensões principais. Estas tensões são indicadas por ; e, a partir da maior para a menor. Os planos respectivos onde atuam estas tensões, são indicados por ; e. Prof. José Carlos Morilla Estado triplo de tensão
3 = (8) figura 5 planos e tensões principais Chamando de ; e, os ângulos entre o plano inclinado e os planos principais ; e, respectivamente, é possível escrever: = X = (4) cos cos cos Assim, o tensor das tensões principais, é o tensor principal do estado de tensões. Τ = (5) Com isto, as componentes da tensão, ficam: = cos = = cos cos Lembrando que: (6) cos cos cos = (7) Das epressões 6 e 7, é possível escrever: Esta epressão mostra que os valores ; e, podem ser encarados como coordenadas da etremidade do vetor da tensão. O lugar geométrico das etremidades do vetor da tensão total forma um elipsóide, cujos semi-eios são as tensões principais ; e. O elipsóide chama-se elipsóide das tensões. Desta figura geométrica dedu-se que a maior das três tensões principais é o maior valor possível de tensão no conjunto de planos que passam pelo ponto. Dedu-se, ainda, que a menor das tensões principais é a menor das tensões normais. Determinação das tensões principais. Seja o estado de tensões da figura e um plano inclinado como o mostrado na figura. se este plano for um dos principais, a tensão resultante será uma tensão normal (). Assim, as componentes desta tensão normal podem ser escritas como: = ou seja: ( ) X cos ( ) = cos ( ) (9) cos Prof. José Carlos Morilla Estado triplo de tensão
4 cos cos cos () ( ) ( ) ( ) X = J J = () onde J = J Lembrando que: ( ) = cos ( ) = cos ( ) = cos é possível escrever: cos cos cos = J j = = (4) Círculo de Mohr para o Estado Triplo de Tensão. cos cos cos () = Lembrando que a matri dos co-senos diretores não pode ser nula (vide epressão 7), para que o produto mostrado na epressão seja nulo eiste a necessidade do determinante da matri das tensões ser igual a ero: Seja um ponto e suas tensões principais ; e. Seja, também um plano inclinado com um ângulo α, em relação aos planos e. = () figura 6 Planos principais; tensões principais e plano inclinado. Note-se aqui que, sendo uma tensão principal, seu valor independe do conhecimento prévio da posição do plano em que ela ocorre. Ele depende, apenas, do estado de tensões que atua no ponto. A solução do sistema apresentado na epressão é dada por: As tensões: normal e de cisalhamento, neste plano, podem ser determinadas por: = = senα Prof. José Carlos Morilla 4 Estado triplo de tensão cosα ()
5 Note-se que estas tensões podem, também, ser determinadas pelo Círculo de Mohr para o estado duplo de tensão. O mesmo tipo de estudo pode ser feito para um plano inclinado em relação aos planos e, como mostra a figura. Plano A (-)/ senα α ()/ (-)/ cosα figura 7 Círculo de Mohr para os planos ; e o inclinado Caso o plano esteja inclinado em relação aos planos e, como mostra a figura 8, tem-se o Círculo de Mohr apresentado na figura 9. figura Plano inclinado em relação aos planos e. O Círculo de Mohr para esta situação está mostrado na figura Plano C figura Círculo de Mohr para os planos ; e o inclinado figura 8 Plano inclinado em relação aos planos e. Note-se que é possível faer uma superposição dos Círculos de Mohr para os três casos. Isto pode ser observado na figura Plano B β figura 9 Círculo de Mohr para os planos ; e o inclinado figura Círculo de Mohr para os três estudos superpostos. Prof. José Carlos Morilla 5 Estado triplo de tensão
6 Um plano inclinado qualquer, em relação aos três planos, simultaneamente, como o mostrado na figura, tem seu ponto representativo na área limitada pelos três Círculos de Mohr (arbelos). Isto pode ser observado na figura 4.. Qualquer estado de tensão pode ser interpretado como um caso particular do estado triplo de tensão. As figuras 6 e 7, mostram, respectivamente, os estados de tração simples e cisalhamento puro. figura 6 Círculo de Mohr para a tração simples figura Plano inclinado qualquer e os planos principais Plano D figura 6 Círculo de Mohr para o cisalhamento puro figura 4 Círculo de Mohr para um plano qualquer.. Desde que seja conhecida uma das tensões principais, as demais podem ser determinadas por um estudo semelhante ao estado duplo de tensão. OBS:-. Usualmente a representação do Círculo de Mohr é feita, apenas, pelo semicírculo superior, como mostra a figura 5 figura 5 Representação usual do Círculo de Mohr. Prof. José Carlos Morilla 6 Estado triplo de tensão
Estado duplo ou, Estado plano de tensões.
Estado duplo ou, Estado plano de tensões. tensão que atua em um ponto é função do plano pelo qual se faz o estudo. Esta afirmação pode ficar mais clara quando analisa, por exemplo, um ponto de uma barra
Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.
Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações
Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais
Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado
Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II
Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 011 Flávia Bastos
Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão
Departamento de Engenharia Mecânica Parte 3 Estado Plano de Tensão Prof. Arthur M. B. Braga 15.1 Mecânica dos Sólidos Problema F 1 Corpo sujeito a ação de esforços eternos (forças, momentos, etc.) F 7
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. Beer E. Russell Johnston, Jr. Análise de Tensões no Estado Plano Capítulo 6 Análise de Tensões no Estado Plano 6.1 Introdução 6. Estado Plano
PME Mecânica dos Sólidos I 4 a Lista de Exercícios
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME-300 - Mecânica dos Sólidos I 4 a Lista de Eercícios 1) Seja o tensor das deformações em um dado ponto de um sólido
PME Mecânica dos Sólidos II 6 a Lista de Exercícios
Eercícios Sugeridos (Livro Teto) PME-3211 - Mecânica dos Sólidos II 6 a Lista de Eercícios Referência: Gere, J.M. & Goodno, B.J., Mecânica dos Materiais, Cengage Learning, 2010, 858 p. Deformação Plana:
Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II
Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 010 Flávia Bastos
ENG1200 Mecânica Geral Semestre Lista de Exercícios 8 Centróides, Momentos de Inércia, Círculo de Mohr
ENG00 Mecânica Geral Semestre 201.2 Lista de Eercícios 8 Centróides, Momentos de nércia, Círculo de Mohr 1 Prova P201.1 (P) - De determinada área (figura) são conhecidos os valores do momento de inércia
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini
ENG01140 Turma C (Prof. Alexandre Pacheco)
ENG01140 Turma C (rof. leandre acheco) 32 11 TENSÃO Tensão Normal e Tensão Cisalhante: Na ilustração a seguir, considera-se, primeiramente, a mesma parte seccionada do corpo rígido de forma genérica ilustrado
Laboratório de Física II para Engenharia. Prática 1 - EQUILÍBRIO DE FORÇAS. 1.Objetivos:
Prática 1 - EQUILÍBRIO DE FORÇAS 1.Objetivos: Determinar a resultante de forças, geometricamente e analiticamente, atuando num ponto em equilíbrio estático. 2.Introdução: A dinâmica estuda a causa do movimento
Capítulo 6 Transformação de tensão no plano
Capítulo 6 Transformação de tensão no plano Resistência dos Materiais I SLIDES 06 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Transformar as componentes de tensão
MECÂNICA APLICADA II
Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil º ANO EXERCICIOS PRÁTICOS Ano lectivo 005/006 Ano lectivo: 005/006.º semestre MECÂNICA APLICADA II I - Teoria do estado de
O equilíbrio ESTÁTICO, quando o corpo permanece em repouso. O equilíbrio DINÂMICO, quando o corpo permanece em movimento retilíneo uniforme.
1- OÇA: orça é uma grandeza vetorial (caracterizado por um módulo ou intensidade, uma direção e um sentido) capaz de produzir em um, uma deformação e /ou uma variação em sua velocidade vetorial. 1.1- LEIS
Conceito de tensões Exercícios O Tensor de tensões Exercício. Tensões. 24 de agosto de Profa. Patrícia Habib Hallak Prof Afonso Lemonge.
24 de agosto de 2016 Profa. Patrícia Habib Hallak Prof Afonso Lemonge Conceito de tensão Conceito de tensões 2 F 2 Com os conceitos da física a pressão P no interior do duto é constante e tem valor: P=
LOM Introdução à Mecânica dos Sólidos
LOM 3081 - CAP. ANÁLISE DE TENSÃO E DEFORMAÇÃO PARTE 1 ANÁLISE DE TENSÃO VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE Seja por exemplo uma barra sujeita a um carregamento axial. Ao aplicar o MÉTODO DAS SEÇÕES,
efeito: movimento P = m. g
CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. Conceito: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma
com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.
Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
Lista de exercícios para entregar
Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD
Eemplo. MEÂNIA - ESTÁTIA esenhar todos os diagramas de corpo livre possíveis para o problema mostrado na figura abaio, considerando todos os nomes de forças como vetores. Equilíbrio de uma Partícula ap.
Capítulo Aplicações do produto interno
Cálculo - Capítulo 1.4 - Aplicações do produto interno - versão 0/009 1 Capítulo 1.4 - Aplicações do produto interno 1.4.1 - Ortogonalidade entre vetores 1.3.3 - Ângulo entre vetores 1.4. - Projeção ortogonal
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho n.º 5
Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho n.º 1. Resolva as seguintes equações, em [, ] e em IR. a. senx = sen b. senx =
CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS
CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade
Resistência dos Materiais I
Resistência dos Materiais I Luciano Pessanha Moreira, D.Sc. Professor Associado Departamento de Engenharia Mecânica Escola de Engenharia Metalúrgica Industrial de Volta Redonda Universidade Federal Fluminense
Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo
ensores cartesianos Quantidades (grandeas) físicas: Classificação: Escalares Vectores ensores de segunda ordem... ensores de ordem ero ensores de primeira ordem ensores de segunda ordem... Relacionadas
CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS
CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma
peso da barra: P = 15 N; comprimento do segmento AO: D A = 1 m; comprimento do segmento BO: D B = 0,5 m.
Uma barra AOB homogênea de secção constante cujo peso é de 15 N é dobrada segundo um ângulo reto em O de maneira que AO = 1 m e BO = 0,5 m. Suspende-se a barra pelo ponto O, determinar: a) O ângulo α formado
Taxas Trigonométricas
Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1
GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido):
G3X1 - Geometria nalítica e Álgebra Linear 3 Vetores 3.1 Introdução efinição (Segmento orientado): Um segmento orientado é um par ordenado (,) de pontos do espaço. é a origem e é a etremidade do segmento
Capítulo X Parte I Momentos de Inércia
Universidade Federal Fluminense - UFF Escola de Engenharia de Volta Redonda EEMVR Departamento de Ciências Eatas Capítulo X Parte Momentos de nércia Profa. Salete Souza de Oliveira Home: http://www.professores.uff.br/salete
Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Trigonometria 1 (Revisões) 12.º Ano
Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo de 00/04 Trigonometria 1 (Revisões) 1º no Nome: Nº: Turma: 1 Um cone, cuja base tem raio r e cuja geratriz tem comprimento l, roda
Fís. Semana. Leonardo Gomes (Guilherme Brigagão)
Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
AULA 2: RESPOSTAS DOS MATERIAIS SEGUNDO A MECÂNICA DOS MEIOS CONTÍNUOS
Universidade de São Paulo Escola Politécnica Departamento de Engenharia de Estruturas e Fundações Laboratório de Mecânica Computacional Universidade de São Paulo Escola de Engenharia de São Carlos Departamento
UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem.
UFABC - Universidade Federal do ABC ESTO008-13 Mecânica dos Sólidos I Sétima Lista de Exercícios Prof. Dr. Wesley Góis CECS Prof. Dr. Cesar Freire - CECS Estudo das Deformações 1. Segundo as direções a,b
Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2
Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:
Estados de Tensão e Critérios de ruptura
Estados de Tensão e Critérios de ruptura GEOTECNIA II SLIDES 09 / AULAS 17 e 18 Prof. MSc. Douglas M. A. Bittencourt [email protected] Tópicos abordados Coeficiente de empuxo em repouso Tensões
2.1 TENSÕES NORMAIS E DEFORMAÇÕES ESPECÍFICAS NO PONTO GENÉRICO
2 ESTADO TRIPLO DE TENSÕES No ponto genérico de um corpo carregado, para cada plano que o contém, define-se um vetor tensão. Como o ponto contém uma família de planos, tem-se também uma família de vetores
Estado Duplo de Tensão
Estado Duplo de Tensão Ps 13/12/95 2ª Questão Determinar graficamente as tensões principais ( σ 1 e σ 2 ) e as tensões de cisalhamento τ max e τ min, bem como a direção de seus planos de atuação, para
Tensão de Cisalhamento Máxima Absoluta
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensão de Cisalhamento
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes [email protected]
Fís. Semana. Leonardo Gomes (Guilherme Brigagão)
Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
Capítulo 6 Círculo de Mohr para tensões
Capítulo 6 Círculo de Mohr para tensões Resistência dos Materiais I SLIDES 07 Prof. MSc. Douglas M. A. Bittencourt [email protected] 6.4 Círculo de Mohr - Tensão no plano Consiste na solução
Translação. Sistemas de Coordenadas. Translação. Transformações Geométricas 3D
Translação Transformações Geométricas 3D Um ponto (objeto) é deslocado de uma posição para outra posição no mesmo espaço 3D Rosane Minghim Maria Cristina F. de Oliveira ICMC Universidade de São Paulo 26
Resistência dos Materiais
Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade
Efeitos de 2ª 2 Ordem
Prof. uciano ima - [email protected] Eq.. Diferencial Efeitos 2ª 2 Ordem Programa de Pós-GraduaP Graduação em Engenharia Civil estrado Acadêmico Faculdade de Engenharia FEN/UERJ Professor: uciano Rodrigues
Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio
Material Teórico - Círculo Trigonométrico Secante, cossecante e cotangente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5 de dezembro de
Capítulo 3 GEOMETRIA DE MASSAS 3.1 INTRODUÇÃO 3.2 CENTRO DE MASSA E CENTRO DE GRAVIDADE
Capítulo 3 EOMETR DE MSSS 3. NTRODUÇÃO Neste capítulo será feito o estudo de várias propriedades e características geométrico-mecânicas de linhas, superfícies e volumes, as quais constituirão uma ferramenta
AULA 13: ESTADO DE TENSÕES E CRITÉRIOS DE RUPTURA. Prof. Augusto Montor Mecânica dos Solos
AULA 13: ESTADO DE TENSÕES E CRITÉRIOS DE RUPTURA Prof. Augusto Montor Mecânica dos Solos 9 INTRODUÇÃO Os solos, como vários outros materiais, resistem bem a compressão, mas tem resistência limitada aos
MÓDULO 3 FUNÇÕES (2ª parte Trigonometria) ângulo agudo indicadas na figura:
PAT MAT 007/008 MÓDULO FUNÇÕES (ª parte Trigonometria) EXERCÍCIOS OBJECTIVOS. Uma canalização de gás vai ser instalada a partir do ponto A até aos pontos C (igreja) e B (fábrica), Razões trigonométricas
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2017 GRUPO I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
cotg ( α ) corresponde ao valor da abcissa do
Capítulo II: Funções Reais de Variável Real 59 Função co-tangente Seja α um ângulo representado no círculo trigonométrico. ( α ) corresponde ao valor da abcissa do ponto que resulta de projectar o lado
DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:
PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;
Assim, é possível dizer que as deformações e os deslocamentos são linearmente dependentes dos esforços que atuam nas estruturas.
Princípio da Superposição Sabe-se que dentro do regime elástico a tensão e a deformação são linearmente dependentes. Isto é, a deformação e a tensão são proporcionais. Sabe-se, ainda, que as tensões no
Forma Canônica de Matrizes 2 2
Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de
Capítulo 7 Transformação de deformação no plano
Capítulo 7 Transformação de deformação no plano Resistência dos Materiais I SLIDES 08 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Transformar as componentes
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1 11.1. Introdução Recebem a denominação geral de folhas as estruturas nas quais duas dimensões predominam sobre uma terceira
Exercícios Resolvidos Variedades
Instituto Superior Técnico Departamento de atemática Secção de Álgebra e Análise Eercícios Resolvidos Variedades Eercício 1 Considere o conjunto = {(,, ) R : + = 1 ; 0 < < 1}. ostre que é uma variedade,
3 Análise da Estabilidade de Tensão em um Sistema Elétrico de Potência
3 Análise da Estabilidade de Tensão em um Sistema Elétrico de Potência O problema de estabilidade de tensão normalmente ocorre em sistemas muito carregados. Uma perturbação que leva ao colapso de tensão
Capítulo Aproximação linear e diferenciais
Cálculo 2 - Capítulo 3.1 - Aproimação linear e diferenciais 1 Capítulo 3.1 - Aproimação linear e diferenciais 3.1.1 - Aproimação linear 3.1.2 - Diferenciais Vamos, neste capítulo, generaliar os conceitos
Notas de aula prática de Mecânica dos Solos II (parte 9)
1 Notas de aula prática de Mecânica dos Solos II (parte 9) Hélio Marcos Fernandes Viana Conteúdo da aula prática Exercício relacionado à análise dos resultados do ensaio de cisalhamento direto com base
MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA
Nona E 2 Estática CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Teas Tech Universit das Partículas Conteúdo Introdução Resultante
1) Qual propriedade de um material reproduz a lei de Hooke? Escrever a expressão que traduz a lei. 2) Um cilindro de 90,0 cm de comprimento (figura) está submetido a uma força de tração de 120 kn. Uma
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais
Apostila de Resistência dos Materiais II
Departamento de Mecânica Aplicada e Computacional Faculdade de Engenharia Juiz de Fora - MG Apostila de Resistência dos Materiais II Prof. Elson Magalhães Toledo ([email protected]) Prof. Aleandre Cur ([email protected])
UFRJ - Instituto de Matemática
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras
LOM Introdução à Mecânica dos Sólidos. Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina
LOM 3081 - Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina DEMAR USP Professores responsáveis: Viktor Pastoukhov, Carlos A.R.P. Baptista Ref. 1: F.P. BEER, E.R. JOHNSTON,
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Prof Luis Carlos As retas podem estar posicionadas em planos (R 2 ) ou no espaço (R 3 ). Retas no plano possuem pontos com duas coordenadas,
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04 Assunto:Produto escalar, bases canônicas do R 2 e R 3, produto vetorial, produto misto, equação da reta no R 2 Palavras-chaves: Produto
VIGAS. Figura 1. Graus de liberdade de uma viga no plano
VIGS 1 INTRODUÇÃO viga é um dos elementos estruturais mais utiliados em ontes, assarelas, edifícios rincialmente ela facilidade de construção. Qual a diferença entre a viga e a barra de treliça? Uma viga
Transformação da deformação
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Transformação da deformação
REVISÃO DE NÚMEROS COMPLEXOS
REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é
Licenciatura em Engenharia Civil MECÂNICA I
Licenciatura em Engenharia Civil MECÂNC Exame de Época de Recurso 25/07/2003 NOME: Não esqueça de escrever o nome 1) (3 L.) Tempo estimado de resolução 20 minutos a) Considere o cabo representado na igura,
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões
Expressão cartesiana de um vetor
Expressão cartesiana de um vetor Seja o vetor : Todo vetor em três dimensões pode ser escrito como uma combinação linear dos vetores de base Multiplicação de vetores Expressões analíticas para multiplicação
) a sucessão de termo geral
43. Na figura está desenhada parte da representação R \. gráfica de uma função f, cujo domínio é { } As rectas de equações =, y = 1 e y = 0 são assímptotas do gráfico de f. Seja ( n ) a sucessão de termo
