CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS
|
|
|
- Therezinha Palhares Ventura
- 9 Há anos
- Visualizações:
Transcrição
1 CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma grandeza vetorial cuja intensidade pode ser obtida pela expressão da física: r F = m.a onde: F = força m = massa do corpo a = aceleração provocada Sendo força um elemento vetorial somente se caracteriza se forem conhecidos: direção sentido módulo ou intensidade ponto de aplicação Exemplo 1: Força provocando movimento F r Exemplo 2: Força provocando deformação F r Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 1
2 Exemplo 3: PESO DOS CORPOS: O peso dos corpos é uma força de origem gravitacional que apresenta características especiais: r r Módulo: P = m. g Direção: Vertical Sentido: de cima para abaixo P Ponto de aplicação: centro de gravidade do corpo B. UNIDADES Existem muitas unidades representando forças sendo as mais comuns: N - Newton kn - kilonewton kgf - kilograma força 1 kgf = 10 N 1 kn = 103 N 1 kn = 102 kgf 1 kn = 103 N = 102 kgf C. CARACTERÍSTICAS DAS FORÇAS 1. Princípio de ação e reação: Quando dois corpos se encontram, toda a ação exercida por um dos corpos cobre o outro corresponde uma reação do segundo sobre o primeiro de mesmo módulo e direção, mas com sentidos contrários, que é a 3ª lei de Newton. Pode-se observar que estas duas forças têm pontos de aplicação diferentes e, portanto causam efeitos diferentes, cada uma atuando no seu ponto de aplicação. 2. Princípio da transmissibilidade de uma força, Quando se aplica uma força em um corpo sólido a mesma se transmite com seu módulo, direção e sentido em toda a sua reta suporte ao longo deste corpo. Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 2
3 3. Decomposição das forças. Qualquer força no espaço pode ser decomposta segundo três direções que desejarmos. Normalmente, usam-se como referência três direções ortogonais entre si, escolhidas de acordo com a conveniência do problema. y Fy F Fx x F r = Fx Fy Fz Fz Nestes casos pode-se usar a resultante F r ou suas componentes Fx, Fy e Fz para obter o efeito desejado. Qualquer força contida em um plano também pode ser decomposta segundo duas direções. Normalmente são usadas duas direções perpendiculares entre si, também escolhidas de acordo com a conveniência do problema. No caso plano que é o mais usual: Exemplo: y z r F - força a ser decomposta F y F α x e y direções ortogonais de referência F x x α - ângulo formado por F em relação à x r Fx, r Fy- componentes da força nas direções x e y A decomposição é feita por trigonometria: r Fx = F. r r cos α Fy = F r sen α r Fy/ r Fx = tg α A força r F decomposta também pode ser chamada de resultante da soma vetorial de suas componentes r Fx e r Fy. Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 3
4 Nos problemas pode-se utilizar para cálculos apenas a força resultante, ou as suas componentes, o que se tornar mais fácil. Isto pode se constituir em uma das ferramentas mais úteis no trabalho com as forças. Observe que soma vetorial ou geométrica não corresponde à soma algébrica. D. CLASSIFICAÇÃO DAS FORÇAS As forças podem ser classificadas de acordo com a sua origem, modo de se comportar, etc. como, por exemplo, as forças de contato (ex: locomotivas, musculares, etc..) e as de ação à distância (ex: elétricas, gravitacionais, magnéticas, etc.) Em análise estrutural as forças são divididas conforme esquema abaixo: FORÇAS EXTERNAS: atuam na parte externa na estrutura, e são o motivo de sua existência. Podem ser: ações : São forças independentes que podem atuar em qualquer ponto de uma estrutura. Correspondem às cargas as quais a estrutura está submetida, normalmente conhecidas ou avaliadas. Ex: peso do pedestre em uma passarela, peso próprio das estruturas, etc... reações: São forças que surgem em determinados pontos de uma estrutura (vínculos ou apoios), sendo conseqüência das ações, portanto não são independentes, devendo ser calculadas para se equivalerem as ações e assim preservarem o equilíbrio do sistema. FORÇAS INTERNAS: são aquelas que mantêm unidos os pontos materiais que formam o corpo sólido de nossa estrutura (solicitações internas). Se o corpo é estruturalmente composto de diversas partes, as forças que mantém estas partes unidas também são chamadas de forças internas (forças desenvolvidas em rótulas). II. MOMENTO DE UMA FORÇA A. CONCEITO: O momento de uma força é a medida da tendência que tem a força de produzir giro em um corpo rígido. Este giro pode se dar em torno de um ponto (momento polar ) ou em torno de um eixo (momento axial). B. MOMENTO POLAR (momento de uma força em relação a um ponto) Chama-se de momento de uma força F r em relação a um ponto "0", o produto vetorial do vetor OA r pela força F, r r sendo "A" um ponto qualquer situado sobre a reta suporte da força F. Logo também é um vetor, e para a sua caracterização é preciso determinar o seu módulo, direção e sentido. Representa fisicamente a grandeza da tendência de giro em torno deste ponto que esta força impõe ao corpo. Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 4
5 Mo π O Mo A F d r r Mo = F OA O efeito do vetor momento é o de provocar um giro com determinado sentido em relação ao ponto o considerado. O vetor momento apresenta as seguintes características: direção: perpendicular ao plano formado pela força e pelo vetor OA sentido: regra da mão direita módulo: produto do módulo da força r F pela menor distância do ponto "0" a reta suporte da força. ponto de aplicação: ponto "O" em relação ao qual se calculou o momento. r Mo r F.OA.senα r r = ou Mo = F. d A distância d que representa o módulo do vetor OA é também chamada de braço de alavanca. Ela é a menor distância entre a reta suporte da força e o ponto em relação ao qual se calcula o momento, isto é, pode ser obtida pela perpendicular à reta que passa pelo ponto. Isto simplifica em muito o calculo do momento polar de uma força. M = F.d Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 5
6 Regra da mão direita: A regra da mão direita consiste em se posicionar os dedos da mão direita no sentido da rotação provocada pela força em torno do ponto O. Neste caso o polegar indica o sentido do momento. Convencionam-se sinais + escolha. ou - para cada um dos sentidos, de acordo com a nossa Exemplo 1: Determine o peso que devemos colocar na extremidade direita da gangorra a fim de que ela permaneça em equilíbrio estático. P1 = 30 kn a = 2 m b = 4 m Exemplo 2: Determine a força desenvolvida no tirante da estrutura, a fim de que ela permaneça em equilíbrio, sabendo-se que a barra pesa 5 kn. A barra é presa a uma parede por meio de um pino O. G = 5 kn L = 3 m α= 15º T =? Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 6
7 C. MOMENTO AXIAL: Momento axial é o valor algébrico da projeção ortogonal sobre o eixo do momento polar produzido pela força em relação a um ponto qualquer do eixo. Pode ser representado por uma grandeza escalar quando se adota uma convenção para a orientação do eixo. Exemplo 1: Força perpendicular ao plano do eixo Mx = F. d Exemplo 2 : Força inclinada em relação ao plano do eixo M x = F z. d Fz = F. sen α Exemplo 3 : Força no espaço (direção qualquer) F = F 1 + F 2 + F 3 Mx = 0 F 1 My =.0 Mz = -4. F 1 Mx = 0 F 2 M y = 0 M z = - 1. F 2 M x = + 4. F 3 F 3 M y = - 1. F 3 M z = 0 OBSERVAÇÃO: O momento de uma força em relação à um eixo é nulo sempre que a força e o eixo forem coplanares (concorrentes ou paralelos). Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 7
8 D. UNIDADE DE MOMENTO Sendo o momento produto de uma força por uma distância, a unidade desta grandeza é o produto de uma unidade de força por uma unidade de distância. Exemplos: kgf.m, kn.m, N.m, kn.cm, etc III. SISTEMA DE FORÇAS A. DEFINIÇÃO: É o conjunto de forças que atuam simultaneamente em um corpo rígido ou em um ponto material. B. RESULTANTE DE VÁRIAS FORÇAS CONCORRENTES: A resultante de várias forças que concorrem em um ponto é a soma geométrica a partir do ponto, de forças eqüipolentes às que constituem o sistema, formando um polígono. Obs: Forças eqüipolentes são aquelas que têm mesmo módulo, mesma direção e mesmo sentido. Lembrando que uma força pode ser decomposta segundo eixos de referência, pode-se determinar a resultante de uma forma mais simples, obtendo-se cada componente pela soma algébrica das projeções de todas as forças sobre este eixo. Exemplo 1: Soma geométrica R r = 0 OBSERVAÇÃO: Se o polígono formado pelas forças for fechado a resultante é nula. Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 8
9 Exemplo 2: Forças concorrentes em um ponto de um plano A resultante de forças concorrentes em um ponto de um plano também pode ser calculada através da decomposição destas forças em relação a duas direções ortogonais escolhidas. F 1x = F 1 cos α F1y = F1sen α F 2x = F 2 cos β F2y = F2 sen β F x = F 1x + F 2x F y = F 1y + F 2y 2 2 x ) + Σ(Fy ) R = Σ(F PITÁGORAS IV. PRINCÍPIO DA SUPERPOSIÇÃO DE EFEITOS " O efeito produzido por um conjunto de forças atuando simultaneamente em um corpo é igual à soma do efeito produzido por cada uma das forças atuando isolada" Deve-se fazer a ressalva de que a validade deste princípio se resume a casos em que o efeito produzido pela força seja diretamente proporcional a mesma. Isto acontece na maioria dos casos estudados. A partir deste princípio pode-se dizer que: - O momento polar resultante de um sistema de forças é a soma algébrica dos momentos polares, produzidos em relação ao mesmo ponto, por cada uma das forças atuando isolada. - O momento axial produzido por um sistema de forças atuando simultaneamente em um corpo é igual à soma algébrica dos momentos axiais, produzidos em relação ao mesmo eixo, de cada uma das forças atuando isolada. V. BINÁRIO OU PAR DE FORÇAS A. CONCEITO Denomina-se binário a um sistema constituído por um par de forças paralelas, de módulos iguais e sentidos opostos. A resultante em termo de forças é nula, entretanto há um momento polar resultante de módulo igual ao produto da força pela distância entre as duas direções paralelas. Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 9
10 Exemplo 1: F = a = b = c = d = MA = MD = ME = O binário ou momento é um vetor livre, pois seu efeito independe do ponto de aplicação, sendo que para qualquer ponto do plano o binário tem o mesmo valor. B. SITUAÇÕES REPRESENTATIVAS Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 10
11 VI. TRANSLAÇÃO DE FORÇAS Transladar uma força (como artifício de cálculo) é transportá-la de sua direção para outra direção paralela. Isto implica no acréscimo de um momento devido à translação, cujo módulo é igual ao produto da força pela distância de translação. VII. REDUÇÃO DE UM SISTEMA DE FORÇAS A UM PONTO Qualquer sistema de forças pode ser reduzido a um sistema vetor-par, onde o vetor é a resultante das forças, localizada a partir de um ponto arbitrariamente escolhido e o par é o momento polar resultante do sistema em relação ao mesmo ponto. Exemplo 1: Reduzir o sistema de forças da figura ao ponto B indicado. Exemplo 2: Reduzir o sistema acima ao ponto A. R: Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 11
12 VII. EQUIVALÊNCIA DE UM SISTEMA DE FORÇAS Dois sistemas de forças são equivalentes quando tem resultantes iguais e momentos polares em relação ao mesmo ponto também iguais. Exemplo: F = α = F x = Fy = a = b = F - sistema inicial F x, F y - sistema equivalente M A (sistema inicial) = M A (sistema equivalente) = O uso de sistemas equivalentes é um artifício de cálculo muito útil. Pode-se, de acordo com a conveniência, substituir uma força, ou um sistema de forças por sistemas equivalentes mais adequados ao nosso uso. VIII. EQUILÍBRIO ESTÁTICO DOS CORPOS RÍGIDOS A. EQUILÍBRIO NO ESPAÇO. Existem diversas possibilidades de movimento em um corpo livre no espaço. Tomando 3 eixos ortogonais como referencia de espaço, e isto se faz necessário por uma questão de classificação e organização de método, pode-se dizer que um corpo no espaço tem 6 possibilidades de movimento ou 6 graus de liberdade. Nestes casos o corpo possui 6 graus de liberdade, pois pode apresentar 3 translações (na direção dos 3 eixos) e 3 rotações (em torno dos 3 eixos). My Fy y Fx Fz x Mx z Mz Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 12
13 Um corpo está em equilíbrio estático quando as forças atuantes formam entre si um sistema equivalente a zero, isto é, sua resultante e o seu momento polar em relação a qualquer ponto são nulos. R = 0 Mp = 0 Como se costuma trabalhar com as forças e momentos referenciados a um sistema triortogonal de eixos, desta maneira o equilíbrio se verifica se as 6 equações abaixo são satisfeitas: Fx = 0 Mx = 0 F y = 0 M y = 0 Fz = 0 Mz = 0 B. EQUILÍBRIO NO PLANO Quando o corpo está submetido a forças atuantes em um só plano, devemos prever o seu equilíbrio neste plano. Supondo um corpo com cargas em apenas um plano, por exemplo, x, y. Neste caso o corpo possui apenas 3 graus de liberdade, pois pode apresentar 2 translações (na direção dos dois eixos) e 1 rotação(em torno do eixo perpendicular ao plano que contém as forças externas). Exemplo: Fy y Fx x z Mz Diante de um caso de carregamento plano, e, portanto apresentando 3 graus de liberdade, as condições de equilíbrio se reduzem apenas às equações: ΣFx = 0 Σ F y = 0 Σ M z = 0 Estas equações de equilíbrio são chamadas de equações fundamentais da estática. Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 13
14 EXERCÍCIOS PROPOSTOS: 1. Suponha um plano formado pelos eixos x e y, conforme desenho, onde atuam as cargas F1 e F2. Calcule: a. Momentos desenvolvidos por F 1 em relação aos pontos A, B e C. b. Momentos desenvolvidos por F 2 em relação aos pontos A, B e C. c. Momento da resultante do sistema em relação aos pontos A, B e C. d. Resultante do sistema na direção x e. Resultante do sistema na direção y Convencione o giro no sentido horário positivo. F1 = 20 kn F2 = 30 kn R: a) M 1A = 0 M 1B = 69,28 kn.m M 1C = 109,28 kn.m b) M 2A = 120 kn.m M 2B = 120 kn.m M 2C = 0 c) M A = 120 kn.m M B = 189,28 kn.m M C = 109,28 kn.m d) F x = + 17,32 kn e) F y = - 20 kn 2. Suponha as forças indicadas no desenho atuando perpendicularmente ao eixo x. O sistema 1 representa um binário e o sistema 2 representa outro. Convencione o sentido anti horário positivo. a. Quanto vale o binário 1 b. Quanto vale o binário 2 c. São equivalentes? Por quê? d. Quanto vale o momento polar do sistema 1 em relação aos pontos A, C e E. e. Quanto vale o momento polar do sistema 2 em relação aos pontos B, D e E. f. Quanto vale o momento polar resultante destes dois sistemas em relação aos pontos A,B,C D e E. Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 14
15 R: a) + 20 kn.m b) + 20 kn.m c)sim d) M1A = M1B=M1E = + 20 kn.m e) M2B=M2D=M2E = + 20 kn.m f) MA = MB =...=ME = + 40 kn.m 3. Suponha forças como as do exercício 3 perpendiculares ao eixo formando 2 binários. Responda as perguntas do exercício 2 usando a mesma convenção. R: a)- 60 kn.m b) + 60 kn.m c) não d) M1A=M1C=M1E = - 60 kn.m e) M2B=M2D=M2E = + 60 kn.m f) MA =MB =...= ME = 0 4. Qual a força horizontal que atua nos parafusos 1 e 2 da ligação abaixo, considerando o momento provocado pelo peso na ponta da haste R: P1 = 100 kgf P2 = 100 kgf Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 15
16 5. Suponha as estruturas planas representadas abaixo. Determine, se necessário usando sistemas equivalentes Σ Fx,ΣFy, ΣMA, ΣMB e ΣMC a. R: ΣFx = 25,98 kn ΣFy = 65 kn ΣMA = 138,04 kn.m ΣMB = 70 kn.m ΣMC = 330 kn.m b. R: ΣFx =16,64 kn ΣFy = -4,96kN ΣMA = -36 kn.m ΣMB = -84 kn.m ΣMC = -98,96 kn.m 6. Reduzir no ponto A o sistema de forças da figura: Resistência dos Materiais I - EM CCivil. PUCRS- Profas: Maria Regina Costa Leggerini 16
CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS
CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma
efeito: movimento P = m. g
CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. Conceito: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
Irineu dos Santos Yassuda
MECÂNICA TÉCNICA 2 Curso: Técnico em Automação Industrial Irineu dos Santos Yassuda Revisão de Matemática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma
Resistência dos Materiais
Resistência dos Materiais Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma medida da tendência dessa força de provocar a rotação de um corpo em torno do
FORÇA TICA FORÇA A RESULTANTE
ESTÁTIC TIC Estuda a causa dos movimentos, sem se preocupar com os movimentos. FORÇ gente capaz de produzir variações no estado de movimento de um corpo e ou produzir deformações neste corpo. É uma grandeza
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
Disciplina: Sistemas Estruturais Assunto: Principios da Estática e da Mecânica Prof. Ederaldo Azevedo Aula 2 e-mail: [email protected] 2. PRINCIPIOS BÁSICOS DA ESTÁTICA E DA MECÂNICA A ciência
Mecânica. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento
Mecânica A teoria do movimento é denominada MECÂNICA CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento Estática É a parte da MECÂNICA que estuda o EQUILÍBRIO
Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais
Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado
Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise.
Nesta secção será feito o estudo de forças aplicadas a um corpo rígido. Estudar-se-á a substituição de um dado sistema de forças por um sistema de forças equivalente mais simples, cálculo de produtos externos
MÓDULO 02 - MOMENTO DE UMA FORÇA
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TÉCNICO EM EDIFICAÇÕES MODALIDADE SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES MÓDULO 02 -
Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise.
1. Corpos Rígidos Nesta secção será feito o estudo de forças aplicadas a um corpo rígido. Estudar-se-á a substituição de um dado sistema de forças por um sistema de forças equivalente mais simples, cálculo
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Cap.04 1 Resultantes de um sistema de forças Prof. Antonio Dias Antonio Dias / Cap.04 2 Objetivo Discutir o conceito do momento de uma força
RELAÇÕES TRIGONOMÈTRICAS
TÉCNICO EM EDIFICAÇÕES MÓDULO 01 RELAÇÕES TRIGONOMÈTRICAS NOTAS DE AULA: - Prof. Borja 2016.2 MÓDULO 1 Relações Trigonométricas OBJETIVOS Ao final deste módulo o aluno deverá ser capaz de: resolver problemas
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Cap.05 1 Objetivos deste capítulo Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito
Estática do ponto material e do corpo extenso
Estática do ponto material e do corpo extenso Estática do ponto material e do corpo extenso Estática é a área da Física que estuda as condições de equilíbrio do ponto material e do corpo extenso. Estática
EME 311 Mecânica dos Sólidos
2 ESTÁTICA DOS CORPOS RÍGIDOS EME 311 Mecânica dos Sólidos - CAPÍTULO 2 - Profa. Patricia Email: [email protected] IEM Instituto de Engenharia Mecânica UNIFEI Universidade Federal de Itajubá 2.1
Estática. Prof. Willyan Machado Giufrida. Estática
Estática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma medida da tendência dessa força de provocar a rotação de um corpo em torno do ponto ou do eixo.
Aula 5 Equilíbrio de um corpo rígido
Aula 5 Equilíbrio de um corpo rígido slide 1 Condições de equilíbrio do corpo rígido Como mostra a Figura, este corpo está sujeito a um sistema externo de forças e momentos que é o resultado dos efeitos
CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES
CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES ESTABILIDADE ESFORÇOS SIMPLES Apostila Organizada pelo professor: Edilberto Vitorino de Borja 2016.1 1. CARGAS ATUANTES NAS ESTRUTURAS 1.1 CARGAS EXTERNAS Uma estrutura
Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura.
52 CAPÍTULO V CÁLCULO DAS REAÇÕES EXTERNAS I. GENERALIDADES Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura. Os vínculos
UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. Primeira Lista de Exercícios (2017.2) Professores: Dr.
UFABC - Universidade Federal do ABC ESTO008-13 Mecânica dos Sólidos I Primeira Lista de Exercícios (20172) Professores: Dr Cesar Freire CECS Dr Wesley Góis CECS 1 Preparativos para a primeira semana do
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite. 1 de setembro de Nesta aula, serão apresentados os seguintes conceitos:
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite 1 de setembro de 2016 1 Plano da aula. Nesta aula, serão apresentados os seguintes conceitos: Determinação do torque pelos métodos da decomposição
Equilíbrio de um Corpo Rígido Cap. 5
Objetivos MECÂNICA - ESTÁTICA Equilíbrio de um Corpo Rígido Cap. 5 Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito de diagrama de corpo livre para um corpo rígido. Mostrar
FÍSICA B ª SÉRIE EXERCÍCIOS COMPLEMENTARES ALUNO
EXERCÍCIOS COMPLEMENTARES ALUNO TURMA: FÍSICA B - 2012 1ª SÉRIE DATA: / / 1) Analise as afirmativas abaixo sobre o conceito de grandezas escalares e vetoriais. I Uma grandeza é chamada de escalar quando
Polígrafo Mecânica para Engenharia Civil
Universidade Federal do Pampa (UFP/UFSM) Centro de Tecnologia de Alegrete - CTA Curso de Engenharia Civil Polígrafo Mecânica para Engenharia Civil Prof Almir Barros da S. Santos Neto Polígrafo elaborado
MOMENTO DE UMA FORÇA
INSTITUT FEDERAL DE EDUCAÇÃ CIÊNCIA e TECNLGIA D RI GRANDE D NRTE DIRETRIA ACADÊMICA DE CNSTRUÇÃ CIVIL TECNLGIA EM CNSTR. DE EDIFÍCIS TEC. EDIFICAÇÕES ESTABILIDADE DAS CNSTRUÇÕES MMENT DE UMA FRÇA Apostila
Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil Introdução aos Sistemas Estruturais Prof.
Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil Introdução aos Sistemas Estruturais Prof. Estela Garcez 1. a soma vetorial das forças que atuam sobre o corpo deve
MECÂNICA DOS SÓLIDOS
MECÂNICA DOS SÓLIDOS MOMENTOS E O EQUILÍBRIO DOS CORPOS RÍGIDOS Prof. Dr. Daniel Caetano 2019-1 Objetivos Conceituar Momento de uma Força Habilitar para o cálculo de momentos Conhecer os graus de liberdade
Resultantes de um sistema de forças
Resultantes de um sistema de forças Objetivos da aula Discutir o conceito do momento de uma força e mostrar como calculá-lo em duas e três dimensões. Fornecer um método para determinação do momento de
Capítulo 5 Equilíbrio de um corpo rígido
Capítulo 5 Equilíbrio de um corpo rígido slide 1 Objetivos deste capítulo Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito do diagrama de corpo livre para um corpo rígido.
MECÂNICA GERAL 1. Marcel Merlin dos Santos
MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Revisão de álgebra vetorial Lei dos cossenos Lei dos senos Exercícios Componentes cartesianas de uma força Exercícios Equilíbrio de uma partícula
RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 01 INTRODUÇÃO
CONTROLE DE QUALIDADE INDUSTRIAL A resistência dos materiais é um assunto bastante antigo. Os cientistas da antiga Grécia já tinham o conhecimento do fundamento da estática, porém poucos sabiam do problema
Unidade: Equilíbrio de Corpos Rígidos
Unidade: Equilíbrio de Corpos Rígidos Mecânica Geral Caros alunos, neste arquivo de apresentação, você encontrará um resumo dos tópicos estudados na Unidade IV. Use-o como guia para complementar o estudo
ESTÁTICA DOS SÓLIDOS
Postulados: (Nóbrega, 1980) ESTÁTICA DOS SÓLIDOS 1. Se nenhuma força for aplicada a um sólido em equilíbrio, ele permanece em equilíbrio. 2. Aplicando uma única força a um sólido isolado em equilíbrio,
LISTA DE EXERCÍCIOS Nº 4
Estudante: Curso: Engenharia Civil Disciplina: Mecânica da Partícula Período Letivo: 2/2015 Semestre: 2º Docente: MSc. Demetrius dos Santos Leão RA: Sala/ Turma: LISTA DE EXERCÍCIOS Nº 4 Decomposição de
Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada
Estática. Vista da estrutura da ponte Golden Gate, São Francisco, Califórnia (EUA).
Estática Todo o nosso estudo até agora foi dedicado quase que exclusivamente ao movimento. Passamos da Cinemática - descrição matemática dos movimentos - à Dinâmica, em que essa descrição se aprofunda
REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.
MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL
2010The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho
Prof.: Anastácio Pinto Gonçalves Filho Introdução Para um corpo rígido em equilíbrio estático, as forças e momentos externos estão balenceadas e não impõem movimento de translação ou de rotação ao corpo.
Prof. MSc. David Roza José -
1/17 2/17 Momento de uma Força Quando uma força é aplicada a um corpo ela vai produzir uma tendência do corpo de girar em relação a um ponto que não está na linha de ação da força. Esta tendência de girar
Aula 07 - Momento (formulação vetorial) 2011 Pearson Prentice Hall. Todos os direitos reservados.
Aula 07 - Momento (formulação vetorial) slide 1 2011 Pearson Prentice Hall. Todos os direitos reservados. Lembrete: 24/08 Momento sobre um eixo específico. Momento de um binário 29/08 Revisão e esclarecimento
O equilíbrio ESTÁTICO, quando o corpo permanece em repouso. O equilíbrio DINÂMICO, quando o corpo permanece em movimento retilíneo uniforme.
1- OÇA: orça é uma grandeza vetorial (caracterizado por um módulo ou intensidade, uma direção e um sentido) capaz de produzir em um, uma deformação e /ou uma variação em sua velocidade vetorial. 1.1- LEIS
Aula 2 Vetores de força
Aula 2 Vetores de força slide 1 Escalares e vetores Um escalar é qualquer quantidade física positiva ou negativa que pode ser completamente especificada por sua intensidade. Exemplos de quantidades escalares:
Princípios Físicos do Controle Ambiental
Princípios Físicos do Controle Ambiental Capítulo 02 Conceitos Básicos Sobre Mecânica Técnico em Controle Ambiental 18/05/2017 Prof. Márcio T. de Castro Parte I 2 Mecânica Mecânica: ramo da física dedicado
Análise de Forças no Corpo Humano. = Cinética. = Análise do Salto Vertical (unidirecional) Exemplos de Forças - Membro inferior.
Princípios e Aplicações de Biomecânica EN2308 Profa. Léia Bernardi Bagesteiro (CECS) [email protected] 31/10/2012 Análise de Forças no Corpo Humano = Cinética = Análise do Salto Vertical (unidirecional)
Vetores de força. Objetivos da aula. Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo.
Objetivos da aula Vetores de força Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo. Expressar a força e sua posição na forma de um vetor cartesiano e explicar como
Mecânica. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento
Mecânica A teoria do movimento é denominada MECÂNICA. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento - Não é possível prever movimentos usando somente a
SISTEMAS ESTRUTURAIS DE VETOR ATIVO
SISTEMAS ESTRUTURAIS DE VETOR ATIVO 2o. GRUPO ESTRUTURAL CLASSIFICADO POR HENRICH ENGEL CARACTERÍSTICAS VETORES ORGANIZADOS EM MONTAGENS DE PEÇAS TRIANGULARES EXEMPLOS DE ESTRUTURAIS DE VETOR ATIVO EXEMPLOS
Física D Semiextensivo v. 1
Física D Semiextensivo v. 1 Exercícios 01) 01 02) B 03) A 01. Verdadeira. 02. Falsa. Pressão é uma grandeza escalar. 04. Falsa. Quantidade de movimento é grandeza vetorial. 08. Falsa. Impulso e velocidade
Já sabemos que um sistema de forças em equilíbrio no espaço obedece as seis equações fundamentais da estática:
96 CAPÍTULO IX GRELHAS ISOSTÁTICAS I. ASPECTOS GERAIS Já sabemos que um sistema de forças em equilíbrio no espaço obedece as seis equações fundamentais da estática: Σ F x = 0 Σ F y = 0 Σ F z = 0 Σ Mx =
Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.
Nona E 4 Equilíbrio CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Texas Tech University de Corpos Rígidos 2010 The McGraw-Hill
UNIVERSIDADE CATÓLICA DE GOIÁS
01 NOTA DE AULA 0 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 01) Coordenador: PROF. EDSON VAZ CAPÍTULOS: 05 e 06 CAPÍTULO 5 FORÇA
Unidade: Equilíbrio do Ponto material e Momento de uma. Unidade I: força
Unidade: Equilíbrio do Ponto material e Momento de uma Unidade I: força 0 3 EQUILÍBRIO DO PONTO MATERIAL 3.1 Introdução Quando algo está em equilíbrio significa que está parado (equilíbrio estático) ou
MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA
Nona E 2 Estática CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Teas Tech Universit das Partículas Conteúdo Introdução Resultante
Fís. Leonardo Gomes (Guilherme Brigagão)
Semana 16 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. Equilíbrio
Mecânica Un.2. Momento em relação a um Ponto. Créditos: Professor Leandro
Mecânica Un.2 Momento em relação a um Ponto Créditos: Professor Leandro Equilíbrio Equilíbrio Para que uma partícula esteja em equilíbrio, basta que a o resultante das forças aplicadas seja igual a zero.
COLÉGIO VISCONDE DE PORTO SEGURO Unidade I Ensino Fundamental e Ensino Médio
COLÉGIO VISCONDE DE PORTO SEGURO Unidade I - 2008 Ensino Fundamental e Ensino Médio Aluno (a): nº Classe: 2-2 Lista de exercícios para estudos de recuperação de Física Trimestre: 2º Data: / /2008 1. (Ufpr)
Teoria das Estruturas I - Aula 06
Teoria das Estruturas I - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Prof. Juliano J. Scremin 1 Aula 06 - Seção 01: Barras Inclinadas 2 Barras Inclinadas:
ESTÁTICA DOS CORPOS RÍGIDOS. Exercícios
ESÁICA DOS CORPOS RÍGIDOS Um caso particular de movimento é o repouso --- movimento nulo. Há repouso quando os agentes causadores do movimento se compensam ou equilibram. Daí se dizer que um corpo em repouso
Conceitos de vetores. Decomposição de vetores
Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas
A fim de que um vínculo possa cumprir esta função, surgem, no mesmo, reações exclusivamente na direção do movimento impedido.
CAPÍTULO III ESTRUTURAS ISOSTÁTICAS - NOÇÕES INICIAIS I. GRAUS DE LIBERDADE (GL) DEFINIÇÃO: Graus de liberdade são o número de movimentos rígidos possíveis e independentes que um corpo pode excecutar.
P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.
Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha
{ } F = 9,9286 6, , 286 N. i j k. 1, 5i 1j 15k 15,108 { 9, , } Resultantes de Sistemas de Forças Cap. 4
Problema 4.D ECÂNIC - ESTÁTIC Resultantes de Sistemas de Forças Cap. 4 O cabo C eerce uma força F = 100 N no ponto do mastro. Calcule o momento desta força em relação à base do mastro. Utilize dois diferentes
Apresentação da Disciplina MECÂNICA APLICADA. Prof. André Luis Christoforo.
Objetivos da Estática: 01 Universidade Federal de São Carlos Departamento de Engenharia Civil - DECiv Apresentação da Disciplina MECÂNICA APICADA Prof. André uis Christoforo [email protected]
Ismael Rodrigues Silva Física-Matemática - UFSC.
Ismael Rodrigues Silva Física-Matemática - UFSC www.ismaelfisica.wordpress.com Máquinas Simples(ver arquivo) Revisão... ForçadeAtrito... AlgunsSistemasMecânicos... SistemasMecânicos... Máquinas Simples:
Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.
Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações
Aula 09 - Momento (formulação vetorial) 2011 Pearson Prentice Hall. Todos os direitos reservados.
Aula 09 - Momento (formulação vetorial) slide 1 Lembrete: 29/08 Revisão e esclarecimento de dúvidas. 31/08/17 - Prova 01 slide 2 Momento de uma força sobre um eixo especificado slide 3 Momento de uma força
SOLUÇÃO PRATIQUE EM CASA
SOLUÇÃO PC1. [B] SOLUÇÃO PRATIQUE EM CASA Dados: m = 150 kg; g = 10 m/s ; b P = 0,5 m; b F = 3,0 m. A alavanca é interfixa, pois o apoio está entre a força potente v resistente P v F e força Se o trabalho
UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência
UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência Sumário: Betão armado armadura aplicações Equilíbrio estático de um ponto material Momento
peso da barra: P = 15 N; comprimento do segmento AO: D A = 1 m; comprimento do segmento BO: D B = 0,5 m.
Uma barra AOB homogênea de secção constante cujo peso é de 15 N é dobrada segundo um ângulo reto em O de maneira que AO = 1 m e BO = 0,5 m. Suspende-se a barra pelo ponto O, determinar: a) O ângulo α formado
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Vetores. Mateus Barros 3º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2018.1 Vetores Mateus Barros 3º Período Engenharia Civil Definição O que é um vetor? Um vetor é um segmento de reta orientado, que representa uma grandeza
Teoria das Estruturas - Aula 06
Teoria das Estruturas - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Pórticos Compostos Exemplo de Modelagem Estrutural Prof. Juliano J. Scremin 1
Resistência dos Materiais I- EM
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL Resistência dos Materiais I- EM Notas de Aula Profa. Maria Regina Costa Leggerini Resistência dos
Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia.
1 2. Vetores Força 2.1- Escalares e Vetores Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. Vetor: Grandeza a qual se associa um
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes [email protected]
Capítulo 2 Cargas e esforços
Cargas e esforços Professora Elaine Toscano Capítulo 2 Cargas e esforços 2.1 Cargas té o presente momento foram adotadas apenas cargas concentradas e cargasmomento nos exemplos, no entanto, na prática,
A interação de um corpo com sua vizinhança é descrita em termos de. Uma força pode causar diferentes efeitos num corpo como, por exemplo:
Forças A interação de um corpo com sua vizinhança é descrita em termos de uma FORÇA. Uma força pode causar diferentes efeitos num corpo como, por exemplo: a) imprimir movimento b) cessar um movimento c)
Interação entre corpos
2.1. Forças Interação entre corpos Dois jogadores interagem fisicamente entre si, exercendo, reciprocamente, forças um sobre o outro, isto é, o jogador da esquerda exerce uma força sobre o jogador da direita
Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.
PUC - Goiás Curso: Engenharia Civil Disciplina: Mecânica Vetorial Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para
MAC-015 Resistência dos Materiais Unidade 01
MAC-015 Resistência dos Materiais Unidade 01 Engenharia Elétrica Engenharia de Produção Engenharia Sanitária e Ambiental Leonardo Goliatt, Michèle Farage, Alexandre Cury Departamento de Mecânica Aplicada
Introdução ao Cálculo Vetorial
Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem
FACULDADE SUDOESTE PAULISTA Teoria das Estruturas
A estrutura é a parte da construção responsável pela resistência às ações externas (cargas). Uma estrutura pode estar sujeita à ação de diferentes tipos de carga, tais como pressão do vento, reação de
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
FÍSICA - VETORES. Aula 1: Grandezas vetoriais x escalares.
FÍSICA - VETORES Conteúdo: Grandezas vetoriais x escalares; Soma de vetores: Método da poligonal, método do paralelogramo e método das projeções; subtração de vetores, multiplicação por número real e versores.
Docente: Marília Silva Soares Ano letivo 2011/2012 1
Ciências Físico-químicas - 9º ano de Unidade 1 EM TRÂNSITO 3 Forças e suas características 3.1. Conceito de força 3.. Caracterização de uma força 3.3. Efeitos das forças nos corpos 3.4. Resultante de um
DEFINIÇÃO: Graus de liberdade são o número de movimentos rígidos possíveis e independentes que um corpo pode excecutar.
28 CAPÍTULO III ESTRUTURAS ISOSTÁTICAS - NOÇÕES INICIAIS I. GRAUS DE LIBERDADE (GL) DEFINIÇÃO: Graus de liberdade são o número de movimentos rígidos possíveis e independentes que um corpo pode excecutar.
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Cap.06 1 Análise Estrutural Antonio Dias 2017 Objetivos do capítulo Mostrar como determinar as forças nos membros
Docente: Marília Silva Soares Ano letivo 2011/2012 1
Ciências Físico-químicas - 9º ano de Unidade 1 EM TRÂNSITO Forças e suas características.1. Conceito de força.. Caracterização de uma força.3. Efeitos das forças nos corpos.4. Resultante de um sistema
MECÂNICA GERAL 1. Marcel Merlin dos Santos
MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Princípio da transmissibilidade Produto Vetorial Componentes cartesianas Momento de uma força em relação a um ponto Projeção de um vetor sobre
Cinesiologia. PARTE II Força Torque e Alavancas
Cinesiologia PARTE II Força Torque e Alavancas 43 DISCIPLINAS CINESIOLOGIA BIOMECÂNICA FISIOLOGIA TREINAMENTO PSICOLOGIA COMPORTAMENTO MOTOR FILOSOFIA 44 Conceitos CINESIOLOGIA estudo do movimento BIOMECÂNICA
CAPÍTULO V SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA
CAPÍTULO V SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA I. CONVENÇÕES: Conforme já vimos, se cortarmos uma estrutura por uma seção, nesta seção devem aparecer esforços que equilibrem o sistema isolado
13/4/2011. Quantidade de movimento x Massa Quantidade de movimento x Velocidade. Colisão frontal: ônibus x carro
FORÇA x BRAÇO DE MOMENTO (Unidade: N.m) Régua sobre a mesa Torque = F senθ.r = r sen θ. F = F.d Braço de momento (d) = menor distância ou distância perpendicular do eixo à força Carolina Peixinho [email protected]
