CAPÍTULO V SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA
|
|
|
- Luiza Rijo
- 6 Há anos
- Visualizações:
Transcrição
1 CAPÍTULO V SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA I. CONVENÇÕES: Conforme já vimos, se cortarmos uma estrutura por uma seção, nesta seção devem aparecer esforços que equilibrem o sistema isolado (solicitações internas). Vamos tratar de estruturas sujeitas à carregamento plano onde os esforços desenvolvidos são o esforço normal N (ΣF x ), o esforço cortante Q y (ΣF y ) ou simplesmente Q e o momento fletor Mz ou simplesmente M. Com o fim de uniformizarmos a nossa representação vamos representar graficamente as convenções para o sentido positivo destas solicitações. II. CÁLCULO DAS SOLICITAÇÕES EM UMA SEÇÃO ARBITRÁRIA Se desejarmos calcular a solicitação desenvolvida em uma seção qualquer de uma peça carregada, usamos o método das seções: Cortamos a peça na seção desejada e isolamos um dos lados do corte (qualquer um). Na seção cortada devem ser desenvolvidas solicitações que mantém o sistema isolado em equilíbrio. Exemplo: Calcule as solicitações desenvolvidas na seção intermediária da viga abaixo. q. l V A = V B =
2 Cortando e isolando um dos lados do corte: Aplicando as equações de equilíbrio, teremos: ΣFx = 0 N = 0 Σ Fy = 0 q.l q.l Q + = 0 Q = 0 Σ MS = 0 q.l l q.l l M +.. = 4 0 Ms = q.l 8 III. METODO DAS EQUAÇÕES Supondo que queiram-se as solicitações desenvolvidas em diversas seções da viga, repete-se o procedimento acima exemplificado, em quantas seções quantas pretendidas. Ao serem efetuados esta sucessão de cortes, observa-se que as equações de equilíbrio formadas são as mesmas, com mudança apenas na distancia da seção cortada a referência. Pode-se generalizar este procedimento criando uma variável, por exemplo "x", que represente esta distância de uma forma genérica. onde 0 x l (limites de validade da variável x). Então: Σ Fx = 0 N = 0 q.l q.l Σ Fy = 0 Q + q.x = 0 Q = q.x + x q.l q.l q.x Σ MS = 0 M + q.x.. x M =.x x Esta representação se constitui o que se chama de método das equações Tem-se a vantagem de trocar o estudo do fenômeno físico por um estudo matemático.
3 IV. PONTOS DE TRANSIÇÃO Iniciando-se com um exemplo, calculam-se as solicitações desenvolvidas nas seções S1 e S da viga abaixo: VA = Pb/l VB = Pa/l S1: 0 x1 a Σ Fx = 0 N = 0 Σ Fy = 0 Q-Pb/l = 0 Q = Pb/l Σ M = 0 M - Pb/l.x 1 = 0 M = Pb/l. x 1 S : a x l Σ Fx = 0 N = 0 Σ Fy = 0 Q + P - Pb/l = 0 Q = Pb/l - P Σ M = 0 M + P (x - a) - Pb/l. x = 0 M = Pb/l. x - P(x - a) Constata-se que x1e x nunca podem se sobrepor, pois dão origem a equações diferentes pois na ª não entra a carga P. A variável pode ser chamada genericamente se x e distinguir-se o trecho de validade da mesma. 1 o trecho o trecho 0 x a a x l equações válidas para o primeiro trecho: Q(x) = Pb/l M(x) = Pb/l.x equações válidas para o segundo trecho: Q(x) = Pb/l - P = -Pa/l M(x) = Pb/l.x - P(x-a) No exemplo acima intuitivamente foi identificado um ponto de transição, que seria o ponto de aplicação da carga P, a partir do qual há a mudança na equação. Conforme foi visto há a necessidade de analisar-se um trecho antes e outro depois deste ponto de transição.
4 O acima pode ser generalizado dizendo-se que sempre que houver um ponto de transição. De maneira análoga, todo o ponto em que há alteração no carregamento, constitui-se em um ponto de transição: -Ponto de força aplicada - Ponto de momento aplicado - Ponto de troca da taxa de carregamento. De acordo com o que foi visto, as solicitações podem ser calculadas como funções da variável x, com trecho de validade pré-estabelecido, obtendo-se equações gerais para as mesmas, com validade nos trechos respectivos. Quando desejar-se o valor da solicitação em uma seção em especial, de ordenada x conhecida, basta substituir nas equações o valor de x pela ordenada numérica desejada. Em geral interessa o valor máximo das solicitações em toda a estrutura e não apenas em pontos específicos da mesma. Lembrando cálculo diferencial o máximo de uma função ocorre quando a sua primeira derivada é nula. V. PROCEDIMENTO DE CÁLCULO Este procedimento de cálculo poderia ser sintetizado em um roteiro simples. Dado o esquema estrutural da peça (vínculos, cargas ativas e vãos): 1. Cálculo das reações externas. Identificação dos pontos de transição criando trechos pré-estabelecidos 3. Usar o método de corte de seções em cada um destes trechos, adotando como posição genérica desta seção a variável x, que valerá dentro dos limites dos trechos. 4. Supor em cada seção cortada o aparecimento das solicitações previstas, que devem ser arbitradas com o sentido convencionado positivo. 5. A aplicação das equações de equilíbrio estático em cada um dos cortes, nos leva a obtenção das equações desejadas.
5 6. Usa-se representar estas equações sob a forma de um diagrama, conforme convenção abaixo: N Q x x M x OBS: As cargas distribuídas não mais podem ser substituídas por suas resultantes totais, mas sim por resultantes parciais nos trechos considerados.
6 TRAÇADO DO DIAGRAMA DAS SOLICITAÇÕES INTERNAS
7
1. O equilíbrio não leva em conta o modo como o corpo transmite as cargas para os apoios.
59 CAPÍTULO VI SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA I. INTRODUÇÃO Vimos até aqui que quando existe um sistema de cargas ativas atuando em um corpo são desenvolvidas cargas externas reativas, capazes
Já sabemos que um sistema de forças em equilíbrio no espaço obedece as seis equações fundamentais da estática:
96 CAPÍTULO IX GRELHAS ISOSTÁTICAS I. ASPECTOS GERAIS Já sabemos que um sistema de forças em equilíbrio no espaço obedece as seis equações fundamentais da estática: Σ F x = 0 Σ F y = 0 Σ F z = 0 Σ Mx =
Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura.
52 CAPÍTULO V CÁLCULO DAS REAÇÕES EXTERNAS I. GENERALIDADES Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura. Os vínculos
AULAS DE MECÂNICA DO CONTÍNUO INTRODUÇÃO PROF. ISAAC NL SILVA
AULAS DE MECÂNICA DO CONTÍNUO INTRODUÇÃO PROF. ISAAC NL SILVA 1 EMENTA Introdução. Cálculo variacional e funcional. Métodos aproximados. Método dos elementos finitos. Discretização do domínio. Interpolação
CAPÍTULO IV TRELIÇAS ISOSTÁTICAS
1 CAPÍTULO IV TRELIÇAS ISOSTÁTICAS I. DEFINIÇÃO: Treliça ideal é um sistema reticulado indeformável cujas barras possuem todas as suas extremidades rotuladas e cujas cargas estão aplicadas nestas rótulas.
Assunto: Estruturas Isostáticas Momento Fletor e Cortante Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] 6.1 Generalidades As forças são classificadas em: externas e internas. Todos
Disciplina: Sistemas Estruturais Disciplina: Sistemas Estruturais Assunto: Estruturas Isostáticas Prof. Ederaldo Azevedo Aula 5 e-mail: [email protected] Disciplina: Sistemas Estruturais 5.
Aula 4: Diagramas de Esforços internos
ula 4: Diagramas de Esforços internos Estudo das Vigas Isostáticas Como já mencionado, vigas são peças (barras) da estrutura onde duas dimensões são pequenas em relação a terceira. Isto é, o comprimento
Esforço Cortante e Momento Fletor
Esforço Cortante e Momento Fletor Esforços internos Esforços internos Devem atender a Terceira Lei de Newton (Ação e Reação) Esforços internos (a) (c) flexão positiva cisalhamento positivo (b) (d) flexão
Univer Univ sidade Feder sidade F al de Alagoas Centro de Tecnologia Curso d de E Engenharia i Ci Ci i v lil T oria das Estruturas I Aula Aula 10
Universidade Federal de lagoas entro de Tecnologia urso de Engenharia ivilil Teoria das Estruturas I ula 10 Prof. Flávio arboza de Lima ula 09 enário Estruturas Isostáticas Planas Esforços Internos Solicitantes
RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos
RESISTÊNCI DOS MTERIIS 2 Marcel Merlin dos Santos REVISÃO DE DIGRM DE ESORÇOS INTERNOS SOLICITNTES Vamos imaginar que a barra B esteja sendo seccionada. Vamos considerar qua a barra tenha 6 m de comprimento
23.(UNIFESPA/UFPA/2016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros.
.(UNIFESPA/UFPA/016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros. Figura 5 Viga de madeira de seção composta pregada. Dimensões em centímetros.
P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.
Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha
CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS
CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma
Texto de apoio às aulas presenciais compilação de exercícios resolvidos
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO PEF2308 Fundamentos de Mecânica das Estruturas Prof. Osvaldo Nakao Texto de apoio às aulas presenciais compilação de exercícios resolvidos Elaborado pelos acadêmicos
FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: S2 Data: 24/NOV/
CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS
CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma
EQUILÍBRIO INTERNO DE ESTRUTURAS
EQUILÍBRIO INTERNO DE ETRUTURA ORÇA AXIAL, CORTANTE E MOMENTO LETOR: Apesar de na prática uma estrutura possuir três dimensões, podemos reduzir este sistema em planos e semi-planos. ocalizaremos nossa
Teoria das Estruturas I - Aula 06
Teoria das Estruturas I - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Prof. Juliano J. Scremin 1 Aula 06 - Seção 01: Barras Inclinadas 2 Barras Inclinadas:
MAC de outubro de 2009
MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em
pef2602 estruturas na arquitetura II: sistemas reticulados flaviobragaia gisellemendonça leonardoklis natáliatanaka steladadalt equipe26
pef2602 estruturas na arquitetura II: sistemas reticulados exercício01 setembro/2009 flaviobragaia gisellemendonça leonardoklis equipe26 natáliatanaka steladadalt 1 viga isostática equações de equilíbrio
FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula: Assinale a(s) avaliação(ões) que perdeu: A1 A2
efeito: movimento P = m. g
CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. Conceito: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma
Mecânica Geral II Notas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori
Mecânica Geral II otas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori Forças em vigas e em cabos Introdução Analisaremos dois tipos de forças internas em dois tipos de estruturas em engenharia:. Vigas.
Deflexão em vigas de eixo reto
10 de novembro de 2016 Linha elástica da flexão é a curva formada pelo eixo de uma viga inicialmente retilíneo, devido à aplicação de momentos de flexão. Figura : Exemplo de viga em flexão Antes da aplicação
CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS
1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não
MÉTODO DAS FORÇAS (FLEXIBILIDADE OU COMPATIBILIDADE)
MÉTODO DAS FORÇAS (FLEXIBILIDADE OU COMPATIBILIDADE) A metodologia utilizada pelo Método das Forças para analisar uma estrutura hiperestática é: Somar uma série de soluções básicas que satisfazem as condições
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Terceira Prova 25/11/2002 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁISE DE ESTRUTURAS II 2º Semestre 02 Terceira Prova 25/11/02 Duração: 2:30 hs Sem Consulta 1ª Questão (4,0 pontos) Para uma viga de ponte, cujo modelo estrutural é apresentado abaixo, calcule
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
5 TRAÇADO DE DIAGRAMAS DE SOLICITAÇÕES INTERNAS
16 TRÇDO DE DIGRS DE SOLIITÇÕES INTERNS seguir, se verá duas abordagens diferentes para se traçar os diagramas de solicitações internas em estruturas: de forma analítica, i.e., determinando-se funções
Teoria das Estruturas - Aula 06
Teoria das Estruturas - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Pórticos Compostos Exemplo de Modelagem Estrutural Prof. Juliano J. Scremin 1
Teoria das Estruturas - Aula 12
Teoria das Estruturas - Aula 12 Linhas de Influência de Estruturas Isostáticas (3) Envoltórias; LI s de Treliças; Prof. Juliano J. Scremin 1 Aula 12 - Seção 1: Envoltórias 2 Envoltórias Limites As Envoltórias
ESFORÇOS SOLICITANTES EM VIGAS. André Luis Christoforo Cássio Fernando Simioni
ESFORÇOS SOLICITANTES E VIGAS André Luis Christoforo Cássio Fernando Simioni 1.0 - Introdução Até o momento o curso de mecânica esteve voltado para o equilíbrio eterno dos corpos, considerando os mesmos
14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.
14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar
Teoria das Estruturas I - Aula 07
Teoria das Estruturas I - Aula 07 Arcos Isostáticos Definição e Tipos Casos Particulares de Arcos Equação do Arco Parabólico de 2º. Grau, Equação da Linha de Pressões e Arcos com Apoios Desnivelados Prof.
Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra1)
Exercício 2 Determinar os diagramas de esforços solicitantes para a viga abaixo pelo Equação dos Três Momentos. Determinar todos os pontos de momentos máximos. Calcular também as reações de apoio.. Solução:
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar cisalhamento transversal Compreender quando ocorre o cisalhamento transversal Determinar
EXERCÍCIOS RESOLVIDOS
IBMEC Graduação em Engenharia Civil Teoria das Estruturas I EXERCÍCIOS RESOLVIDOS 1. Classifique as estruturas abaixo quanto à estaticidade: (a) : estrutura isostática (4 variáveis, 4 equações) (b) : estrutura
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
Treliças Definição Métodos dos Nós ou Método de Cremona
Treliças São estruturas constituídas por barras de eixo retilíneo, articuladas entre si em suas extremidades, formando malhas triangulares. As articulações (ou juntas) são chamadas de nós. Como as cargas
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2018-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos
Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k
Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Cristina Boeres Instituto de Computação (UFF) Fundamentos de Arquiteturas de Computadores Material de Fernanda Passos
ENG1200 Mecânica Geral Semestre Lista de Exercícios 5 - Força Cortante e Momento Fletor em Vigas
ENG1200 Mecânica Geral Semestre 2013.2 Lista de Eercícios 5 - Força Cortante e Momento Fletor em Vigas Questão 1 Prova P2 2013.1 Calcular as reações de apoio, determinar as epressões matemáticas e traçar
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Estruturas Submetidas à Flexão e Cisalhamento
Esforços Elementares em Peças Lineares
CAPÍTULO III Esforços Elementares em Peças Lineares SEMESTRE VERÃO 2004/2005 Maria Idália Gomes 1/13 Capitulo III Esforços Elementares em Peças Lineares 3.1 Definição dos esforços elementares Uma estrutura
Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra 3)
Exercício 1 Determinar os diagramas de esforços solicitantes para a viga abaixo pelo Equação dos Três Momentos. Determinar todos os pontos de momentos máximos. Calcular também as reações de apoio. Solução:
RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL RESISTÊNCIA À FLEXÃO RESISTÊNCIA À FLEXÃO. Claudemir Claudino Semestre
CONTROLE DE QUALIDADE INDUSTRIAL Claudemir Claudino 2014 1 Semestre TIPOS DE APOIOS Introdução: Agora vamos estudar o dimensionamento de estruturas sujeitas a esforços de flexão, considerando-se para tal
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
Teoria das Estruturas - Aula 06
Teoria das Estruturas - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Prof. Juliano J. Scremin 1 Aula 06 - Seção 01: Barras Inclinadas 2 Barras Inclinadas:
Capítulo VI Carga Móvel
Capítulo VI Carga Móvel A análise para carga móvel consiste na obtenção dos esforços estáticos máximos devidos a carregamento que se desloca pelo eixo da estrutura. O carregamento é suposto plano e na
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 03: Estruturas Submetidas à Flexão e Cisalhamento
FACULDADE SUDOESTE PAULISTA Teoria das Estruturas
A estrutura é a parte da construção responsável pela resistência às ações externas (cargas). Uma estrutura pode estar sujeita à ação de diferentes tipos de carga, tais como pressão do vento, reação de
Teoria das Estruturas - Aula 03
Teoria das Estruturas - Aula 03 Relações Diferenciais entre Mom. Fletores, Esforços Cortantes e Carregamentos Diagramas de Estado de Momento Fletor (M) e Esforço Cortante (V); Equação da Linha Elástica;
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1
CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine
Resistência dos Materiais
- Forças Internas em vigas (diagramas de esforços) Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e V. Dias da Silva Índice Revisões da estática Tipos de apoio Diagrama
ENG 1204 ANÁLISE DE ESTRUTURAS II 1º Semestre Terceira Prova 24/06/2015 Duração: 2:30 hs Sem Consulta. Nome: Matrícula:
ENG 12 ANÁLISE DE ESTRUTURAS II 1º Semestre 215 Terceira Prova 2/6/215 Duração: 2:3 hs Sem onsulta Nome: Matrícula: 1ª Questão (, pontos) Você está envolvido no projeto de uma ponte rodoviária cujo sistema
Polígrafo Mecânica para Engenharia Civil
Universidade Federal do Pampa (UFP/UFSM) Centro de Tecnologia de Alegrete - CTA Curso de Engenharia Civil Polígrafo Mecânica para Engenharia Civil Prof Almir Barros da S. Santos Neto Polígrafo elaborado
FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
FESP Faculdade de Engenharia São Paulo Avaliação: A2 Data: 15/set/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Duração: 85 minutos Nome: Matrícula
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS PROF.: KAIO DUTRA A Linha Elástica A deflexão de uma estrutura é causada por seu carregamento interno como a força normal, força cortante,
Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.
Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois
Treliças. 2 a QUESTÃO - 2 a PROVA DE ( 3,0 )
Treliças 2 a QUESTÃO - 2 a ROV DE 199 - ( 3,0 ) Considere-se a treliça da figura abaixo. Sabe-se que para que ela trabalhe com segurança, as forças de compressão em suas barras não podem ser superiores
Capítulo 2 Cargas e esforços
Cargas e esforços Professora Elaine Toscano Capítulo 2 Cargas e esforços 2.1 Cargas té o presente momento foram adotadas apenas cargas concentradas e cargasmomento nos exemplos, no entanto, na prática,
CAPÍTULO VII FLEXÃO PURA
59 CAPÍTULO VII FLEXÃO PURA I. ELEMENTOS DE VIGA São elementos lineares, isto é, que apresentam uma das dimensões (comprimento) muito maior do que as outras duas (dimensões da seção transversal) e que
Prof. Dr. Eduardo Lenz Cardoso
Introdução ao Método dos Elementos Finitos Prof. Dr. Eduardo Lenz Cardoso [email protected] Breve Curriculo Dr. Eng Mecânica UFRGS/DTU Prof. Subst. UFRGS (Mecânica dos Sólidos I/ MEF/ Mecânica dos
Para traçar o DEC e o DMF de vigas isostáticas
6 PASSOS Para traçar o DEC e o DMF de vigas isostáticas Paulo Castelo Branco Com Mapa Mental Sobre este e-book Este e-book ajudará você a compreender como funcionam os esforços internos em uma viga isostática
VIGAS. Figura 1. Graus de liberdade de uma viga no plano
VIGS 1 INTRODUÇÃO viga é um dos elementos estruturais mais utiliados em ontes, assarelas, edifícios rincialmente ela facilidade de construção. Qual a diferença entre a viga e a barra de treliça? Uma viga
Disciplina: Mecânica Geral - Estática
Disciplina: Mecânica Geral - Estática II. Forças Distribuídas Prof. Dr. Eng. Fernando Porto A barragem Grand Coulee (EUA) suporta 3 tipos diferentes de forças distribuídas: o peso de seus elementos construtivos,
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos
Teoria Clássica das Placas
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Fleão de Placas ANÁLISE DE ESTRUTURAS I PROF. EVANDRO PARENTE JUNIOR (UFC) PROF. ANTÔNIO MACÁRIO
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE I Prof. Dr. Danie Caetano 2014-1 Objetivos Conceituar forças cortantes e momentos fetores Capacitar para o traçado de diagramas de cortantes e momento fetor em
Caso zero de carregamento: No caso zero de carregamento, aplicamos à isostática o carregamento da hiperestática.
Módulo 4 - Resolução de estruturas uma vez hiperestáticas externamente e com todas as suas barras solicitadas por momento fletor, sem a presença de torção, através do Processo dos Esforços. O Processo
Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte
Dimensionamento de Estruturas em Aço Parte 1 Módulo 4 2ª parte Sumário Módulo 4: 2ª Parte Edifícios estruturados em Aço Dimensionamento de um edificio de 5 pavimentos estruturado em Aço Dados do projeto
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos
Teoria das Estruturas - Aula 11
Teoria das Estruturas - Aula 11 Linhas de Influência de Estruturas Isostáticas (2) Processo de Muller-Breslau; Trem-Tipo; L.I. s de Vigas Gerber; Prof. Juliano J. Scremin 1 Aula 11 - Seção 1: Processo
24/03/2014 ESTABILIDADE DAS CONSTRUÇÕES II AULA 05 METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com
ESTABILIDADE DAS CONSTRUÇÕES II AULA 05 METODOLOGIA DA DISCIPLINA Site da disciplina: engpereira.wordpress.com 1 METODOLOGIA DA DISCIPLINA Material disponibilizado: 1- Programação das aulas: METODOLOGIA
Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:
6. MÉTODO DOS DESLOCAMENTOS
6. MÉTODO DOS DESLOCAMENTOS Conforme foi introduzido na Seção.3 do Capítulo, o Método dos Deslocamentos pode ser considerado como o método dual do Método das Forças. Em ambos os métodos a solução de uma
Modelagem Computacional. Parte 8 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
Sumário e Objectivos. Mecânica dos Sólidos 10ª Aula. Lúcia M.J.S. Dinis 2007/2008
Sumário e Objectivos Sumário: onceito de viga. Vigas Isostáticas. Equações de Equilíbrio de Forças e Momentos. Reacções de poio. Esforços Transversos e Momentos Flectores. Esforço ial. Diagramas de Esforços.
Capítulo 5 Carga Axial
Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Determinar a tensão normal e as deformações em elementos
LOM Teoria da Elasticidade Aplicada
Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações
ANÁLISE MATRICIAL DE ESTRUTURAS COM ORIENTAÇÃO A OBJETOS
ANÁLISE MATRICIAL DE ESTRUTURAS COM ORIENTAÇÃO A OBJETOS Luiz Fernando Martha Capítulo 0 Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio Departamento de Engenharia Civil Rua Marquês de São Vicente,
MECÂNICA GERAL 1 Marcel Merlin dos Santos
MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Equações de equilíbrio Diagrama de corpo livre Equilíbrio de estruturas bidimensionais Exercícios Prova da aula 1 EQUAÇÕES DE EQUILÍBRIO Para que
Interpolação polinomial: Diferenças divididas de Newton
Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500
Isostática 3. Equilíbrio de Corpos Rígidos
Isostática 3. Equilíbrio de Corpos Rígidos Rogério de Oliveira Rodrigues 3.1. Conceito de Deslocamento Deslocamento é definido como a variação de posição de um corpo, ou parte dele, dentro de uma determinada
APOSTILA DE TEORIA DAS ESTRUTURAS
APOSTILA DE TEORIA DAS ESTRUTURAS Prof. ROMILDO APARECIDO SOARES JUNIOR CAMPINAS SP 2016 Apostila de Teoria das Estruturas Prof.: Romildo Junior Página 1 DEDICATÓRIA A seguinte apostila é dedicada as pessoas
Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
