Teoria das Estruturas - Aula 11
|
|
|
- Renato Imperial Bergler
- 8 Há anos
- Visualizações:
Transcrição
1 Teoria das Estruturas - Aula 11 Linhas de Influência de Estruturas Isostáticas (2) Processo de Muller-Breslau; Trem-Tipo; L.I. s de Vigas Gerber; Prof. Juliano J. Scremin 1
2 Aula 11 - Seção 1: Processo de Müller-Breslau 2
3 Enunciado do Princípio de Muller-Breslau A linha de Influência de um esforço numa determinada seção transversal de uma estrutura tem a mesma forma da deformada da estrutura quando da retirada da capacidade de resistência ao esforço na própria seção, com a aplicação de um deslocamento unitário negativo correlato ao esforço em análise. Momento Fletor Inclinação Unitária Negativa Esforço Cortante, Esforço Normal, Reações de Apoio Translação Unitária Negativa 3
4 Aplicação do Processo de Müller-Breslau a) Retira-se o vínculo da reação ou do esforço seccional relativo àquele para o qual se deseja determinar a linha de influência; b) No local onde havia o vínculo aplica-se um deslocamento unitário negativo (translação ou rotação conforme o esforço em questão); c) Com base no deslocamento aplicado traça-se a deformada da estrutura sendo que os deslocamentos resultantes em cada um dos pontos da estrutura deformada equivalem as ordenadas da linha de influência do esforço em questão e em relação ao ponto/seção onde o vínculo foi retirado. 4
5 Müller-Breslau: Reações de Apoio 5
6 Müller-Breslau: Momento entre Apoios tttt αα = (LL cc) LL tttt ββ = cc LL tttt αα + tttt ββ = 11 6
7 Müller-Breslau: Cortante entre Apoios 7
8 Müller-Breslau: Momento em Balanço tttt φφ = 11 8
9 Müller-Breslau: Cortante em Balanço 9
10 Aula 9 - Seção 2: Trem-Tipo 10
11 Definição de Trem-Tipo Um trem-tipo é um conjunto de forças móveis, concentradas e/ou distribuídas, de valores constantes e de distâncias relativas fixas entre si, que representam a combinação prevista de veículos e de pessoas que atravessarão a estrutura, em situação mais desfavorável, sendo esta combinação usualmente definida em normas de projeto. No Brasil utilizam-se as seguintes normas: NBR 7188 Carga móvel em ponte rodoviária e passarela de pedestres NBR 7189 Cargas móveis para projeto estrutural de obras ferroviárias 11
12 Exemplos de Trem-Tipo 12
13 Aula 11 - Seção 3: L.I. s de Vigas Gerber 13
14 Roteiro para Traçado de L.I. s de Vigas Gerber (1) 1. Esboçar o Esquema Funcional da Viga Gerber: Decompor a Viga Gerber nas vigas isostáticas simples componentes com a clara distinção de quais são as vigas autoportantes e quais são as vigas dependentes Indicar claramente os relacionamentos de dependência de suporte entre as vigas; 2. Traçar inicialmente a linha de influência da viga simples que contenha a seção de interesse (ou o apoio) 14
15 Roteiro para Traçado de L.I. s de Vigas Gerber (2) 3. Proceder o prolongamento da linha de influência traçada na viga que contém a seção de interesse para as demais vigas associadas conforme as regras a seguir: L.I. s são sempre nulas sobre os apoios, logo, se na viga subsequente houver um apoio real, prolongue o traçado da L.I. passando com zero sobre o apoio e siga o traço até o fim da viga subsequente. (Isso também vale para L.I. s de reações de apoio pois somente o apoio analisado terá valor 1 sobre si na L.I., os demais continuarão tendo ordenada zero ) Se no prolongamento da viga subsequente não houver apoios reais, ou seja, se a viga na extremidade oposta termina numa rótula, ligue o traçado da L.I. adotando ordenada zero sobre esta rótula no outro extremo. 15
16 Exemplos de L.I.s de Vigas Gerber Esboço do Esquema Funcional 16
17 Exemplos de L.I.s de Viga Gerber LI de MS1 17
18 Exemplos de L.I.s de Viga Gerber LI de MS2 18
19 Exemplos de L.I.s de Viga Gerber LI de MS3 19
20 Exemplo de L.I.s de Viga Gerber LI de MS4 20
21 Exemplos de L.I.s de Viga Gerber LI de MS5 21
22 Exemplos de L.I.s de Viga Gerber LI de MS6 22
23 Exemplos de L.I.s de Viga Gerber LI de MS7 23
24 Exemplos de L.I.s de Viga Gerber LI de MS8 24
25 Exemplos de L.I.s de Viga Gerber LI de MS9 25
26 Exemplos de L.I.s de Viga Gerber LI de MS10 26
27 Exemplos de L.I.s de Viga Gerber LI de VS1 27
28 Exemplos de L.I.s de Viga Gerber LI de VS2 28
29 Exemplos de L.I.s de Viga Gerber LI de VS3 29
30 Exemplos de L.I.s de Viga Gerber LI de VS4 30
31 Exemplos de L.I.s de Viga Gerber LI de VS5 31
32 Exemplos de L.I.s de Viga Gerber LI de VS6 32
33 Exemplos de L.I.s de Viga Gerber LI de VS7 33
34 Exemplos de L.I.s de Viga Gerber LI de VS8 34
35 Exemplos de L.I.s de Viga Gerber LI de VS9 35
36 Exemplos de L.I.s de Viga Gerber LI de VS10 36
37 Exemplos de L.I.s de Viga Gerber LI de RB 37
38 Exemplos de L.I.s de Viga Gerber LI de RD 38
39 Exemplos de L.I.s de Viga Gerber LI de RF 39
40 Exemplos de L.I.s de Viga Gerber LI de RG 40
41 Exemplos de L.I.s de Viga Gerber LI de RJ 41
42 Exemplos de L.I.s de Viga Gerber LI de RK 42
43 FIM 43
44 Exercício 11.1 Trace as linhas de influência de MS1, MS2, QS1 e QS2 e calcule o máximo e o mínimo momento fletor e o máximo e o mínimo esforço cortante, que podem ocorrer em cada seção, mediante a aplicação do trem-tipo indicado: 44
45 Exercício 11.2 Trace as linhas de influência de MS1, MS2, QS1 e QS2; calcule e indique quais os piores casos de momento fletor positivo e negativo e esforço cortante (sem considerar sinal) para ambas seções: 45
46 Exercício 11.3 Trace as linhas de influência de momento fletor e esforço cortante para todas as seções indicadas e aplique o trem-tipo esboçado calculando: a) o máximo momento fletor das seções 1 e 3; b) o mínimo esforço cortante das seções 1 e 2; 46
47 Exercício 11.4 Trace as linhas de influência de: a) Momento Fletor para S1 e S3; b) Esforço Cortante para S2 e S3; Calcule, considerando a aplicação do trem tipo indicado: c) Qual o mínimo momento fletor que a seção S1 sofrerá. d) Qual o máximo momento fletor que a seção S3 sofrerá; e) Qual o máximo cortante (em módulo) que a seção S2 sofrerá; 47
48 Exercício 11.5 Para a Viga Gerber abaixo: a) Trace a Linha de Influência de Momentos Fletores para a Seção S1; b) Trace a Linha de Influência de Esforços Cortantes para a Seção S2; c) Determine o Mínimo Momento Fletor que pode ocorrer na Seção S1; d) Determine o Máximo Momento Fletor que pode ocorrer na Seção S1; e) Determine o Mínimo Esforço Cortante que pode ocorrer na Seção S2; f) Determine o Máximo Esforço Cortante que pode ocorrer na Seção S2; 48
PONTES. Prof. Esp. Márcio Matos
PONTES Prof. Esp. Márcio Matos Ações Linha de Influência Ações Permanentes Ações Variáveis Ações Excepcionais Ações Linha de Influência Diversas estruturas são solicitadas por cargas móveis. Exemplos são
Teoria das Estruturas - Aula 10
Teoria das Estruturas - Aula 10 Linhas de Influência de Estruturas Isostáticas (1) Introdução às Linhas de Influência; L.I. de Vigas Biapoiadas; L.I. de Vigas Engastadas em Balanço; Prof. Juliano J. Scremin
ANÁLISE ESTRUTURAL I NOTAS DE AULA
ÁLIE ETRUTURL I OT DE UL ssunto: Linhas de Influência de Estruturas Isostáticas Prof. Roberto Márcio da ilva 1-) ITRODUÇÃO s linhas de influência tem uma importante aplicação no projeto de estruturas submetidas
Univer Univ sidade Feder sidade F al de Alagoas Centro de Tecnologia Curso d de E Engenharia i Ci Ci i v lil T oria das Estruturas I Aula Aula 10
Universidade Federal de lagoas entro de Tecnologia urso de Engenharia ivilil Teoria das Estruturas I ula 10 Prof. Flávio arboza de Lima ula 09 enário Estruturas Isostáticas Planas Esforços Internos Solicitantes
Teoria das Estruturas - Aula 09
Teoria das Estruturas - Aula 09 Cálculo de Deslocamentos em Estruturas Isostáticas (2) Princípio dos Trabalhos Virtuais aplicado a Treliças; Princípio dos Trabalhos Virtuais aplicado a Vigas e Pórticos;
Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas
Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas Fonte: HIBBELER, R. C. Resistência dos Materiais. 5. ed. São Paulo: PEARSON, 2004. 14.20 /14.22 14.24 /14.26 Resposta: 11,72 mm Resposta: 33,68
EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS (adaptado TAGUTI 2002)
EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS (adaptado TAGUTI 2002) ROTEIRO DE CÁLCULO I - DADOS Ponte rodoviária. classe TB 450 (NBR-7188) Planta, corte e vista longitudinal (Anexo)
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II PROFESSOR: Eng. CLÁUDIO MÁRCIO RIBEIRO ESPECIALISTA EM ESTRUTURAS Estrutura Definição: Estrutura é um sistema destinado a proporcionar o equilíbrio
Exercícios de esforços solicitantes - prof. Valério SA Universidade de São Paulo - USP
São Paulo, deembro de 2015. Eercícios complementares de apoio aos alunos que cursam as disciplinas de Introdução a ecânica das Estruturas para os cursos da Engenharia Civil ou de Resistência dos ateriais
FACULDADES INTEGRADAS EINSTEIN DE LIMEIRA
FUDDES INTEGRDS EINSTEIN DE IMEIR urso de Graduação em Engenharia ivil Teoria das Estruturas I - 20 Prof. José ntonio Schiavon, MSc. NOTS DE U ula 7: inha de Influência em Estruturas Isostáticas. Objetivo:
Teoria das Estruturas - Aula 07
Teoria das Estruturas - Aula 07 Arcos Isostáticos Definição e Tipos Casos Particulares de Arcos Equação do Arco Parabólico de 2º. Grau, Equação da Linha de Pressões e Arcos com Apoios Desnivelados Prof.
Capítulo VI Carga Móvel
Capítulo VI Carga Móvel A análise para carga móvel consiste na obtenção dos esforços estáticos máximos devidos a carregamento que se desloca pelo eixo da estrutura. O carregamento é suposto plano e na
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
EXERCÍCIO 4.3. CE2 Estabilidade das Construções II Linhas de Influência Vigas Contínuas. Página 1 de 8
EXERCÍCIO 4.3 Determinar, aproximadamente, os MOMENTOS FLETORES MÁXIMO E MÍNIMO NA SEÇÃO S1 da viga contínua, esquematizada na Figura 12, considerando os carregamentos uniformemente distribuídos permanente
Teoria das Estruturas - Aula 06
Teoria das Estruturas - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Pórticos Compostos Exemplo de Modelagem Estrutural Prof. Juliano J. Scremin 1
Ftool Roteiro para criação de um modelo de ponte com carga permanente e móvel e visualização de resultados
Ftool Roteiro para criação de um modelo de ponte com carga permanente e móvel e visualização de resultados Versão 4.00 Junho de 2017 https://www.alis-sol.com.br/ftool Este tutorial: https://www.alis-sol.com.br/docs/ftool/downloads/roteirotremtipo.zip
Teoria das Estruturas - Aula 07
Teoria das Estruturas - Aula 07 Arcos Isostáticos Definição e Tipos Casos Particulares de Arcos Equação do Arco Parabólico de 2º. Grau, Equação da Linha de Pressões e Arcos com Apoios Desnivelados Prof.
Texto de apoio às aulas presenciais compilação de exercícios resolvidos
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO PEF2308 Fundamentos de Mecânica das Estruturas Prof. Osvaldo Nakao Texto de apoio às aulas presenciais compilação de exercícios resolvidos Elaborado pelos acadêmicos
TEORIA DAS ESTRUTURAS I PROF.: VICTOR MACHADO
TEORIA DAS ESTRUTURAS I PROF.: VICTOR MACHADO UNIDADE II - NOÇÕES DAS ESTRUTURAS EM BARRAS AÇÕES ATUANTES NAS ESTRUTURAS Ações estáticas Peso próprio das estruturas Sobrecarga de pessoas Equipamentos Revestimentos
EXERCÍCIOS RESOLVIDOS
IBMEC Graduação em Engenharia Civil Teoria das Estruturas I EXERCÍCIOS RESOLVIDOS 1. Classifique as estruturas abaixo quanto à estaticidade: (a) : estrutura isostática (4 variáveis, 4 equações) (b) : estrutura
Capítulo 4 Diagramas de esforços em pórticos planos
Diagramas de esforços em pórticos planos Professora Elaine Toscano Capítulo 4 Diagramas de esforços em pórticos planos 4.1 Pórticos planos Este capítulo será dedicado ao estudo dos quadros ou pórticos
Arquitetura e Urbanismo
Arquitetura e Urbanismo Sistemas Estruturais 1 APONTAMENTOS DE AULA Prof. Ricardo Karvat http://paginapessoal.utfpr.edu.br/karvat 2016/2 CLASSIFICAÇÃO DAS ESTRUTURAS ESTRUTURAS: Estrutura é todo conjunto
FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula: Assinale a(s) avaliação(ões) que perdeu: A1 A2
FACULDADE SUDOESTE PAULISTA Teoria das Estruturas
A estrutura é a parte da construção responsável pela resistência às ações externas (cargas). Uma estrutura pode estar sujeita à ação de diferentes tipos de carga, tais como pressão do vento, reação de
P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.
Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha
Distribuição Transversal para Pontes em Vigas Múltiplas Protendidas
Distribuição Transversal para Pontes em Vigas Múltiplas Protendidas Vanderlei de Souza Almeida 1, Ricardo Valeriano Alves 2, Flávia Moll de Souza Judice 3 Resumo 1 Universidade Federal do Rio de Janeiro
Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura.
52 CAPÍTULO V CÁLCULO DAS REAÇÕES EXTERNAS I. GENERALIDADES Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura. Os vínculos
CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES
CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES ESTABILIDADE ESFORÇOS SIMPLES Apostila Organizada pelo professor: Edilberto Vitorino de Borja 2016.1 1. CARGAS ATUANTES NAS ESTRUTURAS 1.1 CARGAS EXTERNAS Uma estrutura
FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos
FESP Faculdade de Engenharia São Paulo Avaliação: A1 Data: 12/mai/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1
Lista de Exercícios para Prova 1 1 - Para as estruturas hiperestáticas abaixo, determine um SISTEMA PRINCIPAL válido. No SISTEMA PRINCIPAL escolhido, determine os gráficos de momento fletor e as reações
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: [email protected] victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE
Teoria das Estruturas - Aula 15
Teoria das Estruturas - Aula 15 Estruturas Hiperestáticas: Método dos Deslocamentos (1) Conceitos Básicos; Descrição do Método; Prof. Juliano J. Scremin 1 Aula 15 - Seção 1: Conceitos Básicos 2 Analogia
Mecânica Geral II Notas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori
Mecânica Geral II otas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori Forças em vigas e em cabos Introdução Analisaremos dois tipos de forças internas em dois tipos de estruturas em engenharia:. Vigas.
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS PROF.: KAIO DUTRA A Linha Elástica A deflexão de uma estrutura é causada por seu carregamento interno como a força normal, força cortante,
plano da figura seguinte. A rótula r expressa que não háh
Método das Forças Sistema Principal Consideremos o pórtico p plano da figura seguinte. A rótula r em D expressa que não háh transmissão de momento fletor da barra CD para a extremidade D das barras BD
Disciplina: Sistemas Estruturais Disciplina: Sistemas Estruturais Assunto: Estruturas Isostáticas Prof. Ederaldo Azevedo Aula 5 e-mail: [email protected] Disciplina: Sistemas Estruturais 5.
Deflexão em vigas e eixos
Capítulo 12: Deflexão em vigas e eixos Adaptado pela prof. Dra. Danielle Bond Deflexão em Vigas e Eixos Muitas vezes é preciso limitar o grau de deflexão que uma viga ou eixo pode sofrer quando submetido
MAC de outubro de 2009
MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em
Nota: Engenharia Civil. Disciplina: Teoria das Estruturas. Turma:
Engenharia Civil Exame Final: 2014 Disciplina: Teoria das Estruturas TE14-EFb Nota: Turma: Aluno: Matrícula: Orientações: Leia atentamente todas as instruções da prova. Não é permitida a comunicação entre
Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf
Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf [email protected] Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo
Teoria das Estruturas - Aula 02
Teoria das Estruturas - Aula 02 Modelagem Estrutural Introdução à Modelagem Estrutural Reações de Apoio em Estruturas Isostáticas Planas (Revisão) Modelos Estruturais Planos Usuais Determinação Estática
CIR CIR CIR m CIR 12 CIR 1. Estruturas reticuladas simples Problema
Estruturas reticuladas simples roblema C B 4 A 3 4 m Calcule todas as reacções externas. As forças aplicadas actuam no meio das barras. Resolução (verificação da estatia: Estática) H A: libertação e a
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 03: Estruturas Submetidas à Flexão e Cisalhamento
FACULDADE DE ENGENHARIA DE SOROCABA TEORIA DAS ESTRUTURAS
FACENS FACULDADE DE ENGENHARIA DE SOROCABA TEORIA DAS ESTRUTURAS LINHAS DE INFLUÊNCIA DOS SISTEMAS PLANOS ISOSTÁTICOS Prof. JOSÉ LUIZ F. de ARRUDA SERRA Sumário 01. Introdução... 01 02. Linhas de influência...
Pontifícia Universidade Católica de Goiás
Pontifícia Universidade Católica de Goiás Escola de Engenharia Curso: Engenharia Civil Disciplina: ENG2004 - Estruturas de Concreto Armado I Semestre: 2015.2 Painel de Lajes Maciças apoiadas em vigas apoiadas
VIGAS. Figura 1. Graus de liberdade de uma viga no plano
VIGS 1 INTRODUÇÃO viga é um dos elementos estruturais mais utiliados em ontes, assarelas, edifícios rincialmente ela facilidade de construção. Qual a diferença entre a viga e a barra de treliça? Uma viga
Estruturas de Aço e Madeira Aula 06 Vigas de Alma Cheia (1)
Estruturas de Aço e Madeira Aula 06 Vigas de Alma Cheia (1) - Introdução: Estados Limites Últimos para Vigas - Ideias Básicas para o Dimensionamento de Vigas em Aço - Classificação das Vigas Metálicas
FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
FESP Faculdade de Engenharia São Paulo Avaliação: A2 Data: 15/set/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Duração: 85 minutos Nome: Matrícula
Universidade Federal do Ceará. Mecânica para Engenharia Civil II. Profa. Tereza Denyse. Agosto/ 2010
Universidade Federal do Ceará Mecânica para Engenharia Civil II Profa. Tereza Denyse Agosto/ 2010 Roteiro de aula Introdução Estruturas Esforços externos Esforços internos Elementos estruturais Apoios
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre 2007 Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta 1ª Questão (5,5 pontos) Determine pelo Método das Forças o diagrama de momentos fletores
Assunto: Estruturas Isostáticas Momento Fletor e Cortante Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] 6.1 Generalidades As forças são classificadas em: externas e internas. Todos
PONTES. Prof. Esp. Márcio Matos
PONTES Prof. Esp. Márcio Matos Ações Linha de Influência Ações Permanentes Ações Variáveis Ações Excepcionais Ações Ações nas Pontes Conforme a NBR 8681:2003 (Ações e Segurança nas Estruturas - Procedimento),
Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008
Sumário e Objectivos Sumário: Método da Viga Conjugada. Objectivos da Aula: Ser capaz de determinar a flecha e a inclinação num ponto fazendo uso do Método da Viga Conjugada 1 Viga Flectida Estrutura de
Cargas móveis: Determinação do Trem-tipo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIENCIAS EXATAS E TECNOLOGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: ESTRUTURAS DE PONTES Cargas móveis: Determinação do
UNIP - Universidade Paulista SISTEMAS ESTRUTURAIS CONCRETO SEC
- 1 - UNIP - Universidade Paulista CONCRETO SEC NOTAS DE AULA - 01 PRÉ-DIMENSIONAMENTO DE ESTRUTURAS CONCRETO (SEC) NOTAS DE AULA - PARTE 1 PRÉ-DIMENSIONAMENTO DE ESTRUTURAS - 2 - NA_01/2014 1. CARGAS
Construções Metálicas I AULA 6 Flexão
Universidade Federal de Ouro Preto Escola de inas Ouro Preto - G Construções etálicas I AULA 6 Flexão Introdução No estado limite último de vigas sujeitas à flexão simples calculam-se, para as seções críticas:
ESTRUTURAS METÁLICAS LIGAÇÕES - APOIOS. Prof. Alexandre Augusto Pescador Sardá
ESTRUTURAS METÁLICAS LIGAÇÕES - APOIOS Prof. Alexandre Augusto Pescador Sardá LIGAÇÕES Edificações Ligações entre vigas; Ligações entre viga e coluna; Emenda de colunas; Emenda de vigas; Apoio de colunas;
RESISTÊNCIA DOS MATERIAIS AULAS 02
Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais
ESTRUTURAS DE PONTES. Sistemas Estruturais Viga, treliça e laje
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL ESTRUTURAS DE PONTES Sistemas Estruturais Viga, treliça e laje
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra1)
Exercício 2 Determinar os diagramas de esforços solicitantes para a viga abaixo pelo Equação dos Três Momentos. Determinar todos os pontos de momentos máximos. Calcular também as reações de apoio.. Solução:
CÁLCULO DE REAÇÕES DE APOIO E OBTENÇÃO DO TRAÇADO DE DIAGRAMAS DE ESFORÇOS SOLICITANTES COM O USO DO PROGRAMA FTOOL (Versão 2.11)
Universidade Estadual Paulista UNESP Faculdade de Engenharia de Bauru Curso Temático Responsável: Prof. Dr. Antonio Carlos Rigitano CÁLCULO DE REAÇÕES DE APOIO E OBTENÇÃO DO TRAÇADO DE DIAGRAMAS DE ESFORÇOS
Pontes. Principais Tipos de Pontes. Conceituação. O uso do Aço na Arquitetura 1 Aluízio Fontana Margarido. Objetivo
Pontes O uso do Aço na Arquitetura 1 Aluízio Fontana Margarido 14 Objetivo Fornecer os elementos estruturais constituintes das pontes para permitir melhor entendimento de sua concepção. Conceituação Pontes
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas
RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas Prof. José Junio Lopes BIBLIOGRAFIA BÁSICA HIBBELER, Russell Charles. Resistência dos Materiais ed. São Paulo: Pearson Prentice Hall, 2009. 1 - CONCEITOS FUNDAMENTAIS
Professora: Engª Civil Silvia Romfim
Professora: Engª Civil Silvia Romfim CRITÉRIOS DE DIMENSIONAMENTO Flexão simples reta Flexão oblíqua Flexão composta Flexo-tração Flexo-compressão Estabilidade lateral de vigas de seção retangular Flexão
CIR CIR CIR m CIR 12 CIR 1. Problema
roblema C B 4 A 3 4 m Calcule todas as reacções externas. As forças aplicadas actuam no meio das barras. Resolução (verificação da estatia: Estática) H A : libertação e a introdução da reacção incógnita
Sumário e Objectivos. Lúcia M.J.S. Dinis Resistência dos Materiais 21ªAula
Sumário e Objectivos Sumário: Vigas Hiperestáticas Objectivos da Aula: Apreender a forma como se pode superar a hiperestaticidade por aplicação do Princípio da Sobreposição de Efeitos 1 Satélite 2 Tecto
CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS
1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não
AULA J EXEMPLO VIGA-BALCÃO
AULA J INTRODUÇÃO O Projeto de Revisão da Norma NBR-6118 sugere que a descrição do comportamento estrutural seja feita de maneira mais rigorosa possível, utilizando-se programas computacionais baseados
Exercícios de Resistência dos Materiais A - Área 1
1) Calcular as reações de apoios da estrutura da figura para P1 = 15 kn, P2 = 10 kn; P3 = 2*P1 e q = 5kN/m H A = 30 kn; V A = 31,25 kn; V B = 3,5 kn 2) A prancha de Madeira apoiada entre dois prédios suporta
Estudo sobre a Trajetória de Tensões Principais em Vigas Isostáticas
Estudo sobre a Trajetória de Tensões Principais em Vigas Isostáticas Oliveira, Juliana M. (1) ; Rios, Fernanda P (1).; Sahb, Keyla F.P. (1) ; Silva, André A. (1) ; Franco, Elízia S.S. (1) ; Bueno,Fagner
SUMÁRio ,. PARTE - CONCEITOS BÁSICOS SOBRE CISALHAMENTO. CAPíTULO 1 TENSÕES DE CISAlHAMENTO NA FlEXÃO EM REGIME ELÁSTICO 12
SUMÁRio,. PARTE - CONCEITOS BÁSICOS SOBRE CISALHAMENTO CAPíTULO 1 TENSÕES DE CISAlHAMENTO NA FlEXÃO EM REGIME ELÁSTICO 12 1.1 Condições de equilíbrio na flexão simples 12 1.2 Cisalhamento nas vigas de
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Estruturas Submetidas à Flexão e Cisalhamento
ESTÁTICA DOS CORPOS RÍGIDOS. Exercícios
ESÁICA DOS CORPOS RÍGIDOS Um caso particular de movimento é o repouso --- movimento nulo. Há repouso quando os agentes causadores do movimento se compensam ou equilibram. Daí se dizer que um corpo em repouso
UFERSA / Departamento de Ciências Exatas / 2. UFERSA / Departamento de Ciências Exatas /
Método dos Deslocamentos para Análise de Estruturas: Resoluções Numéricas de Equações Lineares Rodolfo de Azevedo Palhares 1, Rafael de Azevedo Palhares 2, Lisarb Henneh Brasil 3, Dylson Junyer de Sousa
ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND
ENGENHARIA CIVIL REVISÃO TRELIÇAS Reações em Estruturas Prof. Msc. HELBER HOLLAND As treliças são um tipo de estrutura usado em engenharia normalmente em projetos de pontes e edifícios. Uma treliça é uma
A Utilização do Eurocódigo em Projetos de Alargamento e Reforço de Pontes Rodoviárias de Concreto
A Utilização do Eurocódigo em Projetos de Alargamento e Reforço de Pontes Rodoviárias de Concreto José Afonso Pereira Vitório 1 Rui Manuel de Menezes e Carneiro de Barros 2 Resumo A situação atual do tráfego
FACENS FACULDADE DE ENGENHARIA DE SOROCABA
FACENS FACULDADE DE ENGENHARIA DE SOROCABA TEORIA DAS ESTRUTURAS VIGAS CONTÍNUAS Prof. JOSÉ LUIZ F. de ARRUDA SERRA SUMÁRIO 01. Hipóteses e conceitos preliminares... 01 1.1 Introdução... 01 02. Coeficientes
Módulo 4 - Princípio dos trabalhos virtuais. Método do esforço unitário. Deslocamentos em vigas com e sem articulações. Exemplos.
ódulo 4 - Princípio dos trabalhos virtuais. étodo do esforço unitário. Deslocamentos em vigas com e sem articulações. Eemplos. O Princípio dos Trabalhos Virtuais (P.T.V.), para os corpos sólidos deformáveis
FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior
FESP Faculdade de Engenharia São Paulo Avaliação: S1 Data: 29/jun/ 2015 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior Duração: 85 minutos Nome: Matrícula
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
Aula 06 Introdução e Equilíbrio de um corpo deformável
Aula 06 Introdução e Equilíbrio de um corpo deformável Prof. Wanderson S. Paris, M.Eng. [email protected] Resistência dos Materiais Definição: É um ramo da mecânica que estuda as relações entre
MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 06: Modelagem de Vigas
Universidade Federal do Rio de Janeiro Faculdade de Arquitetura e Urbanismo Departamento de Estruturas MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 06: Modelagem de Vigas Profa. Dra. Maria Betânia de Oliveira
Aula VI Introdução ao Dimensionamento de Lajes Maciças Prof. Douglas Couri Jr.
Estruturas de concreto Armado I Aula VI Introdução ao Dimensionamento de Lajes Maciças Prof. Douglas Couri Jr. Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio
FLEXIBILIDADE E SUPORTAÇÃO AULA DEFLEXÕES
FLEXIBILIDADE E SUPORTAÇÃO AULA 10-11 DEFLEXÕES PROF.: KAIO DUTRA Diagramas de Deflexão e a Curva Elástica Deflexões de estruturas podem ocorrer de várias fontes, como cargas, temperatura, erros de fabricação,
FTOOL Roteiro para criação de um modelo de ponte com carga permanente e móvel e visualização de resultados
FTOOL Roteiro para criação de um modelo de ponte com carga permanente e móvel e visualização de resultados Versão Educacional 3.00 Agosto de 2012 http://www.tecgraf.puc-rio.br/ftool Este arquivo: http://www.tecgraf.puc-rio.br/ftp_pub/lfm/ftool300roteirotremtipo.pdf
MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 05: Modelagem de Vigas
Universidade Federal do Rio de Janeiro Faculdade de Arquitetura e Urbanismo Departamento de Estruturas MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 05: Modelagem de Vigas Profa. Dra. Maria Betânia de Oliveira
Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica. Eixos e árvores
Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica Eixos e árvores Introdução 1.1 Conceitos fundamentais 1.2 Considerações sobre fabricação 1.3 Considerações sobre projeto
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões
Aula 04 MÉTODO DAS FORÇAS. Classi cação das estruturas quanto ao seu equilíbrio estático. ² Isostática:
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Disciplina: Análise Matricial de Estruturas Professor: Antônio Macário Cartaxo de Melo Aula 04
1.5. Graus de Liberdade
1.5. Graus de Liberdade Um corpo sólido livre no espaço é suscetível de sofrer determinados deslocamentos, ou seja, descrever determinadas trajetórias denominadas de Graus de Liberdade. Graus de Liberdade
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1
CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
Resumo. Palavras-chave. Ponte Rodoviária; Método de Fauchart; Método dos Elementos Finitos. Introdução
Comparação do Método de Fauchart e do Método dos Elementos Finitos na Avaliação da Distribuição de Esforços Transversais em Pontes Rodoviárias Márcio Wrague Moura 1, Matheus Wanglon Ferreira 2, Mauro de
Corpos Rígidos Equilíbrio
CPÍTULO II Corpos ígidos Equilíbrio 30 30 kn/m E 45 kn C 20 kn/m 10 kn.m 30 kn/m D 1,0 m 2,0 m 3,0 m 4,0 m 2,0 m 3,0 m SEESTE VEÃO 2004/2005 aria Idália Gomes 1/24 Capitulo II Corpos ígidos Equilíbrio
