Teoria das Estruturas - Aula 07
|
|
|
- Rosângela do Amaral Carreira
- 8 Há anos
- Visualizações:
Transcrição
1 Teoria das Estruturas - Aula 07 Arcos Isostáticos Definição e Tipos Casos Particulares de Arcos Equação do Arco Parabólico de 2º. Grau, Equação da Linha de Pressões e Arcos com Apoios Desnivelados Prof. Juliano J. Scremin 1
2 Aula 07 - Seção 1: Definição e Tipos 2
3 Arcos (1) Definição: Arco é uma estrutura linear de eixo curvo, situada em um plano vertical, vinculada em suas extremidades de modo a que estas não sofram translações, solicitada por cargas contidas no plano referido, provocando esforços de compressão, flexão e cisalhamento. Arco Triarticulado : arco isostático, com apoios fixos e descontinuidade interna do tipo rótula. Objetivo dos arcos: vencer grandes vãos com a redução dos esforços de flexão. 3
4 Arcos (2) 4
5 Arcos (3) 5
6 Tipos de Arcos Biengastado Triarticulado Biarticulado Viga Curva 6
7 Exemplos de Utilização 7
8 Nomenclatura 8
9 Aula 07 - Seção 2: Casos Particulares de Arcos 9
10 Arcos Circulares Biapoiados Carregados Verticalmente (1) Quando um arco é solicitado somente por cargas verticais, um recurso interessante é a utilização de uma viga análoga para auxílio no cálculo dos esforços: VV SS = VV AA ssssssθθ = PP ssssssss/2 NN SS = VV AA ccccccθθ = PP cccccccc/2 MM SS = VV AA (RR RRRRRRRRθθ) = PPPP(1 cccccccc)/2 Diagrama de Momentos Fletores de uma Viga Análoga 10
11 Arcos Circulares Biapoiados Carregados Verticalmente (2) 11
12 Arcos Circulares Biapoiados Carregados Verticalmente (3) 12
13 Arcos Triarticulados Carregados Verticalmente (1) Arcos triarticulados possuem reações horizontais em seus apoios denominadas Empuxo que podem ser quantificadas (também) fazendo uso da viga análoga antes mencionada. Arco Viga Análoga 13
14 Arcos Triarticulados Carregados Verticalmente (2) HH = HH AA HH BB = 0 HH AA = HH BB = HH MM BB = VV AA. LL + PPPP(LL xx ii ) = 0 VV AA = + PPPP(LL xx ii ) / L = VV AAAA MM AA = 0 VV BB = VV BBBB Arco: MM GG = 00 VV AA. aa PPPP(aa xx ii ) - H.f = 0 Viga Análoga: MM GGGG = 00 VV AAAA. aa PPPP aa xx ii = 0 HH = MM GGGG ff M14
15 Arcos Triarticulados Carregados Verticalmente (3) HH AA = HH BB = HH MM SS (xx) = M S0 (xx) H.y(xx) V S (xx) = +V S0 (xx) cosα (x) - H senα (x) Ns(xx) = -V S0 (xx) senα(x) - H cosα (x) Sendo o ângulo α também uma função da posição x, ou seja α(x) 15
16 Ângulo α(x) Conhecida a equação do arco y(x) é possível determinar o ângulo das tangentes do arco com a horizontal, em qualquer um dos infinitos pontos que compõe o arco contínuo por meio de: α(x) = arctg ( dy(x) / dx ) 16
17 Aula 07 - Seção 3: Equação do Arco Parabólico de 2º. Grau, Equação da Linha de Pressões e Arcos com Apoios Desnivelados 17
18 Arcos Triarticulados Parabólicos Um dos formatos mais comuns de arco triarticulado é o parabólico, sendo as posições y do arco definidas por uma equação do tipo: y(x) = a + b*x + c*x^2 Conhecidos 3 pontos da parábola é possível montar um sistema linear para definição da equação do arco. Ex., dados os pontos: (X1,Y1), (X2,Y2) e (X3,Y3): YYYY = aa + bbbbbb + cccc11 22 YY22 = aa + bbbb22 + ccxx22 22 YY33 = aa + bbbb33 + cccc33 22 YY11 YYYY YYYY = 11 XXXX XX XXXX XX XXXX XX aa bb cc 18
19 Linha de Pressões A linha de pressões para um determinado carregamento permanente é a linha que define a geometria do arco de modo que este trabalhe somente com esforços normais. Um arco com estas característica é denominado arco funicular. Equação da Linha de Pressões: como a equação dos momentos fletores de um arco é função da equação do arco, fazendo M S (x) = 0 tem-se: y(x) = M S0 (x) / H Assim sendo, y(x) (equação da linha de pressões) pode ser escrita em função da equação de momentos fletores da viga análoga dividida pelo empuxo nas laterais do arco. 19
20 Arcos Triarticulados com Apoios Desnivelados HHH = MM gg ff. ccccccαα Fonte: 20
21 FIM 21
22 Exercício 7.1 Para o arco triarticulado abaixo, obter as reações de apoio e os esforços Ms, Ns, e Qs: y = x² + 1.5x 22
23 Exercício 7.2 Traçar o diagrama de momentos fletores para o arco parabólico de 2º grau abaixo: 23
24 Exercício 7.3 Obter as equações da linha de pressões da estrutura triarticulada com os apoios A e B e articulação interna em C. Calcular a força normal na seção onde a tangente é nula: ( Viga Análoga ) 24
25 Exercício 7.4 Para o arco parabólico de 2º grau triarticulado da figura abaixo determine: a) A equação do arco (considerar a origem do sistema cartesiano indicada na figura); b) As reações de apoio (V A, H A, V B, H B ); c) O momento fletor, o esforço cortante e o esforço normal na seção S indicada; 25
26 Exercício 7.5 Traçar o diagrama de esforços axiais para o arco parabólico de 2º grau abaixo: 5,0 m 5,0 m 26
27 Exercício 7.6 Obtenha as reações de apoio para o arco parabólico de 2º grau abaixo: 27
28 Exercício 7.7 Determinar os momentos fletores, os esforços cortantes e os esforços axiais para o arco circular abaixo no ponto A e no ponto B bem como no ângulos β = 30, 60, 90, 120 e 150 (sentido horário): 28
29 Exercício 7.8 Traçar os diagramas de momento fletor, esforço cortante e esforço axial para o arco parabólico de segundo grau abaixo, determinando os valores destes esforços internos a cada 1 metro do eixo horizontal (x). 29
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
Capítulo 4 Diagramas de esforços em pórticos planos
Diagramas de esforços em pórticos planos Professora Elaine Toscano Capítulo 4 Diagramas de esforços em pórticos planos 4.1 Pórticos planos Este capítulo será dedicado ao estudo dos quadros ou pórticos
Professora: Engª Civil Silvia Romfim
Professora: Engª Civil Silvia Romfim CRITÉRIOS DE DIMENSIONAMENTO Flexão simples reta Flexão oblíqua Flexão composta Flexo-tração Flexo-compressão Estabilidade lateral de vigas de seção retangular Flexão
Mecânica Geral II Notas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori
Mecânica Geral II otas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori Forças em vigas e em cabos Introdução Analisaremos dois tipos de forças internas em dois tipos de estruturas em engenharia:. Vigas.
INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA DEPARTAMENTO DE ENGENHARIA CIVIL - MECÂNICA APLICADA CAPÍTULO V. Fios e Cabos SEMESTRE VERÃO 2004/2005
CAPÍTULO V Fios e Cabos SEMESTRE VERÃO 2004/2005 Maria Idália Gomes 1/9 Capitulo V Fios e Cabos 5.1 Considerações Gerais A diferença fundamental entre fio e cabo é sobretudo na área da sua secção, que
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
Registro de descartes de lixo
s de Lixo: A B C D E Plásticos; Restos de comida; Lixo doméstico (produtos de papel, trapos, vidro, metais, garrafas, louça, etc.); Óleo de cozinha; Cinzas de incinerador; F G H I Lixo operacional; Resíduos
RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica
Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. [email protected] Conteúdo
Exercícios de Resistência dos Materiais A - Área 1
1) Calcular as reações de apoios da estrutura da figura para P1 = 15 kn, P2 = 10 kn; P3 = 2*P1 e q = 5kN/m H A = 30 kn; V A = 31,25 kn; V B = 3,5 kn 2) A prancha de Madeira apoiada entre dois prédios suporta
ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.
ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para
FIS Projeto de Apoio Eletromagnetismo
FIS1053 - Projeto de Apoio Eletromagnetismo 7ª Lista de Problemas Tema: Biot-Savart 1º Questão: Seja a espira mostrada na figura ao lado que está no plano xy e na qual passa uma corrente i no sentido anti-horário.
Assunto: Estruturas Isostáticas Momento Fletor e Cortante Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] 6.1 Generalidades As forças são classificadas em: externas e internas. Todos
Mecânica Técnica. Aula 15 Reações de Apoio em Vigas e Estruturas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 15 Reações de Apoio em Vigas e Estruturas Tópicos Abordados Nesta Aula Apoios Submetidos a Forças Bidimensionais. Cálculo de Reações de Apoio em Estruturas Isostáticas. Equações de Equilíbrio da Estática
a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial
TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular
LISTA DE EXRECÍCIOS PILARES
LISTA DE EXRECÍCIOS PILARES Disciplina: Estruturas em Concreto II 2585 Curso: Engenharia Civil Professor: Romel Dias Vanderlei 1- Dimensionar e detalhar as armaduras (longitudinal e transversal) para o
LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02
LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva
P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL RESISTÊNCIA DOS MATERIAIS
U R S ONTIFÍI UNIVERSIDDE TÓLI DO RIO GRNDE DO SUL FULDDE DE ENGENHRI URSO DE ENGENHRI IVIL RESISTÊNI DOS MTERIIS (MEÂNI DOS SÓLIDOS) EXERÍIOS rof. lmir Schäffer ORTO LEGRE JULHO DE 2007 URS - FENG Resistência
PROFº. LUIS HENRIQUE MATEMÁTICA
Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,
ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND
ENGENHARIA CIVIL REVISÃO TRELIÇAS Reações em Estruturas Prof. Msc. HELBER HOLLAND As treliças são um tipo de estrutura usado em engenharia normalmente em projetos de pontes e edifícios. Uma treliça é uma
Manual de Identidade Visual. Programa de Avaliação de Desempenho dos Técnico-Administrativos em Educação da UFJF
Manual de Identidade Visual Apresentação e Variações Manual de Identidade Visual Apresentação e Variações Manual de Identidade Visual Apresentação e Variações Manual de Identidade Visual Apresentação e
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
Carga axial. Princípio de Saint-Venant
Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente
Uma viga em balanço (figura abaixo), com comprimento 2c, engastada rigidamente na estrutura do túnel de vento é representada graficamente por:
1 a Série de exercícios Aeroelasticidade Estática Prof. Gil 2º semestre 2009 1ª Questão: Estude o problema de um modelo de uma bomba cuja geometria é axissimétrica, a ser testado em túnel de vento. Os
DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS
ivil Secção de Mecânica strutural e struturas MÂNI I NUNIOS PROLMS evereiro de 2008 PÍTULO 3 PROLM 3.1 onsidere a placa em forma de L, que faz parte da fundação em ensoleiramento geral de um edifício,
GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu
GGM0016 Geometria Analítica I 19/04/01- Turma M1 Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co
Resistência dos Materiais
Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade
Caso zero de carregamento: No caso zero de carregamento, aplicamos à isostática o carregamento da hiperestática.
Módulo 4 - Resolução de estruturas uma vez hiperestáticas externamente e com todas as suas barras solicitadas por momento fletor, sem a presença de torção, através do Processo dos Esforços. O Processo
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 3 - Parábolas Definição 1.1: Dados um ponto no plano F e uma reta d no plano, é denominada Parábola
MECÂNICA DOS SOLOS II. Acréscimos de Tensão no Solo
MECÂNICA DOS SOLOS II Acréscimos de Tensão no Solo Aula 3 - Notas de aula Distribuição de Tensão no Solo Muitos problemas em obras de engenharia são causados por recalques, empuxos de terras, e capacidade
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
7. MÉTODO DOS DESLOCAMENTOS COM RESTRIÇÕES NAS DEFORMAÇÕES
7. MÉTODO DOS DESLOCAMENTOS COM RESTRIÇÕES NAS DEFORMAÇÕES O Método dos Deslocamentos, conforme apresentado no capítulo anterior, tem uma metodologia de cálculo bem mais simples do que a metodologia do
2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução
7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica
ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos
ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 6 Corpos Submersos 1 Prova P3 2013.1 - O corpo submerso da figura abaixo tem 1m de comprimento perpendicularmente ao plano do papel e é formado
Resistência dos Materiais
Aula 7 Estudo de Torção, Ângulo de Torção Ângulo de Torção O projeto de um eixo depende de limitações na quantidade de rotação ou torção ocorrida quando o eixo é submetido ao torque, desse modo, o ângulo
Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor
Capítulo 6: Flexão Adaptado pela prof. Dra. Danielle Bond Diagramas de força cortante e momento fletor Elementos delgados que suportam carregamentos aplicados perpendicularmente a seu eixo longitudinal
Notas de Aula de Física
Versão preliminar 9 de setembro de 00 Notas de Aula de ísica. EQUIÍBRIO... CONDIÇÕES ARA O EQUIÍBRIO... SOUÇÃO DE AGUNS ROBEMAS... 0... 5... 9... 4 5... 5 7... 6 4... 7 5... 8 9... 8 rof. Romero Tavares
MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 05: Modelagem de Vigas
Universidade Federal do Rio de Janeiro Faculdade de Arquitetura e Urbanismo Departamento de Estruturas MODELAGEM DOS SISTEMAS ESTRUTURAIS Aula 05: Modelagem de Vigas Profa. Dra. Maria Betânia de Oliveira
1. Ligações em estruturas de aço
1. Ligações em estruturas de aço Bibliografia: ABNT NBR 8800:2008 Projeto de estruturas de aço e de estrutura mista de aço e concreto de edifícios QUEIROZ, G.; VILELA, P. M. L. Ligações, regiões nodais
Construções Metálicas I AULA 6 Flexão
Universidade Federal de Ouro Preto Escola de inas Ouro Preto - G Construções etálicas I AULA 6 Flexão Introdução No estado limite último de vigas sujeitas à flexão simples calculam-se, para as seções críticas:
Matriz de Avaliação de Matemática
Matriz de Avaliação de Matemática A prova de matemática do TRLQ (Teste de Raciocínio Lógico Quantitativo) tem por objetivo avaliar o preparo das pessoas que a realizam para cursar programas de ensino que
Profª.. Deli Garcia Ollé Barreto
CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro
Geometria Analítica. Geometria Analítica 28/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação
ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula
ENG1200 Mecânica Geral 2013.2 Lista de Exercícios 1 Equilíbrio da Partícula Questão 1 - Prova P1 2013.1 Determine o máximo valor da força P que pode ser aplicada na estrutura abaixo, sabendo que no tripé
Quarta lista de exercícios.
MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro
SEÇÕES CÔNICAS. Figura 1
INSTITUTO DE MATEMÁTICA UFBA DISCIPLINA: MATEMÁTICA BÁSICA II - SEM. 004.1 PROF. GRAÇA LUZIA DOMINGUEZ SANTOS SEÇÕES CÔNICAS Sejam duas retas e e r concorrentes em O, tal que o ângulo α entre e e r é diferente
CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS
1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não
Introdução cargas externas cargas internas deformações estabilidade
TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também
MÉTODOS DE ENERGIA 1 INTRODUÇÃO
MÉTODOS DE ENERGIA 1 INTRODUÇÃO Quando não ocorre dissipação de energia, o trabalho realizado pelas cargas aplicadas e a energia são iguais, sendo o trabalho um produto vetorial da força pelo deslocamento.
APLICAÇÕES NA GEOMETRIA ANALÍTICA
4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas
Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções
Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9
Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7
MADEIRA Vigas de madeira laminada e colada submetidas à flexão simples
MATERIAIS TÉCNICAS E ESTRUTURASII MADEIRA Vigas de madeira laminada e colada submetidas à flexão simples Critérios de dimensionamento para peças submetidas à flexão simples reta Vigas de madeira laminada
Sistemas de Equações Lineares e Matrizes
Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,
Professor: José Junio Lopes
Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.
Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE
Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
Tensões no Solo Exercícios
Tensões no Solo Exercícios 1. Dado o perfil geotécnico abaixo, calcule: a) as tensões devidas ao peso próprio do solo σ e σ e as pressões neutras; ( ) V V b) adotando o valor de k 0 = 0,5 para todas as
A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância.
4.1.2 Curvas Horizontais com Transição A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância. Assim, é necessário
Notas de Aula: SET 188 Introdução à Isostática
Notas de Aula: Estruturas planas deslocáveis - Cabos Notas de Aula: SET 88 Introdução à Isostática Estruturas Planas Deslocáveis CABOS Notas de Aula: Estruturas planas deslocáveis - Cabos. Teoria Geral
Universidade Federal do Ceará. Mecânica para Engenharia Civil II. Profa. Tereza Denyse. Agosto/ 2010
Universidade Federal do Ceará Mecânica para Engenharia Civil II Profa. Tereza Denyse Agosto/ 2010 Roteiro de aula Introdução Estruturas Esforços externos Esforços internos Elementos estruturais Apoios
RESISTÊNCIA DOS MATERIAIS AULAS 02
Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais
Manual de Identidade Visual
Manual de Identidade Visual ÍNDICE APRESENTAÇÃO OBJETIVO DO MANUAL 1ASSINATURA ESCALA DE CORES TIPOGRAFIA DE APOIO 2APLICAÇÃO COMUNICAÇÃO INSTITUCIONAL PEÇAS GRAFICAS 2.1 Arejamento/Proteção 2.2 Redução
PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ
PROVA DE MATEMÁTICA PRIMEIRA ETAPA - 1997 - MANHÃ QUESTÃO 01 Durante o período de exibição de um filme, foram vendidos 2000 bilhetes, e a arrecadação foi de R$ 7.600,00. O preço do bilhete para adulto
RESISTÊNCIA DOS MATERIAIS ANÁLISE DE TRELIÇAS
RESISTÊNCIA DOS MATERIAIS ANÁLISE DE TRELIÇAS Prof. JOSÉ LUIZ F. de ARRUDA SERRA 1. Generalidades Análise de treliças Uma treliça simples pode ser definida como um sistema de barras, situadas em um mesmo
LAJES COGUMELO e LAJES LISAS
LAJES COGUMELO e LAJES LISAS Segundo Montoja são consideradas lajes cogumelo as lajes contínuas apoiadas em pilares ou suportes de concreto, ou seja, sem vigas. Podem ser apoiadas diretamente nos pilares
ESTRUTURAS METÁLICAS LIGAÇÕES - APOIOS. Prof. Alexandre Augusto Pescador Sardá
ESTRUTURAS METÁLICAS LIGAÇÕES - APOIOS Prof. Alexandre Augusto Pescador Sardá LIGAÇÕES Edificações Ligações entre vigas; Ligações entre viga e coluna; Emenda de colunas; Emenda de vigas; Apoio de colunas;
Aula 15 Parábola. Objetivos
MÓDULO 1 - AULA 15 Aula 15 Parábola Objetivos Descrever a parábola como um lugar geométrico determinando a sua equação reduzida nos sistemas de coordenadas com eixo x paralelo à diretriz l e origem no
FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica
FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma
Vetores. 2. (G1 - ifpe 2012) Qual o cosseno do ângulo formado pelos vetores A 4. i 3. j e
Vetores 1. (Uece 2014) Duas únicas forças, uma de 3 N e outra de 4 N, atuam sobre uma massa puntiforme. Sobre o módulo da aceleração dessa massa, é correto afirmar-se que a) é o menor possível se os dois
Coeficiente angular. MA092 Geometria plana e analítica. Equação da reta a partir de um ponto e um ângulo. Exemplo 1
Coeficiente angular MA092 Geometria plana e analítica. e perpendiculares Resultado Uma reta não vertical, y = mx + q, tem coeficiente angular m dado pela tangente do ângulo α medido no sentido anti-horário
Tensão. Introdução. Introdução
Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e
Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais
MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05
Exercícios de Resistência dos Materiais A - Área 3
1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento
Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta
Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.
RESISTÊNCIA DOS MATERIAIS AULAS 01
Engenaria da Computação 1 4º / 5 Semestre RESISTÊNCI DOS MTERIIS ULS 01 Prof Daniel Hasse Características Geométricas de Figuras Planas SÃO JOSÉ DOS CMPOS, SP ula 01 Figuras Planas I 1- FIGURS PLNS Nesta
EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS
1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a
Conteúdo: - Alfabeto - letras k, w, y e vogais - Uso do dicionário FORTALECENDO SABERES CONTEÚDO E HABILIDADES APRENDER A APRENDER I DESAFIO DO DIA
CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA A I Conteúdo: - Alfabeto - letras k, w, y e vogais - Uso do dicionário 2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA A I Habilidades:
VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2
VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2
ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA. Prof. Alexandre Augusto Pescador Sardá
ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA Prof. Alexandre Augusto Pescador Sardá Vigas de Alma Cheia Vigas de Alma Cheia Conceitos gerais: As almas das vigas metálicas servem principalmente para ligar as
INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016
INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a
Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013
Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um
Aula 06 Introdução e Equilíbrio de um corpo deformável
Aula 06 Introdução e Equilíbrio de um corpo deformável Prof. Wanderson S. Paris, M.Eng. [email protected] Resistência dos Materiais Definição: É um ramo da mecânica que estuda as relações entre
, a equação. x, y x, y k. u, u, k. x, y 2, 3 k. 1, 2, k. Exemplo: Determina uma equação reduzida da reta que tem declive 3 e ordenada na origem 2.
Escola Secundária de lberto Sampaio Ficha Formativa de Matemática Geometria I Inclinação e declive de uma reta no plano; ângulo de duas retas; retas perpendiculares. º no Equação vetorial da reta: Dado
Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.
Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma
GABARITO DA AFE02 FÍSICA 2ª SÉRIE 2016
GABARITO DA AFE0 FÍSICA ª SÉRIE 016 1) A figura abaixo representa um móvel m que descreve um movimento circular uniforme de raio R, no sentido horário, com velocidade de módulo V. Assinale a alternativa
ENG285 TORÇÃO. =. á. = G. (material linear-elástico) Adriano Alberto
ENG285 1 Adriano Alberto Fonte: Hibbeler, R.C., Resistência dos Materiais 5ª edição; Beer 5ª Ed; Barroso, L.C., Cálculo Numérico (com aplicações) 2ª edição; slides do Prof. Alberto B. Vieira Jr.; http://pessoal.sercomtel.com.br/matematica/geometria/geom-areas/geomareas-circ.htm
Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque
Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto
Manual pra quê? O que move uma marca? Ela é movida pela CONFIANÇA E PERCEPÇÃO DE VALOR POR SEUS CONSUMIDORES.
Manual pra quê? O que move uma marca? Ela é movida pela CONFIANÇA E PERCEPÇÃO DE VALOR POR SEUS CONSUMIDORES. E a marca HEAVYLOAD transmite essa confiança e, também, cria essa percepção! Em cada momento
UNIVERSIDADE ANHANGUERA UNIDERP E N G E N H A R I A C I V I L N 5 0. Aluno: R.A :
UNIVERSIDADE ANHANGUERA UNIDERP E N G E N H A R I A C I V I L N 5 0 Aluno: R.A : 1) Realize as operações abaixo: a) 45 45 59 + 86º54 12 = b) 128º42 57 + 325º41 52 = c) 120º00 00 56º24º03 = d) 178º20 30
5 Resultados Experimentais
5 Resultados Experimentais 5.1. Introdução Neste capítulo são apresentados os resultados medidos dos dois testes experimentais em escala real realizados para a comparação dos resultados teóricos. 5.2.
LISTA DE EXERCÍCIOS ÁREA 3. Disciplina: Elementos de Máquina Semestre: 2016/01
LISTA DE EXERCÍCIOS ÁREA 3 Disciplina: Elementos de Máquina Semestre: 2016/01 Prof: Diego R. Alba 1. O pinhão de 16 dentes da figura move um trem de engrenagem de redução dupla, como mostrado. Todas as
Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura.
52 CAPÍTULO V CÁLCULO DAS REAÇÕES EXTERNAS I. GENERALIDADES Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura. Os vínculos
ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012
1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE NATAL CENTRAL. Curso Superior em Tecnologia das Construções
1. REVISÃO GERAL Alguns conceitos são de fundamental importância para o bom desenvolvimento do aluno no curso de Estabilidade das Construções, uma vez que esta disciplina abrange conceitos matemáticos
Funções Hiperbólicas:
Funções Hiperbólicas: Estas funções são parecidas as funções trigonométricas e possuem muitas aplicações como veremos ao longo da disciplina. Definiremos primeiro as funções seno hiperbólico e cosseno
