CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS
|
|
|
- Mikaela de Paiva Espírito Santo
- 9 Há anos
- Visualizações:
Transcrição
1 1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não de deformar em demasia. Os valores limites para estas deformações são indicadas por norma e dependem, das cargas atuantes, do material empregado (E) e da forma e dimensões da peça (J). O eixo de uma viga é inicialmente considerado retilíneo. Após a deformação ele se transforma em uma curva que chamamos de LINHA ELÁSTICA da viga. Lembrando a hipótese de Bernoulli, uma seção transversal qualquer S, de configuração plana e perpendicular ao eixo geométrico da peça, continuará plana e perpendicular ao eixo geométrico deformado durante e depois da sua deformação. Além disto este eixo conserva o seu comprimento inicial.?(x) y(x) Linha elástica y(x) deformação linear do centro de gravidade da seção.?(x) deformação angular da seção (giro que ela experimenta em torno da Linha Neutra) Da premissa acima pode-se concluir que : Sendo a elástica uma curva plana pode ser descrita por uma função de uma variável real. y= y (x)
2 2 Decorre da hipótese da continuidade que y(x) deve ser uma função contínua de 1ª derivada contínua também (não admite saltos e nem angulosidades). Conhecida a função y (x), que descreve a elástica, podemos não só determinar o deslocamento linear do baricentro da seção como também o seu deslocamento angular (?(x) - giro), em torno da respectiva Linha Neutra, através da derivada de y(x). dy(x) tg?(x)???(x)? dy(x) A hipótese acima decorre da admissão de que uma estrutura trabalha sempre no campo das pequenas deformações. II. PROBLEMA A RESOLVER: O nosso problema pode ser configurado como o de estabelecer a relação entre y (x) e a solicitação que o provoca M(x) e Q(x). Nós já sabemos que o cortante é desprezível frente ao momento fletor, e portanto para maior simplicidade vamos estabelecer a relação entre y(x) e M(x), negligenciando a presença do esforço cortante. Existem diversos processos para a determinação da linha elástica: integração direta, diagrama de momentos, funções singulares, energia elástica de deformação, etc.. III. DETERMINAÇÃO DA LINHA ELÁSTICA POR INTEGRAÇÃO DIRETA Para a determinação da equação da linha elástica y(x) partimos da equação diferencial da linha elástica: 2 d y M x?? ( ) 2 E. J Para o desenvolvimento da equação diferencial da linha elástica: 1. Escolhemos um sistema de eixos cartezianos da seguinte forma: - eixo x coincidente com o eixo indeformado da peça. - eixo y coincidente com a direção do deslocamento linear do baricentro da seção.
3 3 y(x) : deslocamento linear do baricentro de uma seção genérica, considerado positivo para baixo.?(x) : deslocamento angular da seção(giro da seção em torno da LN) em radianos, considerado positivo no sentido horário. 2. Conhecida a função M(x), mediante duas integrações se obtem dy/=?(x) (equação do giro) e y(x) (equação da linha elástica). dy??( x) 3. Naturalmente na solução geral do problema aparecem as constantes de integração. Estas devem ser determinadas pelas condições de contorno ou continuidade específicas do problema.o número de condições deve ser igual ao número de constantes a serem determinadas. 4. Quando a expressão M(x) não for única, devemos proceder da mesma maneira para cada domínio de M(x). Sempre que a viga apresentar pontos de transição de carga (carga concentrada, momento aplicado e mudança na taxa de cargas distribuídas), a viga deve ser dividida em trechos para a determinação da equação de M(x). Nestes casos teremos tantas equações para M(x) quantos forem os trechos definidos. 5. Se a viga for de seção variável será necessário determinar também a lei de variação do momento de inércia: J= J(x) A. CONDIÇÕES DE CONTORNO 1. Viga Bi-Apoiada A B Nos pontos A e B estão apoios, e pelo destes apoios não permitirem o deslocamento vertical, tiramos as condições de contorno abaixo:
4 4 y(a) = 0 e y(b) = 0 Estas condições são próprias desta vinculação. 2. Viga Engastada: A O engaste é um vínculo que não permite deslocamento vertical e nem giro, portanto as condições particulares que a linha elástica deve satisfazer no engaste A da viga são: y(a) = 0 e?(a) = 0 B. CONDIÇÕES DE CONTINUIDADE Pelo fato da linha neutra ser uma função contínua (não dá saltos) e de 1ª derivada também contínua (não apresenta angulosidades), podemos no caso de vigas com trechos distintos, condicionar que o deslocamento linear e angular calculado nos pontos de transição, apresentem o mesmo resultado, independente das equações utilizadas. Na viga abaixo temos dois trechos definidos para a equação do momento fletor M(x) e portanto duas equações para y(x) e?(x). Estas equações têm diferentes trechos de validade. A condição a ser cumprida deve pressupor a continuidade da viga no ponto de transição. C A B y 1 (C)= y 2 (C)? 1 (C)=? 2 (C)
5 5 C. PRINCÍPIO DA SUPERPOSIÇÃO DE EFEITOS Sempre que causa e efeito são proporcionais, podemos aplicar o Princípio da Superposição de Efeitos, o que se verifica no caso da linha elástica. O efeito de um conjunto de forças atuando simultaneamente em um corpo é igual a soma dos efeitos de cada força atuando isoladamente. Nestes casos, na aplicação da superposição de efeitos, deve-se ter o cuidado especial com o trecho de validade de cada equação. O princípio da superposição de efeitos é muito prático de ser aplicado pois as vigas de maior ocorrência tem as equações de linha elástica tabeladas com alguns valores definidos. Ex: = + IV. CRITÉRIO DE PROJETO BASEADO NA DEFORMAÇÃO DA PEÇA Normalmente o nosso interesse recai no cálculo da pior situação da peça em termos de deslocamento, ou seja, devemos controlar a deformação máxima da peça. O deslocamento linear máximo de uma seção chama-se FLECHA que é representada pela letra grega?. Para que a nossa viga trabalhe adequadamente, este deslocamento não pode exceder valores limitados em normas específicas, que regulamentam nossas estruturas. Cada material tem sua norma específica e portanto sua flecha admitida própria. Analiticamente teremos a seguinte condição à cumprir:
6 6? calculada?? admitida Observe-se que : dy??( x) Portanto o maior deslocamento linear da peça? (y máx ) ocorre no ponto em que o maior deslocamento angular é zero. O critério da máxima deformação permitida é mais um a ser considerado quando do projeto de uma viga.
7 7 EXERCÍCIOS 1. Dada a viga simplesmente apoiada pelos extremos, figurada abaixo, a ser construída com aço estrutural MR240. Pede-se: a. Pelo critério da limitação de tensões, e adotando coeficiente de segurança s = 1,4, determinar as dimensões necessárias a sua seção tranversal que deve ser retangular com h= 2b b. Dimensione-a pelo critério da deformação máxima, usando a tabela anexa, e sabendo que a norma permite uma flecha de L/360. Propriedades do aço MR 240? e = limite de escoamento = 25 kn/cm 2 E = módulo de elasticidade = kn/cm 2 q= 25 kn/m Seção Transversal L= 5 m 2b 2. b
8 8 2. Dada a viga simplesmente apoiada pelos extremos, figurada abaixo, a ser construída com aço estrutural MR240. Pede-se: a) Pelo critério da limitação de tensões, e adotando coeficiente de segurança s = 1,4, determinar as dimensões necessárias a sua seção tranversal que deve ser retangular com h= 2b b) Dimensione-a pelo critério da deformação máxima, usando a tabela anexa, e sabendo que a norma permite uma flecha de L/360. Propriedades do aço MR 240? e = limite de escoamento = 24 kn/cm 2 E = módulo de elasticidade = kn/cm 2 q= 10 kn/m 40 kn 3 m L= 6 m Seção Transversal 2b b
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. eer E. Russell Johnston, Jr. Deflexão de Vigas por Integração Capítulo 7 Deflexão de Vigas por Integração 7.1 Introdução 7. Deformação de
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão
Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da
23.(UNIFESPA/UFPA/2016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros.
.(UNIFESPA/UFPA/016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros. Figura 5 Viga de madeira de seção composta pregada. Dimensões em centímetros.
Aula 4: Diagramas de Esforços internos
ula 4: Diagramas de Esforços internos Estudo das Vigas Isostáticas Como já mencionado, vigas são peças (barras) da estrutura onde duas dimensões são pequenas em relação a terceira. Isto é, o comprimento
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
CAPÍTULO VII FLEXÃO PURA
1 CAPÍTULO VII FLEXÃO PURA I. VIGAS CARREGADAS TRANSVERSALMENTE Uma viga é um elemento linear de estrutura que apresenta a característica de possuir uma das dimensões (comprimento) muito maior do que as
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1
Lista de Exercícios para Prova 1 1 - Para as estruturas hiperestáticas abaixo, determine um SISTEMA PRINCIPAL válido. No SISTEMA PRINCIPAL escolhido, determine os gráficos de momento fletor e as reações
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares
Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL
ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL O que é e por que estudar? Onde ocorre? Que fatores influenciam? Como evitar? or que, normalmente, é desejável que a diagonal das treliças
4 ESFORÇO DE FLEXÃO SIMPLES
4 ESFORÇO DE FLEXÃO SIMPLES O esforço de flexão simples é normalmente resultante da ação de carregamentos transversais que tendem a curvar o corpo e que geram uma distribuição de tensões aproximadamente
Estruturas de Aço e Madeira Aula 07 Vigas de Alma Cheia (2)
Estruturas de Aço e Madeira Aula 07 Vigas de Alma Cheia (2) - Flexão em Vigas de Alma Não-Esbelta com Contenção Lateral - Tabela G.1 da NBR 8800 / 2008 ( FLA e FLM em vigas de alma não-esbelta ) - Esforço
CAPÍTULO VII FLEXÃO PURA
59 CAPÍTULO VII FLEXÃO PURA I. ELEMENTOS DE VIGA São elementos lineares, isto é, que apresentam uma das dimensões (comprimento) muito maior do que as outras duas (dimensões da seção transversal) e que
Equações diferenciais
Equações diferenciais Equações diferenciais Equação diferencial de 2ª ordem 2 d 2 Mz x q x dx d Mz x Vy x q x C dx Mz x q x C x C 1 2 1 Equações diferenciais Equação do carregamento q0 q x 2 d 2 Mz x q
MAC de outubro de 2009
MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em
Teoria das Estruturas - Aula 03
Teoria das Estruturas - Aula 03 Relações Diferenciais entre Mom. Fletores, Esforços Cortantes e Carregamentos Diagramas de Estado de Momento Fletor (M) e Esforço Cortante (V); Equação da Linha Elástica;
Problema resolvido 4.2
Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões
Deflexão em vigas de eixo reto
10 de novembro de 2016 Linha elástica da flexão é a curva formada pelo eixo de uma viga inicialmente retilíneo, devido à aplicação de momentos de flexão. Figura : Exemplo de viga em flexão Antes da aplicação
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1
CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 03: Estruturas Submetidas à Flexão e Cisalhamento
Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme
Deflexão em vigas e eixos
Capítulo 12: Deflexão em vigas e eixos Adaptado pela prof. Dra. Danielle Bond Deflexão em Vigas e Eixos Muitas vezes é preciso limitar o grau de deflexão que uma viga ou eixo pode sofrer quando submetido
Técnico em Edificações Cálculo Estrutural Aula 04
Técnico em Edificações Cálculo Estrutural Aula 04 1 www.saberesolve.com.br Curso de Edificações e Desenho Arquitetônico Sumário 1 Estado limite último Dimensionamento à Flexão... 3 2 Estado Limite de Serviço
TÉCNICO EM EDIFICAÇÕES CÁLCULO ESTRUTURAL AULA 03
1 TÉCNICO EM EDIFICAÇÕES CÁLCULO ESTRUTURAL AULA 03 1 Saber Resolve Cursos Online www.saberesolve.com.br 2 Sumário 1 Momentos Fletores nas Lajes... 3 1.1 Laje Armada em uma direção... 3 1.2 Laje armada
TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS
DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de
Exercícios de flexão pura e composta - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Obter o máximo valor admissível de P para a estrutura abaixo. Admita que o cabo CD esteja preso em C no CG da seção da viga AB. Dados para a viga AB: 250 MPa, 100 MPa. Dados
ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES 2015/2016
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES 2015/2016 1 a QUESTÃO Valor: 1,0 Viga Seção transversal T A figura acima mostra uma viga de seção transversal
Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica
Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. [email protected] Conteúdo
Capítulo 2 Cargas e esforços
Cargas e esforços Professora Elaine Toscano Capítulo 2 Cargas e esforços 2.1 Cargas té o presente momento foram adotadas apenas cargas concentradas e cargasmomento nos exemplos, no entanto, na prática,
ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES 2016 1 a QUESTÃO Valor: 1,00 A figura acima mostra uma viga de comprimento L e rigidez à flexão EJ
Seção 7 (Flexão) - Exemplos dados em aula
UFPR - MECÂNICA DOS SÓLIDOS I Seção 7 (Flexão) - Exemplos dados em aula Prof. Marcos S. Lenzi May 24, 2016 Exemplo 7.1 - Considere uma barra de aço com seção tranversal retangular conforme mostrado abaixo
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte
Dimensionamento de Estruturas em Aço Parte 1 Módulo 4 2ª parte Sumário Módulo 4: 2ª Parte Edifícios estruturados em Aço Dimensionamento de um edificio de 5 pavimentos estruturado em Aço Dados do projeto
24/03/2014 ESTABILIDADE DAS CONSTRUÇÕES II AULA 05 METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com
ESTABILIDADE DAS CONSTRUÇÕES II AULA 05 METODOLOGIA DA DISCIPLINA Site da disciplina: engpereira.wordpress.com 1 METODOLOGIA DA DISCIPLINA Material disponibilizado: 1- Programação das aulas: METODOLOGIA
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: [email protected] victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE
Exercícios de Resistência dos Materiais A - Área 3
1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento
Tensões de Cisalhamento em Vigas sob Flexão
31 de outubro de 2016 (a) Peças sem acoplamento. (b) Peças com acoplamento. (a) Peças sem acoplamento. (b) Peças com acoplamento. Na primeira situação, mostrada na Figura (a), as peças trabalham de forma
FLEXIBILIDADE E SUPORTAÇÃO AULA DEFLEXÕES
FLEXIBILIDADE E SUPORTAÇÃO AULA 10-11 DEFLEXÕES PROF.: KAIO DUTRA Diagramas de Deflexão e a Curva Elástica Deflexões de estruturas podem ocorrer de várias fontes, como cargas, temperatura, erros de fabricação,
Teoria das Estruturas I - Aula 08
Teoria das Estruturas I - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;
EXERCÍCIOS RESOLVIDOS
IBMEC Graduação em Engenharia Civil Teoria das Estruturas I EXERCÍCIOS RESOLVIDOS 1. Classifique as estruturas abaixo quanto à estaticidade: (a) : estrutura isostática (4 variáveis, 4 equações) (b) : estrutura
Teoria Clássica das Placas
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Fleão de Placas ANÁLISE DE ESTRUTURAS I PROF. EVANDRO PARENTE JUNIOR (UFC) PROF. ANTÔNIO MACÁRIO
RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas
RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas Prof. José Junio Lopes BIBLIOGRAFIA BÁSICA HIBBELER, Russell Charles. Resistência dos Materiais ed. São Paulo: Pearson Prentice Hall, 2009. 1 - CONCEITOS FUNDAMENTAIS
UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL. SNP38D44 Estruturas de Concreto Armado I. Lajes. Flavio A. Crispim (FACET/SNP-UNEMAT)
UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL SNP38D44 Estruturas de Concreto Armado I Lajes Prof.: Flavio A. Crispim (FACET/SNP-UNEMAT) SINOP - MT 2016 Tipos https://cddcarqfeevale.wordpress.com/2012/04/03/lajes-macicas-de-concreto-armado/
Figura 1 Viga poligonal de aço estrutural
PÓRTICO, QUADROS E ESTRUTURAS MISTAS MODELO 01 Para a viga poligonal contínua, indicada na Figura 1, determinar por Análise Matricial de Estruturas as rotações e as reações verticais nos apoios e. Dados:
Várias formas da seção transversal
Várias formas da seção transversal Seções simétricas ou assimétricas em relação à LN Com o objetivo de obter maior eficiência (na avaliação) ou maior economia (no dimensionamento) devemos projetar com
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,
PILARES EM CONCRETO ARMADO
PILARES EM CONCRETO ARMADO DIMENSIONAMENTO E DETALHAMENTO Pilares Elementos lineares de eixo reto, usualmente dispostos na vertical, em que as forças normais de compressão são preponderantes. (ABNT NBR
CURSO DE ENGENHARIA CIVIL. Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. Goiânia HIPERESTÁTICA
CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS Tópico: Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. Goiânia - 2014 O projeto estrutural tem como objetivo a concepção de uma estrutura
Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte
Dimensionamento de Estruturas em Aço Parte 1 Módulo 2 2ª parte Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da Viga V2 =
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Terceira Prova 25/11/2002 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁISE DE ESTRUTURAS II 2º Semestre 02 Terceira Prova 25/11/02 Duração: 2:30 hs Sem Consulta 1ª Questão (4,0 pontos) Para uma viga de ponte, cujo modelo estrutural é apresentado abaixo, calcule
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta
CIV 27 ANÁLISE DE ESRUURAS II 2º Semestre 2002 Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta ª Questão (6,0 pontos) Considere a estrutura hiperestática abaixo, onde também está indicado
Estruturas Hiperestáticas Planas
Estruturas Hiperestáticas Planas P1 19/09/96 1ª Questão Traçar o diagrama de momentos fletores e forças cortantes decorrentes de um resfriamento T da barra CE da estrutura da figura abaixo. Considerar
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar cisalhamento transversal Compreender quando ocorre o cisalhamento transversal Determinar
Assunto: Estruturas Isostáticas Momento Fletor e Cortante Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] 6.1 Generalidades As forças são classificadas em: externas e internas. Todos
Construções Metálicas I AULA 6 Flexão
Universidade Federal de Ouro Preto Escola de inas Ouro Preto - G Construções etálicas I AULA 6 Flexão Introdução No estado limite último de vigas sujeitas à flexão simples calculam-se, para as seções críticas:
Resistência dos Materiais, MA, IST,
11ª Aula Flexão Flexão elástica recta Define-se barra ou peça linear como todo o corpo cujo material se confina à vizinhança de uma linha do espaço a que se chama eixo. Segundo o Vocabulário de Teoria
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II PROFESSOR: Eng. CLÁUDIO MÁRCIO RIBEIRO ESPECIALISTA EM ESTRUTURAS Estrutura Definição: Estrutura é um sistema destinado a proporcionar o equilíbrio
CAPÍTULO V ESFORÇO NORMAL E CORTANTE
1 CAPÍTULO V ESFORÇO NORMAL E CORTANTE I. TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES) A. TENSÕES E DEFORMAÇÕES: Sempre que tivermos uma peça de estrutura, submetida à carga externa com componente no seu eixo
Curso de Dimensionamento de Estruturas de Aço EAD - CBCA. Módulo2. Parte 2
Curso de Dimensionamento de Estruturas de Aço EAD - CBCA Módulo2 Parte 2 Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da
Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2
Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça
Mecânica dos Sólidos I Lista de exercícios I Barras e treliças
Mecânica dos Sólidos I Lista de exercícios I arras e treliças (1)Uma biela consiste em três barras de aço de 6.25 mm de espessura e 31.25mm de largura, conforme esquematizado na figura. Durante a montagem,
2. Revisão Bibliográfica
. Revisão Bibliográfica.1. Considerações iniciais Neste capítulo é apresentada uma revisão bibliográfica sobre pilares de concreto armado, dividida basicamente em duas partes. A primeira apresenta alguns
Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.
Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo
Projeto e cálculo de um mezanino
Projeto e cálculo de um mezanino Introdução Agora que você já estudou grande parte dos conceitos teóricos que envolvem o dimensionamento de sistemas estruturais em aço, chegou a hora de aplicar esses conhecimentos
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1 11.1. Introdução Recebem a denominação geral de folhas as estruturas nas quais duas dimensões predominam sobre uma terceira
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da
Dimensionamento e análise da deformação de um grupo de estacas
Manual de engenharia No. 18 Atualização: 04/2016 Dimensionamento e análise da deformação de um grupo de estacas Programa: Grupo de Estacas Arquivo: Demo_manual_18.gsp O objetivo deste capítulo é explicar
Professor: José Junio Lopes
A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada
Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng.
Disciplina: Resistência dos Materiais Unidade V - Flexão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
4 Exemplos de Validação e Análise de Resultados
4 Exemplos de Validação e Análise de Resultados Os exemplos apresentados neste capítulo se referem a algumas vigas de edifícios de concreto armado que foram retiradas de projetos estruturais existentes
Barras prismáticas submetidas a momento fletor e força cortante
Barras prismáticas submetidas a momento fletor e força cortante Introdução Os esforços mais comuns de incidência em vigas estruturais são a força cortante e o momento fletor, os quais são causados por
Conceito de resistência de cálculo
Conceito de resistência de cálculo Introdução Na elaboração de projetos de estruturas, os elementos estruturais, sejam metálicos ou de concreto armado, devem ser todos dimensionados, ou seja, é função
Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais
MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05
6. MÉTODO DOS DESLOCAMENTOS
6. MÉTODO DOS DESLOCAMENTOS Conforme foi introduzido na Seção.3 do Capítulo, o Método dos Deslocamentos pode ser considerado como o método dual do Método das Forças. Em ambos os métodos a solução de uma
Modelagem Numérica de Flexão de Placas Segundo a Teoria de Kirchhoff
Resumo odelagem Numérica de Flexão de Placas Segundo a Teoria de Kirchhoff aniel ias onnerat 1 1 Hiperestática Engenharia e Projetos Ltda. /[email protected] A teoria clássica ou teoria de Kirchhoff
Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor
Capítulo 6: Flexão Adaptado pela prof. Dra. Danielle Bond Diagramas de força cortante e momento fletor Elementos delgados que suportam carregamentos aplicados perpendicularmente a seu eixo longitudinal
Esforço Cortante e Momento Fletor
Esforço Cortante e Momento Fletor Esforços internos Esforços internos Devem atender a Terceira Lei de Newton (Ação e Reação) Esforços internos (a) (c) flexão positiva cisalhamento positivo (b) (d) flexão
Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 3: FLEXÃO
Curso de Engenharia Civil Universidade Estadual de aringá Centro de Tecnologia Departamento de Engenharia Civil CÍTULO 3: FLEXÃO 3. Revisão de Esforços nternos étodo das Seção: 3. Revisão de Esforços nternos
Exercícios de Cortante. 7.1 Resolvidos
7 Exercícios de Cortante 7.1 Resolvidos Ex. 7.1.1 Verificação perfil laminado ao Corte Verificação de perfil laminado ao cortante. A viga da figura utiliza um perfil I-15x18,6 de aço ASTM A-36. Verifique
Prof. Dr. Eduardo Lenz Cardoso
Introdução ao Método dos Elementos Finitos Prof. Dr. Eduardo Lenz Cardoso [email protected] Breve Curriculo Dr. Eng Mecânica UFRGS/DTU Prof. Subst. UFRGS (Mecânica dos Sólidos I/ MEF/ Mecânica dos
Treliças Definição Métodos dos Nós ou Método de Cremona
Treliças São estruturas constituídas por barras de eixo retilíneo, articuladas entre si em suas extremidades, formando malhas triangulares. As articulações (ou juntas) são chamadas de nós. Como as cargas
TÉCNICO EM EDIFICAÇÕES CÁLCULO ESTRUTURAL AULA 08
TÉCNICO EM EDIFICAÇÕES CÁLCULO ESTRUTURAL AULA 08 Sumário 1 Flambagem... 3 1.1 Conceito... 3 1.2 Como amortizar o efeito de flambagem?... 4 1.3 Comprimento de flambagem... 5 2 Dimensionamento de Pilares...
mecânica e estruturas geodésicas II DR. CARLOS AURÉLIO NADAL Professor Titular
mecânica e estruturas geodésicas II DR. CARLOS AURÉLIO NADAL Professor Titular UNIDADES DE MEDIDAS UTILIZADAS N = Newton é uma unidade de medida de força, denominada em homenagem a Isaac Newton. Corresponde
Teoria das Estruturas - Aula 09
Teoria das Estruturas - Aula 09 Cálculo de Deslocamentos em Estruturas Isostáticas (2) Princípio dos Trabalhos Virtuais aplicado a Treliças; Princípio dos Trabalhos Virtuais aplicado a Vigas e Pórticos;
PROBLEMA 1. Considere a estrutura plana representada na figura submetida ao carregamento indicado.
PROBLEMA 1 Considere a estrutura plana representada na figura submetida ao carregamento indicado. E=00GPa a) Determine os esforços instalados na estrutura, indicando todos os valores necessários à sua
Sistemas Estruturais
Notas de aula Prof. Andréa 1. Elementos Estruturais Sistemas Estruturais Uma vez especificados os tipos de aço comumente utilizados em estruturas metálicas, determinadas as características geométricas
Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.
Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações
Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant
Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um
