RESISTÊNCIA DOS MATERIAIS
|
|
|
- Alexandra Corte-Real Câmara
- 7 Há anos
- Visualizações:
Transcrição
1 Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. eer E. Russell Johnston, Jr. Deflexão de Vigas por Integração Capítulo 7 Deflexão de Vigas por Integração 7.1 Introdução 7. Deformação de uma Viga devido a Carregamentos Transversais 7. Equação da Linha Elástica 7. Método de Superposição 7 -
2 7.1 Introdução Determinar a deflexão de vigas prismáticas submetidas a um dado carregamento. No cap., uma viga prismática sob flexão pura se encurva tomando a forma de um arco de circunferência. Para o caso de uma viga sob carregamento transversal, a curvatura da S.N. é: 1 M ( x) Sendo: M momento fletor na seção; E módulo de elasticidade longitudinal; I momento de inércia da seção transversal em relação à L.N Deformação de uma Viga devido a Carregamentos Transversais Para a viga em balanço da figura: 1 M ( x) 1 Px onde x é a distância da extremidade esquerda da viga até a seção considerada. A equação obtida mostra que a curvatura da S.N. varia linearmente com x Na extremidade livre A, Na extremidade engastada, 1 1 ρ A 0, P L ρ A, PL 7 -
3 7. Deformação de uma Viga devido a Carregamentos Transversais Para a viga biapoiada da figura: Reações de apoio em A e C; Diagrama de momento fletor (DMF); Deformação de uma Viga devido a Carregamentos Transversais A curvatura é zero nos pontos onde o momento é nulo (extremidades da viga e ponto E). 1 M ( x) M positivo (entre A e E) concavidade voltada para cima; M negativo (entre E e D) concavidade voltada para baixo; A curvatura é máxima (menor raio de curvatura) onde o momento é máximo. A curvatura fornece uma idéia razoável da forma da viga deformada. 7-6
4 7. Equação da Linha Elástica Nos capítulos anteriores y representava a distância de uma certa fibra da seção transversal até a L.N.; Neste capítulo, y representa o deslocamento vertical de um ponto (deformação transversal ou flecha) Do cálculo diferencial, a expressão da curvatura de uma curva é dada por: d y 1 d y dx Como: 1 M ( x) d y dy dx dx 1 dx Equação da Linha Elástica Equação diferencial da linha elástica de uma viga: d y M( x) Integrando, e sabendo que θ é o ângulo (em radianos) que a tangente à curva elástica no ponto Q forma com a horizontal: dx x dy 1 M xdx C1 dx 0 x x 1 y dx M xdx C1x C 0 0 x x 1 ou y M xdxc1dxc 00 A primeira equação define a declividade θ da viga no ponto Q; A segunda equação define a flecha y da viga no mesmo ponto. 7-8
5 7. Equação da Linha Elástica As constantes C 1 e C são determinadas a partir das condições de contorno da viga. x x 1 y M xdxc1dxc 00 Viga simplesmente apoiada: y A 0, y 0 Viga biapoiada: y A 0, y 0 Viga em balanço: y 0, 0 Caso geral de carregamento faz-se necessário dividir a viga em várias partes (seções ou componentes) para representar a equação do momento para cada uma. Com isso, outras constantes de integração surgem, o que exige a aplicação da condição de continuidade da Linha Elástica e da Declividade como condições de contorno. A A 7-9 Exemplo 7.1 A viga em balanço A tem seção transversal uniforme e suporta a força P. Determinar a flecha e a declividade da viga no ponto A. 7-10
6 Exemplo 7. A viga prismática A simplesmente apoiada suporta uma carga uniformemente distribuída q por unidade de comprimento. Determinar a equação da linha elástica e a flecha máxima Exemplo 7. Determine para a viga prismática, com carregamento indicado, a flecha e a declividade no ponto D. 7-1
7 Exemplo 7. AvigaAC suportaumacargaconcentradap na extremidade do balanço. Para a parte A da viga, pede-se: (a) A equação da linha elástica; (b) A flecha máxima; (c) O valor numérico de y max para os seguintes dados. W I E P0 kn L,5 m a1, m z 0610 m 00 GPa y x Método de Superposição Princípio da Superposição: A deformação e a declividade de vigas submetidas a vários carregamentos podem ser obtidas pela superposição do efeito de cada carregamento individualmente, que após somados dão o resultado do carregamento como um todo. Este procedimento é facilitado pela existência de tabelas que mostram o efeito de vários tipos de cargas e condições de apoio de vigas. 7-1
8 Exemplo 7.5 Para a viga e carregamento mostrado, determine a declividade e a flecha no ponto. SOLUÇÃO: Superponha as deformações devido ao Carregamento I e Carregamento como mostrado SOLUÇÃO: Carregamento I 6 y I I 8 Carregamento 8 y C C 18 No segmento C da viga, o momento fletor é zero e a linha elástica é uma linha reta. C 8 y 18 L
9 SOLUÇÃO: Combine as duas soluções, I y y y I y
Deflexão em vigas e eixos
Capítulo 12: Deflexão em vigas e eixos Adaptado pela prof. Dra. Danielle Bond Deflexão em Vigas e Eixos Muitas vezes é preciso limitar o grau de deflexão que uma viga ou eixo pode sofrer quando submetido
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão
Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da
Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:
FLEXIBILIDADE E SUPORTAÇÃO AULA DEFLEXÕES
FLEXIBILIDADE E SUPORTAÇÃO AULA 10-11 DEFLEXÕES PROF.: KAIO DUTRA Diagramas de Deflexão e a Curva Elástica Deflexões de estruturas podem ocorrer de várias fontes, como cargas, temperatura, erros de fabricação,
Deflexão em vigas de eixo reto
10 de novembro de 2016 Linha elástica da flexão é a curva formada pelo eixo de uma viga inicialmente retilíneo, devido à aplicação de momentos de flexão. Figura : Exemplo de viga em flexão Antes da aplicação
CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS
1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
Equações diferenciais
Equações diferenciais Equações diferenciais Equação diferencial de 2ª ordem 2 d 2 Mz x q x dx d Mz x Vy x q x C dx Mz x q x C x C 1 2 1 Equações diferenciais Equação do carregamento q0 q x 2 d 2 Mz x q
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta
CIV 27 ANÁLISE DE ESRUURAS II 2º Semestre 2002 Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta ª Questão (6,0 pontos) Considere a estrutura hiperestática abaixo, onde também está indicado
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme
24/03/2014 ESTABILIDADE DAS CONSTRUÇÕES II AULA 05 METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com
ESTABILIDADE DAS CONSTRUÇÕES II AULA 05 METODOLOGIA DA DISCIPLINA Site da disciplina: engpereira.wordpress.com 1 METODOLOGIA DA DISCIPLINA Material disponibilizado: 1- Programação das aulas: METODOLOGIA
Resistência dos Materiais
- Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
4 ESFORÇO DE FLEXÃO SIMPLES
4 ESFORÇO DE FLEXÃO SIMPLES O esforço de flexão simples é normalmente resultante da ação de carregamentos transversais que tendem a curvar o corpo e que geram uma distribuição de tensões aproximadamente
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: [email protected] victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE
DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:
PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;
mecânica e estruturas geodésicas II DR. CARLOS AURÉLIO NADAL Professor Titular
mecânica e estruturas geodésicas II DR. CARLOS AURÉLIO NADAL Professor Titular UNIDADES DE MEDIDAS UTILIZADAS N = Newton é uma unidade de medida de força, denominada em homenagem a Isaac Newton. Corresponde
PROVA COMENTADA. Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:
? Momento fletor Diagrama de Corpo Livre Reação redundante escolhida Reação vertical no ponto A: Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:
Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008
Sumário e Objectivos Sumário: Método da Viga Conjugada. Objectivos da Aula: Ser capaz de determinar a flecha e a inclinação num ponto fazendo uso do Método da Viga Conjugada 1 Viga Flectida Estrutura de
Mecânica dos Sólidos I Lista de exercícios I Barras e treliças
Mecânica dos Sólidos I Lista de exercícios I arras e treliças (1)Uma biela consiste em três barras de aço de 6.25 mm de espessura e 31.25mm de largura, conforme esquematizado na figura. Durante a montagem,
Aula 4: Diagramas de Esforços internos
ula 4: Diagramas de Esforços internos Estudo das Vigas Isostáticas Como já mencionado, vigas são peças (barras) da estrutura onde duas dimensões são pequenas em relação a terceira. Isto é, o comprimento
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da
Resistência dos Materiais, MA, IST,
11ª Aula Flexão Flexão elástica recta Define-se barra ou peça linear como todo o corpo cujo material se confina à vizinhança de uma linha do espaço a que se chama eixo. Segundo o Vocabulário de Teoria
Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf
Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf [email protected] Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo
Teoria das Estruturas - Aula 03
Teoria das Estruturas - Aula 03 Relações Diferenciais entre Mom. Fletores, Esforços Cortantes e Carregamentos Diagramas de Estado de Momento Fletor (M) e Esforço Cortante (V); Equação da Linha Elástica;
Problema resolvido 4.2
Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)
Tensões de Cisalhamento em Vigas sob Flexão
31 de outubro de 2016 (a) Peças sem acoplamento. (b) Peças com acoplamento. (a) Peças sem acoplamento. (b) Peças com acoplamento. Na primeira situação, mostrada na Figura (a), as peças trabalham de forma
Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor
Capítulo 6: Flexão Adaptado pela prof. Dra. Danielle Bond Diagramas de força cortante e momento fletor Elementos delgados que suportam carregamentos aplicados perpendicularmente a seu eixo longitudinal
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RETÊNCA DO MATERA Ferdinand P. Beer E. Russell Johnston, Jr. Carregamento Transversal Capítulo 5 Carregamento Transversal 5.1 ntrodução 5.2 Carregamento Transversal 5.3 Distribuição
Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL
ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL O que é e por que estudar? Onde ocorre? Que fatores influenciam? Como evitar? or que, normalmente, é desejável que a diagonal das treliças
1. Flambagem Introdução
1. Flambagem 1.1. Introdução Flambagem ou encurvadura é um fenômeno que ocorre em peças esbeltas (peças onde a área de secção transversal é pequena em relação ao seu comprimento), quando submetidas a um
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1
CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Terceira Prova 25/11/2002 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁISE DE ESTRUTURAS II 2º Semestre 02 Terceira Prova 25/11/02 Duração: 2:30 hs Sem Consulta 1ª Questão (4,0 pontos) Para uma viga de ponte, cujo modelo estrutural é apresentado abaixo, calcule
Capítulo 5. Torção Pearson Prentice Hall. Todos os direitos reservados.
Capítulo 5 Torção slide 1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS PROF.: KAIO DUTRA A Linha Elástica A deflexão de uma estrutura é causada por seu carregamento interno como a força normal, força cortante,
Carga axial. Princípio de Saint-Venant
Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente
Esforço Cortante e Momento Fletor
Esforço Cortante e Momento Fletor Esforços internos Esforços internos Devem atender a Terceira Lei de Newton (Ação e Reação) Esforços internos (a) (c) flexão positiva cisalhamento positivo (b) (d) flexão
EXERCÍCIOS RESOLVIDOS
IBMEC Graduação em Engenharia Civil Teoria das Estruturas I EXERCÍCIOS RESOLVIDOS 1. Classifique as estruturas abaixo quanto à estaticidade: (a) : estrutura isostática (4 variáveis, 4 equações) (b) : estrutura
Capítulo 5 Carga Axial
Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Determinar a tensão normal e as deformações em elementos
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
Professor: José Junio Lopes
A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada
Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:
4 ENSAIO DE FLEXÃO. Ensaios Mecânicos Prof. Carlos Baptista EEL
4 ENSAIO DE FLEXÃO Ensaio de Flexão: Bastante aplicado em materiais frágeis ou de alta dureza - Exemplos: cerâmicas estruturais, aços-ferramenta - Dificuldade de realizar outros ensaios, como o de tração
Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.
Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
Tensões de Flexão nas Vigas
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões de Flexão nas Vigas
Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng.
Disciplina: Resistência dos Materiais Unidade V - Flexão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
Teoria das Estruturas - Aula 10
Teoria das Estruturas - Aula 10 Linhas de Influência de Estruturas Isostáticas (1) Introdução às Linhas de Influência; L.I. de Vigas Biapoiadas; L.I. de Vigas Engastadas em Balanço; Prof. Juliano J. Scremin
5 CISALHAMENTO SIMPLES
5 CISALHAMENTO SIMPLES Conforme visto anteriormente, sabe-se que um carregamento transversal aplicado em uma viga resulta em tensões normais e de cisalhamento em qualquer seção transversal dessa viga.
PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta
Questão 1 (5,0) A Figura abaixo ilustra um sólido com comportamento elástico linear, solicitado por ações externas. Este sólido possui espessura t sendo t c, t L e está sem qualquer impedimento a deslocamentos
Teoria Clássica das Placas
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Fleão de Placas ANÁLISE DE ESTRUTURAS I PROF. EVANDRO PARENTE JUNIOR (UFC) PROF. ANTÔNIO MACÁRIO
Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra1)
Exercício 2 Determinar os diagramas de esforços solicitantes para a viga abaixo pelo Equação dos Três Momentos. Determinar todos os pontos de momentos máximos. Calcular também as reações de apoio.. Solução:
(atualizado em 12/07/2014)
ENG285 4ª Unidade 1 (atualizado em 12/07/2014) Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para
LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02
LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva
3ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO DIAGRAMA DE ESFORÇO NORMAL
Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 3ª LISTA
Programa. Centroide Momentos de Inércia Teorema dos Eixos Paralelos. 2 Propriedades Geométricas de Áreas Planas
Propriedades Geométricas de Áreas Planas Programa 2 Propriedades Geométricas de Áreas Planas Centroide Momentos de Inércia Teorema dos Eixos Paralelos L Goliatt, M Farage, A Cury (MAC/UFJF) MAC-015 Resistência
Teoria das Estruturas - Aula 09
Teoria das Estruturas - Aula 09 Cálculo de Deslocamentos em Estruturas Isostáticas (2) Princípio dos Trabalhos Virtuais aplicado a Treliças; Princípio dos Trabalhos Virtuais aplicado a Vigas e Pórticos;
Sumário. Introdução O conceito de tensão 1. Tensão e deformação Carregamento axial 49
1 Introdução O conceito de tensão 1 Introdução 2 1.1 Um breve exame dos métodos da estática 2 1.2 Tensões nos elementos de uma estrutura 4 1.3 Tensão em um plano oblíquo sob carregamento axial 25 1.4 Tensão
Departamento de Engenharia Mecânica ENG Mecânica dos Sólidos II. Teoria de Vigas. Prof. Arthur Braga
Departamento de Engenharia Mecânica ENG 174 - Teoria de Vigas Prof. rthur Braga Tensões de Fleão em Barras (vigas Deformação do segmento IJ M N ρ Δφ I J ( ρ y Δφ Compresão ρ ρ y I J y M N Eio Neutro (deformação
FLEXIBILIDADE E SUPORTAÇÃO
FLEXIBILIDADE E SUPORTAÇÃO AULA 12-14 DEFLEXÕES USANDO MÉTODOS DE ENERGIA PROF.: KAIO DUTRA Trabalho Externo e Energia de Deformação O método da energia é baseada no princípio da conservação de energia.
ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.
ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para
Seção 7 (Flexão) - Exemplos dados em aula
UFPR - MECÂNICA DOS SÓLIDOS I Seção 7 (Flexão) - Exemplos dados em aula Prof. Marcos S. Lenzi May 24, 2016 Exemplo 7.1 - Considere uma barra de aço com seção tranversal retangular conforme mostrado abaixo
Exercício 4. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados
Universidade de São Paulo Faculdade de Arquitetura e Urbanismo Exercício 4 PEF 2602 - Estruturas na Arquitetura Sistemas Reticulados Grupo 09 Felipe Tinel 5914801 Gabriela Haddad 5914714 Lais de Oliveira
Física para Zootecnia
Física para Zootecnia Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação cuja posição
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1
Lista de Exercícios para Prova 1 1 - Para as estruturas hiperestáticas abaixo, determine um SISTEMA PRINCIPAL válido. No SISTEMA PRINCIPAL escolhido, determine os gráficos de momento fletor e as reações
UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL. SNP38D44 Estruturas de Concreto Armado I. Lajes. Flavio A. Crispim (FACET/SNP-UNEMAT)
UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL SNP38D44 Estruturas de Concreto Armado I Lajes Prof.: Flavio A. Crispim (FACET/SNP-UNEMAT) SINOP - MT 2016 Tipos https://cddcarqfeevale.wordpress.com/2012/04/03/lajes-macicas-de-concreto-armado/
, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE
3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE
RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica
Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. [email protected] Conteúdo
FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
FESP Faculdade de Engenharia São Paulo Avaliação: A2 Data: 15/set/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Duração: 85 minutos Nome: Matrícula
(NBR 8800, Tabela C.1)
CE Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: A1 Data: 13/abr/
2 Casca cilíndrica delgada
Vibrações livres não lineares de cascas cilíndricas com gradação funcional 29 2 Casca cilíndrica delgada Inicia-se este capítulo com uma pequena introdução sobre cascas e, em seguida, apresenta-se a teoria
4 Modelo analítico 84
4 Modelo analítico 84 4 Modelo analítico O objetivo desta seção é apresentar uma metodologia de cálculo que servirá de base comparativa aos resultados dos métodos de elementos finitos empregados na seção
Texto de apoio às aulas presenciais compilação de exercícios resolvidos
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO PEF2308 Fundamentos de Mecânica das Estruturas Prof. Osvaldo Nakao Texto de apoio às aulas presenciais compilação de exercícios resolvidos Elaborado pelos acadêmicos
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN)
PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015 Resolução 1ª Questão (4,0 pontos) barra prismática da figura tem comprimento L=2m. Ela está L/2 L/2 engastada em e livre em C. seção transversal
TORÇÃO. Prof. Dr. Carlos A. Nadal
TORÇÃO Prof. Dr. Carlos A. Nadal Tipo de esforços a) Tração b) Compressão c) Flexão d) Torção e) Compressão f) flambagem Esforços axiais existe uma torção quando uma seção transversal de uma peça está
Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant
Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um
UNIVERSIDADE DO VALE DO ITAJAÍ CURSO ENGENHARIA INDUSTRIAL MECÂNICA TIAGO PAULO NAU
UNIVERSIDADE DO VALE DO ITAJAÍ CURSO ENGENHARIA INDUSTRIAL MECÂNICA TIAGO PAULO NAU TRABALHO DE CONCLUSÃO DE CURSO Aplicação de Expressões Analíticas e Planejamento de Ensaios Mecânicos para a Verificação
Carregamentos Combinados
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Carregamentos Combinados
ENG 1204 ANÁLISE DE ESTRUTURAS II 1º Semestre Terceira Prova 29/06/2013 Duração: 2:45 hs Sem Consulta
ENG 1204 ANÁISE DE ESTRUTURAS II 1º Semestre 2013 Terceira Prova 29/06/2013 Duração: 2:45 hs Sem Consulta 1ª Questão (4,0 pontos) Para uma viga abaixo, calcule os valores mínimo e máximo do esforço cortante
O que é Resistência dos Materiais?
Roteiro de aula O que é Resistência dos Materiais? Definições Resistência x Rigidez Análise x Projeto Áreas de Aplicação Forças externas Esforços internos Elementos estruturais Hipóteses básicas Unidades
3. IDEALIZAÇÃO DO COMPORTAMENTO DE BARRAS
3. IDEALIZAÇÃO DO COMPORTAMENTO DE BARRAS Como discutido no Capítulo 1, a análise estrutural de estruturas reticuladas está fundamentada na concepção de um modelo matemático, aqui chamado de modelo estrutural,
SUMÁRIO PREFÁCIO INTRODUÇÃO UNIDADE 1 ASPECTOS BÁSICOS 1.1. Definições Elementos constituintes das pontes
SUMÁRIO PREFÁCIO... 27 INTRODUÇÃO... 31 UNIDADE 1 ASPECTOS BÁSICOS 1.1. Definições... 37 1.2. Elementos constituintes das pontes... 37 1.3. Elementos que compõem a superestrutura... 39 1.4. Seções transversais
