Teoria das Estruturas - Aula 09
|
|
|
- Maria Fernanda Neiva Palma
- 7 Há anos
- Visualizações:
Transcrição
1 Teoria das Estruturas - Aula 09 Cálculo de Deslocamentos em Estruturas Isostáticas (2) Princípio dos Trabalhos Virtuais aplicado a Treliças; Princípio dos Trabalhos Virtuais aplicado a Vigas e Pórticos; Prof. Juliano J. Scremin 1
2 Aula 09 - Seção 1: Princípio dos Trabalhos Virtuais aplicado à Treliças 2
3 Trabalho Virtual Um deslocamento virtual ou uma força virtual são, respectivamente, um deslocamento imaginário ou uma força imaginária, arbitrariamente impostos sobre um sistema estrutural. O trabalho virtual pode ser considerado como o trabalho produzido por: Forças reais durante um deslocamento virtual; Forças virtuais durante um deslocamento real. Deslocamento virtual é um deslocamento provocado por alguma outra ação que não o sistema de carregamento em questão atuante na estrutura. Força virtual pode ser considerada uma outra força qualquer que não seja a que está provocando o deslocamento real. 3
4 PTV em Treliças (1) Para aplicar o PTV (Princípio dos Trabalhos Virtuais) em treliças relembremos a expressão do PCEM para estas: PP. δδ = NN ii 22 ii EEEE ii PP. δδ = NN ii ii NN ii ii EEEE Deslocamento axial relativo de uma barra de comprimento L, área de seção transversal constante A solicitada por uma carga axial N δδ = NNNN EEEE 4
5 PTV em Treliças (2) O PTV é então aplicado pela suposição de uma carga virtual unitária (PP ) que figurará no primeiro termo da expressão, causando esforços internos virtuais (NN ii ) contemplados no segundo membro da equação: Deslocamento real correlato a PP Parcelas de deslocamento real em função dos Esforços Internos Reais (N) PP. δδ = NN ii ii NN ii ii EEEE Carga Virtual Unitária na direção que se deseja calcular o deslocamento Esforços Internos Virtuais (NN ) devidos a Carga Virtual Unitária 5
6 Continuidade do Exercício de Treliça 15.3 (1) Calcular o deslocamento Dy do ponto B da treliça abaixo: Para o caso agora, além de calcular os esforços internos devido ao carregamento real (1kN) faz-se necessário o cálculo dos esforços internos oriundos de uma carga virtual unitária (PP =1kN) a ser aplicada na vertical sobre o ponto B. B B NN PP ii ii. δδ = NN ii EEEE ii A C A C Para todas as barras: E = 2GPa A = 10 x 30 mm 6
7 Continuidade do Exercício de Treliça 15.3 (2) B B A C A C Esforços Axiais devidos ao carregamento REAL Esforços Axiais devidos ao carregamento VIRTUAL 7
8 Aplicação do PCEM a Treliças (3) Substituindo os de esforços internos reais e virtuais, e demais propriedades na expressão abaixo: δδ = , 33 kkkkkk kkkk NN PP ii ii. δδ BBBB = NN ii EEEE ii 1kN. δδ BBBB = ,77.kkkk.55,+11kkkk , ,+..33, kkkk mm mmm =, mm = 88, mmmm Vale salientar que como a força virtual PP =1kN foi aplicada para baixo no ponto B da treliça, o resultado de 8,888 mm de deslocamento apresenta-se com sinal positivo por ocorrer na direção e sentido de aplicação da força virtual adotada. 8
9 Aula 09 - Seção 2: Princípio dos Trabalhos Virtuais aplicado à Vigas e Pórticos 9
10 PTV em Vigas (1) Para aplicar o PTV (Princípio dos Trabalhos Virtuais) em vigas temos que adaptar a expressão do PCEM para uso em vigas. Em uma viga sujeita a flexão simples são encontrados somente esforços de Momento Fletor (M) e Cortante (V); Desta forma a expressão dos PCEM para estes elementos estruturais resume-se a: PP. δδ = NN22 EEEE dddd + MM22 EEEE dddd + χχ VV22 GGGG dddd 10
11 PTV em Vigas (2) Diferentemente da treliça, onde o esforço axial (N) é constante ao longo do comprimento de cada barra, em uma viga o momento fletor e o esforço cortante são variáveis ao longo do comprimento longitudinal. Assim sendo, não há como escaparmos do uso das integrais. Entretanto, as mesmas ideias de combinação de esforços reais e virtuais continuam valendo: PP. δδ yy = MM MM EEEE dddd + χχ VV VV GGGG dddd 11
12 PTV em Vigas (3) Vale a pena salientar as seguintes relações: PP. δδ yy = MM MM EEEE dddd + χχ VV VV GGGG dddd Carregamento Virtual Esforços Internos VIRTUAIS Rotação diferencial REAL no ponto X dddd(xx) = MM EEEE dddd Distorção Angular diferencial REAL no ponto X ddλλ(xx) = χχ VV GGGG dddd 12
13 Exemplo de Aplicação do PTV em Vigas (1) Seja a viga engastada abaixo, com comprimento longitudinal L e sujeita à uma carga distribuída uniforme q. Seja o ponto A o engaste e o ponto B a ponta livre, pede-se: a) Determinar a deflexão (deslocamento vertical - δ B ) do ponto B; b) Determinar a rotação (φ B ) do ponto B; 13
14 Exemplo de Aplicação do PTV em Vigas (2) Como visto anteriormente, para a determinação de um deslocamento em um determinado ponto de uma estrutura via igualdade W = U é necessária a aplicação de uma força correlata a este deslocamento desejado. No caso de deslocamentos de translação (deflexão) são aplicadas forças concentradas unitárias e virtuais No caso de deslocamentos de rotação devem ser aplicados momentos fletores unitários e virtuais 14
15 Exemplo de Aplicação do PTV em Vigas (3) PP = 11 MM = 11 M xx = qqxx 22 /22 MM δ xx = PP. xx MM φ xx = 11 VV(xx) = qqqq VV δ (xx) = 11 VV φ xx = 15
16 Exemplo de Aplicação do PTV em Vigas (4) Aplicando a expressão do PTV para vigas, têm-se que: Para a deflexão do ponto B: PP. δδ BB = MM MM EEEE dddd PP. δδ BB = ( PP xx) ( qqqq22 ) 22EEEE + χχ VV VV GGGG dddd δδ BB = qq44 qq22 + χχ GGGG dddd + χχ 11 (qqqq) GGGG dddd A parcela do esforço cortante na deflexão geralmente é muito pequena quando comparada com a do momento fletor, assim sendo, em estruturas comuns, esta é normalmente negligenciada Parcela da deflexão devido ao momento fletor Parcela da deflexão devido ao cortante 16
17 Exemplo de Aplicação do PTV em Vigas (5) Aplicando a expressão do PTV para vigas, têm-se que: Para a rotação do ponto B: MM. φφ BB = MM MM EEEE dddd + χχ VV VV GGGG dddd MM. φφ BB = ( 11 ) ( qqqq22 ) 22EEEE dddd + χχ (qqqq) GGGG dddd φφ BB = qq33 66EEEE + Parcela da deflexão devido ao momento fletor Parcela da deflexão devido ao cortante 17
18 PTV em Pórticos Em tese, na aplicação do PTV aos pórticos planos isostáticos, devem ser considerados os efeitos de todos os três esforços internos (M, Q e N): PP. δδ = NN NN EEEE dddd + MM MM EEEE dddd + χχ VV VV GGGG dddd Entretanto, tal como nas vigas, o efeito do momento fletor, geralmente acaba sobressaindo-se aos demais, de modo que, a influência do esforço cortante e do esforço normal acabam sendo negligenciadas: PP. δδ = MM MM EEEE dddd 18
19 Integração Via Tabelas Para facilitar o processo de integração é possível se fazer o uso de tabelas de integrais baseadas na geometria dos diagramas de esforços internos. Para tanto, faz-se necessário que o traçado dos diagramas (para cargas reais e virtuais) seja correto e definido em cada barra componente do pórtico. Em cada barra devem ser definidos os valores dos esforços internos nos extremos e no ponto médio. 19
20 Tabela de Integrais Geométricas 20
21 FIM 21
22 Exercício 9.1 Calcular, considerando somente os efeitos de momento fletor: a) A deflexão do ponto B; b) A rotação do ponto D; c) A deflexão do ponto D; Dados: E = 240 MPa; Seção Transversal Retangular : b = 15cm; h = 40cm; 22
23 Exercício 9.2 Calcular a deflexão dos pontos C e D e a rotação do ponto C do pórtico abaixo considerando somente os efeitos de momento fletor. Dados: E = 2 MPa; Vigas: - Seção Transversal Retangular : b = 15 cm; h = 60 cm; Pilares: - Seção Transversal Retangular : b = 15 cm; h = 30 cm; 23
24 Exercício 9.3 Calcular os deslocamentos vertical e horizontal do ponto C do pórtico abaixo: Dados: E = 250 MPa; Vigas: - Seção Transversal Retangular : b = 20 cm; h = 40 cm; Pilares: - Seção Transversal Retangular : b = 20 cm; h = 50 cm; 24
Teoria das Estruturas - Aula 10
Teoria das Estruturas - Aula 10 Linhas de Influência de Estruturas Isostáticas (1) Introdução às Linhas de Influência; L.I. de Vigas Biapoiadas; L.I. de Vigas Engastadas em Balanço; Prof. Juliano J. Scremin
Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas
Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas Fonte: HIBBELER, R. C. Resistência dos Materiais. 5. ed. São Paulo: PEARSON, 2004. 14.20 /14.22 14.24 /14.26 Resposta: 11,72 mm Resposta: 33,68
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1
CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1
Lista de Exercícios para Prova 1 1 - Para as estruturas hiperestáticas abaixo, determine um SISTEMA PRINCIPAL válido. No SISTEMA PRINCIPAL escolhido, determine os gráficos de momento fletor e as reações
Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.
Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo
Teoria das Estruturas - Aula 07
Teoria das Estruturas - Aula 07 Arcos Isostáticos Definição e Tipos Casos Particulares de Arcos Equação do Arco Parabólico de 2º. Grau, Equação da Linha de Pressões e Arcos com Apoios Desnivelados Prof.
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: [email protected] victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre 2007 Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta 1ª Questão (5,5 pontos) Determine pelo Método das Forças o diagrama de momentos fletores
Figura 1 Viga poligonal de aço estrutural
PÓRTICO, QUADROS E ESTRUTURAS MISTAS MODELO 01 Para a viga poligonal contínua, indicada na Figura 1, determinar por Análise Matricial de Estruturas as rotações e as reações verticais nos apoios e. Dados:
Teoria das Estruturas - Aula 15
Teoria das Estruturas - Aula 15 Estruturas Hiperestáticas: Método dos Deslocamentos (1) Conceitos Básicos; Descrição do Método; Prof. Juliano J. Scremin 1 Aula 15 - Seção 1: Conceitos Básicos 2 Analogia
Teoria das Estruturas - Aula 02
Teoria das Estruturas - Aula 02 Modelagem Estrutural Introdução à Modelagem Estrutural Reações de Apoio em Estruturas Isostáticas Planas (Revisão) Modelos Estruturais Planos Usuais Determinação Estática
FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos
FESP Faculdade de Engenharia São Paulo Avaliação: A1 Data: 12/mai/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c
plano da figura seguinte. A rótula r expressa que não háh
Método das Forças Sistema Principal Consideremos o pórtico p plano da figura seguinte. A rótula r em D expressa que não háh transmissão de momento fletor da barra CD para a extremidade D das barras BD
Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:
Teoria das Estruturas - Aula 06
Teoria das Estruturas - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Pórticos Compostos Exemplo de Modelagem Estrutural Prof. Juliano J. Scremin 1
EXERCÍCIOS RESOLVIDOS
IBMEC Graduação em Engenharia Civil Teoria das Estruturas I EXERCÍCIOS RESOLVIDOS 1. Classifique as estruturas abaixo quanto à estaticidade: (a) : estrutura isostática (4 variáveis, 4 equações) (b) : estrutura
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II PROFESSOR: Eng. CLÁUDIO MÁRCIO RIBEIRO ESPECIALISTA EM ESTRUTURAS Estrutura Definição: Estrutura é um sistema destinado a proporcionar o equilíbrio
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
FLEXIBILIDADE E SUPORTAÇÃO
FLEXIBILIDADE E SUPORTAÇÃO AULA 12-14 DEFLEXÕES USANDO MÉTODOS DE ENERGIA PROF.: KAIO DUTRA Trabalho Externo e Energia de Deformação O método da energia é baseada no princípio da conservação de energia.
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
Teoria das Estruturas - Aula 07
Teoria das Estruturas - Aula 07 Arcos Isostáticos Definição e Tipos Casos Particulares de Arcos Equação do Arco Parabólico de 2º. Grau, Equação da Linha de Pressões e Arcos com Apoios Desnivelados Prof.
Mecânica dos Sólidos I Lista de exercícios I Barras e treliças
Mecânica dos Sólidos I Lista de exercícios I arras e treliças (1)Uma biela consiste em três barras de aço de 6.25 mm de espessura e 31.25mm de largura, conforme esquematizado na figura. Durante a montagem,
Exercícios de Análise Matricial de Estruturas 1. 1) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido.
Exercícios de Análise Matricial de Estruturas ) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido. Dicas: - Obtenção da energia de deformação do sistema estrutural
FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior
FESP Faculdade de Engenharia São Paulo Avaliação: S1 Data: 29/jun/ 2015 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior Duração: 85 minutos Nome: Matrícula
Teoria das Estruturas - Aula 11
Teoria das Estruturas - Aula 11 Linhas de Influência de Estruturas Isostáticas (2) Processo de Muller-Breslau; Trem-Tipo; L.I. s de Vigas Gerber; Prof. Juliano J. Scremin 1 Aula 11 - Seção 1: Processo
MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais
MECÂNICA DO CONTÍNUO Tópico 3 Método dos Trabalhos Virtuais PROF. ISAAC NL SILVA Aspecto físico do equilíbrio Instável Estável P y1 y2 P Indiferente P Aspecto matemático: Eq. Instável d 2 V/dx 2
FLEXIBILIDADE E SUPORTAÇÃO AULA DEFLEXÕES
FLEXIBILIDADE E SUPORTAÇÃO AULA 10-11 DEFLEXÕES PROF.: KAIO DUTRA Diagramas de Deflexão e a Curva Elástica Deflexões de estruturas podem ocorrer de várias fontes, como cargas, temperatura, erros de fabricação,
LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02
LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas
Professor: José Junio Lopes
A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada
LISTA DE EXRECÍCIOS PILARES
LISTA DE EXRECÍCIOS PILARES Disciplina: Estruturas em Concreto II 2585 Curso: Engenharia Civil Professor: Romel Dias Vanderlei 1- Dimensionar e detalhar as armaduras (longitudinal e transversal) para o
Solicitações e Deslocamentos em Estruturas de Resposta Linear. Solicitações e Deslocamentos em Estruturas de Resposta Linear
Solicitações e Deslocamentos em Estruturas de Resposta Linear i Reitora Nádina Aparecida Moreno Vice-Reitora Berenice Quinzani Jordão Editora da Universidade Estadual de Londrina Diretora Conselho Editorial
FACULDADE SUDOESTE PAULISTA Teoria das Estruturas
A estrutura é a parte da construção responsável pela resistência às ações externas (cargas). Uma estrutura pode estar sujeita à ação de diferentes tipos de carga, tais como pressão do vento, reação de
AULA J EXEMPLO VIGA-BALCÃO
AULA J INTRODUÇÃO O Projeto de Revisão da Norma NBR-6118 sugere que a descrição do comportamento estrutural seja feita de maneira mais rigorosa possível, utilizando-se programas computacionais baseados
CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS
1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS PROF.: KAIO DUTRA A Linha Elástica A deflexão de uma estrutura é causada por seu carregamento interno como a força normal, força cortante,
Assunto: Estruturas Isostáticas Momento Fletor e Cortante Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] 6.1 Generalidades As forças são classificadas em: externas e internas. Todos
Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada
Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada - Limites de Esbeltez; - Peças Curtas e Medianamente Esbeltas; - Peças Esbeltas; - Compressão Normal e Inclinada em Relação
Pontifícia Universidade Católica de Goiás
Pontifícia Universidade Católica de Goiás Escola de Engenharia Curso: Engenharia Civil Disciplina: ENG2004 - Estruturas de Concreto Armado I Semestre: 2015.2 Painel de Lajes Maciças apoiadas em vigas apoiadas
Aço Exercício 2.1. Resolução : A = π D2 4 σ = E.ε. = π(2,54cm)2 4. = 5,067 cm 2. δ L o. ε = δ = NL o AE = 35 kn.350 cm
Aço Exercício.1 Uma barra de seção circular com diâmetro de 5, mm (1 ) está sujeita a uma tração axial de 35N. Calcular o alongamento da barra supondo seu comprimento inicial o = 3,50 m e que a mesma foi
MAC de outubro de 2009
MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em
RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas
RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas Prof. José Junio Lopes BIBLIOGRAFIA BÁSICA HIBBELER, Russell Charles. Resistência dos Materiais ed. São Paulo: Pearson Prentice Hall, 2009. 1 - CONCEITOS FUNDAMENTAIS
elementos estruturais
conteúdo 1 elementos estruturais 1.1 Definição As estruturas podem ser idealizadas como a composição de elementos estruturais básicos, classificados e definidos de acordo com a sua forma geométrica e a
Instabilidade e Efeitos de 2.ª Ordem em Edifícios
Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil Capítulo Prof. Romel Dias Vanderlei Instabilidade e Efeitos de 2.ª Ordem em Edifícios Curso: Engenharia Civil Disciplina:
5. Exemplo De Aplicação e Análise dos Resultados
5. Exemplo De Aplicação e Análise dos Resultados Visando uma melhor compreensão do exposto no capítulo anterior, são apresentados dois exemplos de aplicação relacionados ao cálculo de lajes protendidas.
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 03: Estruturas Submetidas à Flexão e Cisalhamento
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN)
PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015 Resolução 1ª Questão (4,0 pontos) barra prismática da figura tem comprimento L=2m. Ela está L/2 L/2 engastada em e livre em C. seção transversal
Exercícios de flexão pura e composta - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Obter o máximo valor admissível de P para a estrutura abaixo. Admita que o cabo CD esteja preso em C no CG da seção da viga AB. Dados para a viga AB: 250 MPa, 100 MPa. Dados
EXERCÍCIO 4.3. CE2 Estabilidade das Construções II Linhas de Influência Vigas Contínuas. Página 1 de 8
EXERCÍCIO 4.3 Determinar, aproximadamente, os MOMENTOS FLETORES MÁXIMO E MÍNIMO NA SEÇÃO S1 da viga contínua, esquematizada na Figura 12, considerando os carregamentos uniformemente distribuídos permanente
P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.
Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha
PROCESSO DOS ESFORÇOS. Profa. Dra. Rosilene de Fátima Vieira
PROCESSO DOS ESFORÇOS Profa. Dra. Rosilene de Fátima Vieira 2015 Processo dos Esforços Aplicado a vigas A solução de estruturas hiperestáticas é feita através de uma superposição de efeitos e estabelecimento
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
Analogia de Mohr Vigas Contínuas
Analogia de Mohr Vigas Contínuas FACULDADE DE ENGENHARIA SÃO PAULO - FESP Fonte: MARTHA, L. F. C. R. Análise de estruturas: conceitos e métodos básicos. Rio de Janeiro: ELSEVIER, 2010. Fonte: MARTHA, L.
a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial
TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Estruturas Submetidas à Flexão e Cisalhamento
1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)
11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.
FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: S2 Data: 24/NOV/
Estruturas de Aço e Madeira Aula 10 Ligações com Solda
Estruturas de Aço e Madeira Aula 10 Ligações com Solda - Tipos de Solda; - Definições para Soldas de Filete; - Simbologia e Dimensionamento de Soldas de Filete; Prof. Juliano J. Scremin 1 Aula 10 - Seção
Exercícios de Resistência dos Materiais A - Área 1
1) Calcular as reações de apoios da estrutura da figura para P1 = 15 kn, P2 = 10 kn; P3 = 2*P1 e q = 5kN/m H A = 30 kn; V A = 31,25 kn; V B = 3,5 kn 2) A prancha de Madeira apoiada entre dois prédios suporta
TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS
DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
FORMULAÇÃO TRELIÇA PLANA
CE ESTABILIDADE DAS CONSTRUÇÕES II FORMULAÇÃO TRELIÇA PLANA MODELO 1 Para a treliça hiperestática, indicada na Figura 1a, determinar por Análise Matricial de Estruturas: a) o deslocamento vertical do ponto
Disciplina: Sistemas Estruturais Disciplina: Sistemas Estruturais Assunto: Estruturas Isostáticas Prof. Ederaldo Azevedo Aula 5 e-mail: [email protected] Disciplina: Sistemas Estruturais 5.
PONTES. Prof. Esp. Márcio Matos
PONTES Prof. Esp. Márcio Matos Ações Linha de Influência Ações Permanentes Ações Variáveis Ações Excepcionais Ações Linha de Influência Diversas estruturas são solicitadas por cargas móveis. Exemplos são
LISTA DE EXERCÍCIOS PARA VE
ISTA DE EXERCÍCIOS PARA VE ) A partir das relações de primeira ordem entre ações e deslocamentos da barra bi-articulada e da definição de coeficiente de rigidez, pede-se a matriz de rigidez da estrutura
P-Δ deslocamentos horizontais dos nós da estrutura ou efeitos globais de segunda ordem;
3 Estabilidade e Análise Estrutural O objetivo da análise estrutural é determinar os efeitos das ações na estrutura (esforços normais, cortantes, fletores, torsores e deslocamentos), visando efetuar verificações
Departamento de Engenharia Mecânica ENG Mecânica dos Sólidos II. Teoria de Vigas. Prof. Arthur Braga
Departamento de Engenharia Mecânica ENG 174 - Teoria de Vigas Prof. rthur Braga Tensões de Fleão em Barras (vigas Deformação do segmento IJ M N ρ Δφ I J ( ρ y Δφ Compresão ρ ρ y I J y M N Eio Neutro (deformação
Nota: Engenharia Civil. Disciplina: Teoria das Estruturas. Turma:
Engenharia Civil Exame Final: 2014 Disciplina: Teoria das Estruturas TE14-EFb Nota: Turma: Aluno: Matrícula: Orientações: Leia atentamente todas as instruções da prova. Não é permitida a comunicação entre
Professora: Engª Civil Silvia Romfim
Professora: Engª Civil Silvia Romfim CRITÉRIOS DE DIMENSIONAMENTO Flexão simples reta Flexão oblíqua Flexão composta Flexo-tração Flexo-compressão Estabilidade lateral de vigas de seção retangular Flexão
Exercício 2. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados
Universidade de São Paulo Faculdade de Arquitetura e Urbanismo Exercício 2 PEF 2602 - Estruturas na Arquitetura Sistemas Reticulados Equipe 09 Felipe Tinel 5914801 Gabriela Haddad 5914714 Lais de Oliveira
MÉTODOS DE ENERGIA 1 INTRODUÇÃO
MÉTODOS DE ENERGIA 1 INTRODUÇÃO Quando não ocorre dissipação de energia, o trabalho realizado pelas cargas aplicadas e a energia são iguais, sendo o trabalho um produto vetorial da força pelo deslocamento.
Prof. Dr. Eduardo Lenz Cardoso
Introdução ao Método dos Elementos Finitos Prof. Dr. Eduardo Lenz Cardoso [email protected] Breve Curriculo Dr. Eng Mecânica UFRGS/DTU Prof. Subst. UFRGS (Mecânica dos Sólidos I/ MEF/ Mecânica dos
FACULDADES INTEGRADAS EINSTEIN DE LIMEIRA
FUDDES INTEGRDS EINSTEIN DE IMEIR urso de Graduação em Engenharia ivil Teoria das Estruturas I - 20 Prof. José ntonio Schiavon, MSc. NOTS DE U ula 7: inha de Influência em Estruturas Isostáticas. Objetivo:
Problema resolvido 4.2
Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)
A AÇÃO DO VENTO NOS EDIFÍCIOS
160x210 A AÇÃO DO VENTO NOS EDIFÍCIOS ARAÚJO, J. M. Projeto Estrutural de Edifícios de Concreto Armado. 3. ed., Rio Grande: Dunas, 2014. Prof. José Milton de Araújo FURG 1 1 O PROJETO ESTRUTURAL E A DEFINIÇÃO
Distribuição Transversal para Pontes em Vigas Múltiplas Protendidas
Distribuição Transversal para Pontes em Vigas Múltiplas Protendidas Vanderlei de Souza Almeida 1, Ricardo Valeriano Alves 2, Flávia Moll de Souza Judice 3 Resumo 1 Universidade Federal do Rio de Janeiro
ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída)
ESTRUTURS DE CONCRETO RMDO Lista para a primeira prova Questão 1) P1 V1 P2 V4 P3 V2 V3 4m 2m 3m V5 P4 h ' s s b d Seção das vigas: b=20cm ; h=40cm ; d=36cm Carga de serviço sobre todas as vigas: 15kN/m
Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008
Sumário e Objectivos Sumário: Método da Viga Conjugada. Objectivos da Aula: Ser capaz de determinar a flecha e a inclinação num ponto fazendo uso do Método da Viga Conjugada 1 Viga Flectida Estrutura de
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões
Capítulo 4 Diagramas de esforços em pórticos planos
Diagramas de esforços em pórticos planos Professora Elaine Toscano Capítulo 4 Diagramas de esforços em pórticos planos 4.1 Pórticos planos Este capítulo será dedicado ao estudo dos quadros ou pórticos
(NBR 8800, Tabela C.1)
CE Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: A1 Data: 13/abr/
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
2. Revisão Bibliográfica
. Revisão Bibliográfica.1. Considerações iniciais Neste capítulo é apresentada uma revisão bibliográfica sobre pilares de concreto armado, dividida basicamente em duas partes. A primeira apresenta alguns
e-mail: [email protected]
Assunto: Cálculo de Lajes Prof. Ederaldo Azevedo Aula 3 e-mail: [email protected] 3.1. Conceitos preliminares: Estrutura é a parte ou o conjunto das partes de uma construção que se destina a
Estruturas de Aço e Madeira Aula 05a Flambagem Local em Peças de Aço Comprimidas
Estruturas de Aço e Madeira Aula 05a Flambagem Local em Peças de Aço Comprimidas - Flambagem Local - Dimensionamento conforme a Norma (Com Flambagem Local) Prof. Juliano J. Scremin 1 Aula 05a - Seção 1:
Conceituação de Projeto
Noção Gerais sobre Projeto de Estruturas Metálicas Etapas e documentos de projetos Diretrizes normativas e Desenhos de projeto Eng. Wagner Queiroz Silva, D.Sc UFAM Conceituação de Projeto Pré-projeto ou
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da
ESTÁTICA DAS ESTRUTURAS I PROF. IBERÊ 1 / 37 MÉTODO DOS ESFORÇOS
ESTÁTCA DAS ESTUTUAS POF. BEÊ / 7 ÉTODO DOS ESFOÇOS Na resolução de estruturas hiperestáticas (aquelas que não podem ser resolvidas com as equações fundamentais da estática, a saber : somatória forças
Univer Univ sidade Feder sidade F al de Alagoas Centro de Tecnologia Curso d de E Engenharia i Ci Ci i v lil T oria das Estruturas I Aula Aula 10
Universidade Federal de lagoas entro de Tecnologia urso de Engenharia ivilil Teoria das Estruturas I ula 10 Prof. Flávio arboza de Lima ula 09 enário Estruturas Isostáticas Planas Esforços Internos Solicitantes
ESTRUTURAS DE CONCRETO ARMADO EXERCÍCIOS PARA A TERCEIRA PROVA PARCIAL
ESTRUTURAS DE CONCRETO ARMADO EXERCÍCIOS PARA A TERCEIRA PROVA PARCIAL Questão 1 Dimensionar as armaduras das seções transversais abaixo (flexo-compressão normal). Comparar as áreas de aço obtidas para
MÉTODO DE RUNGE-KUTTA APLICADO À DEFLEXÃO DE VIGA 1 RUNGE-KUTTA METHOD APPLIED TO BEAM DEFLECTION
MÉTODO DE RUNGE-KUTTA APLICADO À DEFLEXÃO DE VIGA 1 RUNGE-KUTTA METHOD APPLIED TO BEAM DEFLECTION Giovani Prates Bisso Dambroz 2, Peterson Cleyton Avi 3 1 Texto produzido a partir de trabalho desenvolvido
Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:
Caso zero de carregamento: No caso zero de carregamento, aplicamos à isostática o carregamento da hiperestática.
Módulo 4 - Resolução de estruturas uma vez hiperestáticas externamente e com todas as suas barras solicitadas por momento fletor, sem a presença de torção, através do Processo dos Esforços. O Processo
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul
RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul [email protected] [email protected] Graduação em Engenharia Mecânica Disciplina: RESISTÊNCIA DOS MATERIAIS
TC 071 PONTES E ESTRUTURAS ESPECIAIS II
5ª ula Superestrutura de onte em Grelha T 07 ONTES E ESTRUTURS ESES 5ª U (4/08/.00) SUERESTRUTUR DE ONTE E GREH - FEXDDE E RGDEZ a) arra axialmente comprimida E onsidere a barra axialmente comprimida da
