FLEXIBILIDADE E SUPORTAÇÃO
|
|
|
- Rayssa Figueiroa Weber
- 8 Há anos
- Visualizações:
Transcrição
1 FLEXIBILIDADE E SUPORTAÇÃO AULA DEFLEXÕES USANDO MÉTODOS DE ENERGIA PROF.: KAIO DUTRA
2 Trabalho Externo e Energia de Deformação O método da energia é baseada no princípio da conservação de energia. O princípio da conservação de energia pode ser enunciado matematicamente como
3 Trabalho Externo e Energia de Deformação Trabalho Externo Trabalho externo força. Quando uma força F passa por um deslocamento dx na mesma direção que a força, o trabalho realizado é due = F dx. Se o deslocamento total é x, o trabalho torna-se
4 Trabalho Externo e Energia de Deformação Trabalho Externo Trabalho externo momento. O trabalho de um momento é definido pelo produto da magnitude do momento M e o ângulo dθ através do qual ele gira, isto é, due = M dθ. Se o ângulo total da rotação é θ radianos, o trabalho torna-se
5 Trabalho Externo e Energia de Deformação Energia de Deformação Energia de deformação força axial. Quando uma força axial N é aplicada gradualmente à barra, ela vai tracionar o material de tal maneira que o trabalho externo realizado por N será convertido em energia de deformação, que é armazenada na barra. N/A = E (Δ/L), e a deflexão final é: Substituindo P=N, a energia de deformação na barra fica:
6 Trabalho Externo e Energia de Deformação Energia de Deformação Energia de deformação flexão. A energia de deformação, ou trabalho armazenado no elemento, é determinada da equação : Tendo em vista que o momento interno é gradualmente desenvolvido. Logo, A energia de deformação para a viga é determinada integrando este resultado através do comprimento inteiro da viga L. O resultado é
7 Princípio do Trabalho Virtual O princípio do trabalho virtual proporciona um meio geral de se obter o deslocamento e a inclinação em um ponto específico em uma estrutura, seja ela uma viga, pórtico ou treliça. Em geral, o princípio do trabalho e energia enuncia:
8 Princípio do Trabalho Virtual O princípio do trabalho virtual proporciona um meio geral de se obter o deslocamento e a inclinação em um ponto específico em uma estrutura, seja ela uma viga, pórtico ou treliça. Em geral, o princípio do trabalho e energia enuncia:
9 Princípio do Trabalho Virtual Em geral, o princípio do trabalho e energia enuncia: Podemos escrever a equação de trabalho virtual como:
10 Princípio do Trabalho Virtual Carga externa. Vamos considerar o deslocamento vertical Δ do nó B da treliça na figura. A equação de trabalho virtual para a treliça é, portanto,
11 Princípio do Trabalho Virtual Temperatura. Podemos determinar o deslocamento do nó de uma treliça selecionada em razão da sua mudança de temperatura da equação de trabalho virtual, escrita como Erros de fabricação e contraflecha. Se um membro da treliça é mais curto ou mais longo do que o intencionado, o deslocamento de um nó da treliça da sua posição esperada pode ser determinado a partir da aplicação direta da equação de trabalho virtual, escrita como
12 Princípio do Trabalho Virtual Exemoplo 9.1
13 Princípio do Trabalho Virtual Exemoplo 9.1
14 Princípio do Trabalho Virtual Exemoplo 9.1
15 Princípio do Trabalho Virtual Exemoplo 9.3
16 Princípio do Trabalho Virtual Exemoplo 9.3
17 Princípio do Trabalho Virtual Exemoplo 9.3
18 Teorema de Castigliano O método que é chamado de segundo teorema de Castigliano, ou o método do trabalho mínimo, aplica-se somente a estruturas que têm temperatura constante, apoios sem recalques, e resposta do material elástica linear. Tendo em vista que o trabalho externo realizado por essas cargas é igual à energia de deformação interna armazenada no corpo, podemos escrever
19 Teorema de Castigliano Tendo em vista que o trabalho externo realizado por essas cargas é igual à energia de deformação interna armazenada no corpo, podemos escrever O trabalho externo é uma função das cargas externas:
20 Teorema de Castigliano O trabalho externo é uma função das cargas externas: Agora, se qualquer uma das forças, digamos Pi, for aumentada por um montante diferencial dpi, o trabalho interno também é aumentado de tal maneira que a nova energia de deformação torna-se
21 Teorema de Castigliano A aplicação adicional das cargas P1, P2,..., Pn, que deslocam o corpo Δ1, Δ2,..., Δn, resulta na energia de deformação. Tendo em vista que estas duas equações têm de ser iguais, é necessário que
22 Teorema de Castigliano Para Treliças Substituindo a equação da energia interna no Teorema de Castigliano: No caso geral L, A e E são constantes para um dado membro e, portanto, podemos escrever
23 Teorema de Castigliano Para Treliças Exemplo 9.4
24 Teorema de Castigliano Para Treliças Exemplo 9.4
25 Teorema de Castigliano Para Treliças Exemplo 9.4
26 Teorema de Castigliano Para Treliças Exemplo 9.6
27 Teorema de Castigliano Para Treliças Exemplo 9.6
28 Teorema de Castigliano Para Treliças Exemplo 9.6
29 Teorema de Castigliano Para Treliças Exemplo 9.6
30 Teorema de Castigliano Para Treliças Exemplo 9.6
31 Método do Trabalho Virtual: Vigas e Pórticos Somar os efeitos sobre todos os elementos dx ao longo da viga exige uma integração e, portanto, a equação de trabalho virtual torna-se:
32 Método do Trabalho Virtual: Vigas e Pórticos Tendo em vista que o trabalho do momento binário unitário é 1 θ, então:
33 Método do Trabalho Virtual: Vigas e Pórticos Exemplo 9.7
34 Método do Trabalho Virtual: Vigas e Pórticos Exemplo 9.7
35 Método do Trabalho Virtual: Vigas e Pórticos Exemplo 9.7
36 Método do Trabalho Virtual: Vigas e Pórticos Exemplo 9.8
37 Método do Trabalho Virtual: Vigas e Pórticos Exemplo 9.8
38 Método do Trabalho Virtual: Vigas e Pórticos Exemplo 9.8
39 Método do Trabalho Virtual: Vigas e Pórticos Exemplo 9.8
40 Método do Trabalho Virtual: Vigas e Pórticos Exemplo 9.8
41 Método do Trabalho Virtual: Vigas e Pórticos Exemplo 9.8
42 Teorema de Castigliano Para Vigas e Pórticos A energia de deformação de flexão interna para uma viga ou pórtico é dada pela Equação: Em vez de elevar ao quadrado a expressão para o momento interno M, integrando, e então tomando a derivada parcial, geralmente é mais fácil diferenciar antes da integração:
43 Teorema de Castigliano Para Vigas e Pórticos Se a inclinação θ em um ponto será determinada, temos de calcular a derivada parcial do momento interno M em relação a um momento binário externo Mʹ atuando no ponto, isto é:
44 Teorema de Castigliano Para Vigas e Pórticos Exemplo 9.14
45 Teorema de Castigliano Para Vigas e Pórticos Exemplo 9.14
46 Teorema de Castigliano Para Vigas e Pórticos Exemplo 9.14
FLEXIBILIDADE E SUPORTAÇÃO AULA DEFLEXÕES
FLEXIBILIDADE E SUPORTAÇÃO AULA 10-11 DEFLEXÕES PROF.: KAIO DUTRA Diagramas de Deflexão e a Curva Elástica Deflexões de estruturas podem ocorrer de várias fontes, como cargas, temperatura, erros de fabricação,
Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:
MÉTODOS DE ENERGIA 1 INTRODUÇÃO
MÉTODOS DE ENERGIA 1 INTRODUÇÃO Quando não ocorre dissipação de energia, o trabalho realizado pelas cargas aplicadas e a energia são iguais, sendo o trabalho um produto vetorial da força pelo deslocamento.
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. eer E. Russell Johnston, Jr. Deflexão de Vigas por Integração Capítulo 7 Deflexão de Vigas por Integração 7.1 Introdução 7. Deformação de
AULA 09 AULA 09 ESTABILIDADE DAS CONSTRUÇÕES II METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com EXERCÍCIOS COMPLEMENTARES
ESTABILIDADE DAS CONSTRUÇÕES II METODOLOGIA DA DISCIPLINA Site da disciplina: engpereira.wordpress.com EXERCÍCIOS COMPLEMENTARES Lista disponibilizada no dia da aula para ser entregue na semana seguinte.
Teoria das Estruturas I - Aula 08
Teoria das Estruturas I - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;
AULA 09 ESTABILIDADE DAS CONSTRUÇÕES II AULA 09 AULA 09 METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com
ESTABILIDADE DAS CONSTRUÇÕES II METODOLOGIA DA DISCIPLINA Site da disciplina: engpereira.wordpress.com 1 EXERCÍCIOS COMPLEMENTARES Lista disponibilizada no dia da aula para ser entregue na semana seguinte.
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: [email protected] victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE
Teoria das Estruturas - Aula 09
Teoria das Estruturas - Aula 09 Cálculo de Deslocamentos em Estruturas Isostáticas (2) Princípio dos Trabalhos Virtuais aplicado a Treliças; Princípio dos Trabalhos Virtuais aplicado a Vigas e Pórticos;
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS PROF.: KAIO DUTRA A Linha Elástica A deflexão de uma estrutura é causada por seu carregamento interno como a força normal, força cortante,
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre 2007 Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta 1ª Questão (5,5 pontos) Determine pelo Método das Forças o diagrama de momentos fletores
Aula 04 MÉTODO DAS FORÇAS. Classi cação das estruturas quanto ao seu equilíbrio estático. ² Isostática:
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Disciplina: Análise Matricial de Estruturas Professor: Antônio Macário Cartaxo de Melo Aula 04
24/03/2014 ESTABILIDADE DAS CONSTRUÇÕES II AULA 05 METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com
ESTABILIDADE DAS CONSTRUÇÕES II AULA 05 METODOLOGIA DA DISCIPLINA Site da disciplina: engpereira.wordpress.com 1 METODOLOGIA DA DISCIPLINA Material disponibilizado: 1- Programação das aulas: METODOLOGIA
PROVA COMENTADA. Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:
? Momento fletor Diagrama de Corpo Livre Reação redundante escolhida Reação vertical no ponto A: Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:
Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:
Exercícios de Análise Matricial de Estruturas 1. 1) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido.
Exercícios de Análise Matricial de Estruturas ) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido. Dicas: - Obtenção da energia de deformação do sistema estrutural
Capítulo 1 MÉTODOS DE ENERGIA
Capítulo 1 MÉTODOS DE ENERGIA 1.1. INTRODUÇÃO Em geral, o estudo da mecânica dos sólidos (corpos rígidos e deformáveis) baseia-se no Método Newtoniano, apoiando-se nas análises vetoriais, sob diversas
Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2
Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça
Capítulo 5 Carga Axial
Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Determinar a tensão normal e as deformações em elementos
Teoria das Estruturas - Aula 08
Teoria das Estruturas - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Terceira Prova 25/11/2002 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁISE DE ESTRUTURAS II 2º Semestre 02 Terceira Prova 25/11/02 Duração: 2:30 hs Sem Consulta 1ª Questão (4,0 pontos) Para uma viga de ponte, cujo modelo estrutural é apresentado abaixo, calcule
MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais
MECÂNICA DO CONTÍNUO Tópico 3 Método dos Trabalhos Virtuais PROF. ISAAC NL SILVA Aspecto físico do equilíbrio Instável Estável P y1 y2 P Indiferente P Aspecto matemático: Eq. Instável d 2 V/dx 2
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1
CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine
CONTEÚDOS PROGRAMADOS. (Análise Computacional de Tensões EEK 533)
(Análise Computacional de Tensões EEK 533) - AULAS POR UNIDADE 1 - Princípios Variacionais 1.1 - Princípio dos Trabalhos Virtuais 1.2 - Princípios da Mínima Energia Total e da Mínima energia complementar.
Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.
Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2013-1 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
Sumário. Introdução O conceito de tensão 1. Tensão e deformação Carregamento axial 49
1 Introdução O conceito de tensão 1 Introdução 2 1.1 Um breve exame dos métodos da estática 2 1.2 Tensões nos elementos de uma estrutura 4 1.3 Tensão em um plano oblíquo sob carregamento axial 25 1.4 Tensão
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender a deformação por torção Compreender os esforços de torção Determinar distribuição de tensões de cisalhamento
FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos
FESP Faculdade de Engenharia São Paulo Avaliação: A1 Data: 12/mai/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
FLEXIBILIDADE E SUPORTAÇÃO
FLEXIBILIDADE E SUPORTAÇÃO AULA 3-4 ANÁLISE DE TRELIÇAS DETERMINADAS ESTATICAMENTE PROF.: KAIO DUTRA Tipos Comuns de Treliças Uma treliça é uma estrutura de membros delgados unidos em suas extremidades.
Deflexão em vigas de eixo reto
10 de novembro de 2016 Linha elástica da flexão é a curva formada pelo eixo de uma viga inicialmente retilíneo, devido à aplicação de momentos de flexão. Figura : Exemplo de viga em flexão Antes da aplicação
Prof. Dr. Eduardo Lenz Cardoso
Introdução ao Método dos Elementos Finitos Prof. Dr. Eduardo Lenz Cardoso [email protected] Breve Curriculo Dr. Eng Mecânica UFRGS/DTU Prof. Subst. UFRGS (Mecânica dos Sólidos I/ MEF/ Mecânica dos
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
plano da figura seguinte. A rótula r expressa que não háh
Método das Forças Sistema Principal Consideremos o pórtico p plano da figura seguinte. A rótula r em D expressa que não háh transmissão de momento fletor da barra CD para a extremidade D das barras BD
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2014/2015 2º Semestre
Exercício - Método das Forças NÁLISE DE ESTRUTURS I no lectivo de 20/205 2º Semestre Problema (28 de Janeiro de 999) onsidere a estrutura representada na figura. a) Indique qual o grau de indeterminação
Teoria das Estruturas - Aula 14
Teoria das Estruturas - Aula 14 Estruturas Hiperestáticas: Método das Forças (2) Teoremas de Betti e Maxwell; Método das Forças aplicado a problemas com 2 ou mais Graus de Hiperestaticidade; Efeito de
EXERCÍCIOS RESOLVIDOS
IBMEC Graduação em Engenharia Civil Teoria das Estruturas I EXERCÍCIOS RESOLVIDOS 1. Classifique as estruturas abaixo quanto à estaticidade: (a) : estrutura isostática (4 variáveis, 4 equações) (b) : estrutura
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2018-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos
Resistência dos Materiais
- Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão
Solicitações e Deslocamentos em Estruturas de Resposta Linear. Solicitações e Deslocamentos em Estruturas de Resposta Linear
Solicitações e Deslocamentos em Estruturas de Resposta Linear i Reitora Nádina Aparecida Moreno Vice-Reitora Berenice Quinzani Jordão Editora da Universidade Estadual de Londrina Diretora Conselho Editorial
Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9
591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta
CIV 27 ANÁLISE DE ESRUURAS II 2º Semestre 2002 Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta ª Questão (6,0 pontos) Considere a estrutura hiperestática abaixo, onde também está indicado
Modelos Matematicos de Sistemas
Modelos Matematicos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;
Deflexão em vigas e eixos
Capítulo 12: Deflexão em vigas e eixos Adaptado pela prof. Dra. Danielle Bond Deflexão em Vigas e Eixos Muitas vezes é preciso limitar o grau de deflexão que uma viga ou eixo pode sofrer quando submetido
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1
Lista de Exercícios para Prova 1 1 - Para as estruturas hiperestáticas abaixo, determine um SISTEMA PRINCIPAL válido. No SISTEMA PRINCIPAL escolhido, determine os gráficos de momento fletor e as reações
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão
Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008
Sumário e Objectivos Sumário: Método da Viga Conjugada. Objectivos da Aula: Ser capaz de determinar a flecha e a inclinação num ponto fazendo uso do Método da Viga Conjugada 1 Viga Flectida Estrutura de
ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:
Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas
CIV Estruturas Hiperestáticas I -1992/1. P1-27/04/92 - Duração: 2 horas - Sem Consulta
CIV 22 - Estruturas Hiperestáticas I -992/ P - 27/04/92 - Duração: 2 horas - Sem Consulta a Questão (4.5 pontos) Descreva toda a metodologia do Método das Forças através da resoluçao do quadro hiperestático
O que é Resistência dos Materiais?
Roteiro de aula O que é Resistência dos Materiais? Definições Resistência x Rigidez Análise x Projeto Áreas de Aplicação Forças externas Esforços internos Elementos estruturais Hipóteses básicas Unidades
FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior
FESP Faculdade de Engenharia São Paulo Avaliação: S1 Data: 29/jun/ 2015 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior Duração: 85 minutos Nome: Matrícula
, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE
3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE
POTENCIAL ELÉTRICO. Prof. Bruno Farias
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar
Exercícios de cargas axiais em barras rígidas - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 015. 1. A barra rígida AC representa um muro de contenção de terra. Ela está apoiada em A e conectada ao tirante flexível BD em D. Esse tirante possui comprimento de 4 metros e módulo
Experiência 3 - Pêndulo
Roteiro de Física Experimental II 13 Experiência 3 - Pêndulo 1 - OBJEIVO O objetivo desta aula é discutir o movimento harmônico de um pêndulo físico e realizar um experimento sobre o mesmo Através de medidas
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos
Resultantes de um sistema de forças
Resultantes de um sistema de forças Objetivos da aula Discutir o conceito do momento de uma força e mostrar como calculá-lo em duas e três dimensões. Fornecer um método para determinação do momento de
Engenharia Biomédica EN2310 MODELAGEM, SIMULAÇÃO E CONTROLE APLICADOS A SISTEMAS BIOLÓGICOS. Professores: Ronny Calixto Carbonari
Engenharia Biomédica EN310 MODEAGEM, SIMUAÇÃO E CONTROE APICADOS A SISTEMAS BIOÓGICOS Professores: Ronny Calixto Carbonari Janeiro de 013 Método de Elementos Finitos (MEF): Elementos de Treliça Objetivo
Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
Sumário: Equação da Deformada. Obtenção da Deformada por Integração directa da equação da Deformada.
Sumário e Objectivos Sumário: Equação da Deformada. Obtenção da Deformada por Integração directa da equação da Deformada. Objectivos da Aula: Apreensão da forma de cálculo dos deslocamentos transversais
As variáveis de rotação
Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento
Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas
Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas Fonte: HIBBELER, R. C. Resistência dos Materiais. 5. ed. São Paulo: PEARSON, 2004. 14.20 /14.22 14.24 /14.26 Resposta: 11,72 mm Resposta: 33,68
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões
Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO
Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO PROF.: KAIO DUTRA Estado Plano de Deformações O estado geral das deformações em determinado ponto de um corpo é representado pela combinação
Lista 2 - Métodos Matemáticos II Respostas
Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer
TC 071 PONTES E ESTRUTURAS ESPECIAIS II
5ª ula Superestrutura de onte em Grelha T 07 ONTES E ESTRUTURS ESES 5ª U (4/08/.00) SUERESTRUTUR DE ONTE E GREH - FEXDDE E RGDEZ a) arra axialmente comprimida E onsidere a barra axialmente comprimida da
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2015/2016 2º Semestre
Exercício - Método das Forças NÁLISE DE ESTRUTURS I no lectivo de 05/06 º Semestre Problema (5 de Novembro de 000) onsidere a estrutura representada na figura. ssuma que todas as barras apresentam a mesma
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes
Cinemática da partícula fluida
Cinemática da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Cinemática da partícula fluida 1 / 16 Sumário 1 Descrição do movimento 2 Cinemática
MECÂNICA DOS SÓLIDOS DEFORMAÇÕES
MECÂNICA DOS SÓLIDOS DEFORMAÇÕES Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer os tipos de deformação e deslocamentos Saber estimar valor da deformação nas formas normal/axial e por cisalhamento Calcular
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos
Energia cinética de rotação:
2 comenta a) Energia cinética de translação: Energia cinética de rotação: Todos os pontos que constituem o aro têm a mesma velocidade tangencial em relação ao seu centro. Por isso, sua energia cinética
REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.
MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL
5 CISALHAMENTO SIMPLES
5 CISALHAMENTO SIMPLES Conforme visto anteriormente, sabe-se que um carregamento transversal aplicado em uma viga resulta em tensões normais e de cisalhamento em qualquer seção transversal dessa viga.
LISTA DE EXERCÍCIOS PARA VE
ISTA DE EXERCÍCIOS PARA VE ) A partir das relações de primeira ordem entre ações e deslocamentos da barra bi-articulada e da definição de coeficiente de rigidez, pede-se a matriz de rigidez da estrutura
Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo
CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa
RESUMO MECÂNICA II P2
RESUMO MECÂNICA II P Autoria: Yan Ichihara de Paula IMPULSO, TEOREMA DA RESULTANTE DOS IMPULSOS E TEOREMA DO MOMENTO DOS IMPULSOS Impulso possui grandeza vetorial, e é definido como: t I = F dt t 1 Assim,
(NBR 8800, Tabela C.1)
CE Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: A1 Data: 13/abr/
Análise Matricial de Estruturas com orientação a objetos
Análise Matricial de Estruturas com orientação a objetos Prefácio... IX Notação... XIII Capítulo 1 Introdução... 1 1.1. Processo de análise... 2 1.1.1. Modelo estrutural... 2 1.1.2. Modelo discreto...
ENERGIA POTENCIAL E CONSERVAÇÃO DA ENERGIA
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ENERGIA POTENCIAL E CONSERVAÇÃO DA ENERGIA Prof. Bruno Farias Introdução Neste módulo vamos
x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3
Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Engenharia Aeroespacial Universidade Federal do ABC 07 de março, 2016 Conteúdo 1 Introdução 2 Tensão 3 Deformação 4 Lei de Hooke
Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*
ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular
Mecânica Analítica. Dinâmica Hamiltoniana. Licenciatura em Física. Prof. Nelson Luiz Reyes Marques MECÂNICA ANALÍTICA PARTE 2
Mecânica Analítica Dinâmica Hamiltoniana Licenciatura em Física Prof. Nelson Luiz Reyes Marques Princípio de Hamilton O caminho real que uma partícula percorre entre dois pontos 1 e 2 em um dado intervalo
