FLEXIBILIDADE E SUPORTAÇÃO AULA DEFLEXÕES
|
|
|
- Geovane Fontes Amarante
- 8 Há anos
- Visualizações:
Transcrição
1 FLEXIBILIDADE E SUPORTAÇÃO AULA DEFLEXÕES PROF.: KAIO DUTRA
2 Diagramas de Deflexão e a Curva Elástica Deflexões de estruturas podem ocorrer de várias fontes, como cargas, temperatura, erros de fabricação, ou recalques. No projeto, deflexões têm de ser limitadas a fim de proporcionar integridade e estabilidade às coberturas, e evitar fissuras em materiais frágeis anexados como concreto, reboco ou vidro.
3 Diagramas de Deflexão e a Curva Elástica A deflexão de uma estrutura é causada por seu carregamento interno como a força normal, força cortante, ou momento fletor. Muitas vezes é interessante fazer um esboço da forma defletida da estrutura quando ela está carregada a fim de conferir parcialmente os resultados. Esse diagrama de deflexão representa a curva elástica ou lugar geométrico dos pontos que define a posição deslocada do centroide da seção transversal ao longo dos membros.
4 Diagramas de Deflexão e a Curva Elástica Normalmente é necessário, para facilitar a análise, que o diagrama de momento para a viga ou estrutura seja traçado primeiro. Para isto, relembramos que: Um momento positivo tende a flexionar uma viga ou membro horizontal côncavo para cima: Um momento negativo tende a flexionar a viga ou membro côncavo para baixo:
5 Diagramas de Deflexão e a Curva Elástica Na figura ao lado podemos observar algumas curvas de deflexão para duas situações.
6 Diagramas de Deflexão e a Curva Elástica É importante observar que a interação dos apoios com a curva elástica, conforme apresentado na tabela abaixo.
7 Teoria da Viga Elástica Quando o momento interno M deforma o elemento da viga, cada seção transversal permanece plana e o ângulo entre elas torna-se dθ.
8 Teoria da Viga Elástica Desta forma a deformação pode ser: Porem:
9 Teoria da Viga Elástica Relacionando a deformação pontual com a deformação máxima temos:
10 Teoria da Viga Elástica Para o regime elástico temos que a Lei de Hooke. Usando a Lei de Hooke na relação de deformação, temos:
11 Teoria da Viga Elástica Por definição, a força relaciona-se com a tensão da forma apresentada abaixo:
12 Teoria da Viga Elástica Por definição, a força relaciona-se com a tensão da forma apresentada abaixo: Por definição, o momento relaciona-se com a força da forma apresentada abaixo:
13 Teoria da Viga Elástica Por definição, a força relaciona-se com a tensão da forma apresentada abaixo: Por definição, o momento relaciona-se com a força da forma apresentada abaixo:
14 Teoria da Viga Elástica Aplicando a relação de tensões da definição de momento, temos:
15 Teoria da Viga Elástica Voltando para a relação de deformações, aplicando a Lei de Hooke e a tensão de flexão, temos: Na maioria dos livros de calculo é mostrado que a relação de curvatura pode ser dado por:
16 Teoria da Viga Elástica Desta forma para verificação da curva elástica é necessário resolver a equação diferencial de segunda ordem não linear ao lado: Porém esta equação pode ser simplificada tendo em vista que a inclinação da curva elástica é muito pequena, desta forma: dυ/dx 0
17 Método da Integração Dupla Convenção de sinais. Ao aplicar a equação anterior, é importante usar o sinal apropriado para M como estabelecido pela convenção de sinais que foi usada na derivação dessa equação. Também, tendo em vista que o ângulo de inclinação será muito pequeno, o seu valor em radianos pode ser determinado diretamente:
18 Método da Integração Dupla Além disso, lembre-se que a deflexão positiva, υ, é para cima, e como resultado, o ângulo de inclinação positivo θ será medido no sentido anti-horário do eixo x.
19 Método da Integração Dupla Conforme apresentado na teoria da viga elástica e usando outros resultados previamente estudados nos diagramas de momento fletor e força cortante, temos:
20 Método da Integração Dupla Condições de continuidade e contorno. As constantes de integração são determinadas avaliando as funções para inclinação ou deslocamento em um ponto em particular na viga onde o valor da função é conhecido. Por exemplo, se a viga é suportada por um rolo ou pino, então é necessário que o deslocamento seja zero nesses pontos. Também, em um apoio fixo a inclinação e o deslocamento são, ambos, zero.
21 Método da Integração Dupla Exemplo 8.3
22 Método da Integração Dupla Exemplo 8.3
23 Método da Integração Dupla Exemplo 8.3
24 Método da Integração Dupla Exemplo 8.3
25 Teorema de Momentos das Áreas Teorema 1: a mudança na inclinação entre quaisquer dois pontos na curva elástica é igual à área do diagrama M/EI entre estes dois pontos.
26 Teorema de Momentos das Áreas Teorema 2: o desvio vertical da tangente em um ponto (A) na curva elástica, com relação à tangente que se estende a partir de outro ponto (B), é igual ao momento da área sob o diagrama M/EI entre os dois pontos (A e B).
27 Teorema de Momentos das Áreas Exemplo 8.6
28 Teorema de Momentos das Áreas Exemplo 8.6
29 Teorema de Momentos das Áreas Exemplo 8.8
30 Teorema de Momentos das Áreas Exemplo 8.9
31 Teorema de Momentos das Áreas Exemplo 8.9
32 Método da Viga Conjugada A base para o método vem da similaridade de algumas equações: Ou integrando:
33 Método da Viga Conjugada A viga conjugada é carregada com o diagrama M/EI derivado da carga w sobre a viga real. Das comparações anteriores, podemos declarar dois teoremas relacionados à viga conjugada, a saber, Teorema 1: A inclinação em um ponto na viga real é numericamente igual ao cortante no ponto correspondente na viga conjugada. Teorema 2: O deslocamento de um ponto na viga real é numericamente igual ao momento no ponto correspondente na viga conjugada.
34 Método da Viga Conjugada Apoios da viga conjugada: Conforme mostrado na tabela ao lado, um apoio de pino ou rolo na extremidade da viga real proporciona deslocamento zero, mas a viga tem uma inclinação que não é zero.
35 Método da Viga Conjugada Apoios da viga conjugada: Abaixo estão apresentadas algumas transformações de vigas reais em vigas conjugadas.
36 Método da Viga Conjugada Exemplo 8.13
37 Método da Viga Conjugada Exemplo 8.13
38 Método da Viga Conjugada Exemplo 8.13
39 Método da Viga Conjugada Exemplo 8.13
40 Método da Viga Conjugada Exemplo 8.14
41 Método da Viga Conjugada Exemplo 8.14
42 Método da Viga Conjugada Exemplo 8.14
43 Método da Viga Conjugada Exemplo 8.14
Ondas EM no Espaço Livre (Vácuo)
Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM
Resistência dos Materiais
Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação
Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra
Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Walter Francisco HurtaresOrrala 1 Sílvio de Souza Lima 2 Resumo A determinação automatizada de diagramas
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades
Pressuposições à ANOVA
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam
NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues.
Lista 12: Equilíbrio do Corpo Rígido NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii.
-ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO
INFRAINFRA -ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO Profa. Daniane Franciesca Vicentini Prof. Djalma Pereira Prof. Eduardo Ratton Profa. Márcia de Andrade Pereira DEFINIÇÕES CORPO ESTRADAL: forma assumida
FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos
FESP Faculdade de Engenharia São Paulo Avaliação: S1 Data: 16/jun/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c
e-mail: [email protected]
Assunto: Cálculo de Lajes Prof. Ederaldo Azevedo Aula 3 e-mail: [email protected] 3.1. Conceitos preliminares: Estrutura é a parte ou o conjunto das partes de uma construção que se destina a
Capítulo1 Tensão Normal
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Referências Bibliográficas:
1 ESTRUTURAS DE CONCRETO ARMANDO 1.1 INTRODUÇÃO
1 ESTRUTURAS DE CONCRETO ARMANDO 1.1 INTRODUÇÃO Estrutura de concreto armado é a denominação de estruturas compostas de concreto, cimento + água + agregados (e às vezes + aditivos) com barras de aço no
Exercício. Exercício
Exercício Exercício Aula Prática Utilizar o banco de dados ACCESS para passar o MER dos cenários apresentados anteriormente para tabelas. 1 Exercício oções básicas: ACCESS 2003 2 1 Exercício ISERIDO UMA
Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:
Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
LABORATÓRIO DE CONTROLE I SINTONIA DE CONTROLADOR PID
UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 6: SINTONIA DE CONTROLADOR PID COLEGIADO DE ENGENHARIA ELÉTRICA DISCENTES: Lucas Pires
ESTUDO EXPERIMETAL DE UMA LIGAÇÃO VIGA-PILAR DE CONCRETO PRÉ-MOLDADO PARCIALMENTE RESISTENTE A MOMENTO FLETOR
ESTUDO EXPERIMETAL DE UMA LIGAÇÃO VIGA-PILAR DE CONCRETO PRÉ-MOLDADO PARCIALMENTE RESISTENTE A MOMENTO FLETOR Mounir Khalil El Debs Professor EESC/USP Alice Baldissera Mestre em Engenharia de Estruturas,
1331 Velocidade do som em líquidos Velocidade de fase e de grupo
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ondas longitudinais, velocidade do som em líquidos, comprimento de onda, freqüência,
MANUTENÇÃO E RESTAURAÇÃO DE OBRAS
MANUTENÇÃO E RESTAURAÇÃO DE OBRAS Prof. Arq. Aline Fernandes 2013 PATOLOGIA DE FUNDAÇÕES Fases que os problemas podem ocorrer ou ser originados: - Caracterização do comportamento do solo; - Análise e projeto
CARTOGRAFIA. Sistemas de Coordenadas. Prof. Luiz Rotta
CARTOGRAFIA Sistemas de Coordenadas Prof. Luiz Rotta SISTEMA DE COORDENADAS Por que os sistemas de coordenadas são necessários? Para expressar a posição de pontos sobre uma superfície É com base em sistemas
Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello [email protected] 1
Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre
Minicurso de FTOOL. Lívia Braga Sydrião de Alencar
Minicurso de FTOOL Lívia Braga Sydrião de Alencar 1 Sumário 1 INTRODUÇÃO... 3 2 MANIPULAÇÃO DE ARQUIVOS... 3 3 CRIAÇÃO E MANIPULAÇÃO DA ESTRUTURA... 4 3.1 Menu de Edição... 4 3.1.1. Modo Seleção... 4 3.1.2.
Prof. Michel Sadalla Filho
MECÂNICA APLICADA Prof. Michel Sadalla Filho MOMENTO DE UMA FORÇA + EQUILÍBRIO DE UMA BARRA (No Plano XY) Referência HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson Education do Brasil, 2005,
Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Elementos estruturais. Prof. MSc. Luiz Carlos de Almeida
Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas Elementos estruturais Notas de aula da disciplina AU405 Concreto Prof. MSc. Luiz Carlos de Almeida Agosto/2006
Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 2015
Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 015 Introdução Antes de apresentar a lista, introduzirei alguns problemas já vistos em sala de aula para orientar e facilitar a
Maria Cascão Ferreira de Almeida
Projeto estrutural e da montagem da escultura em aço do artista plástico Tunga À La Lumière des deux mondes para o Museu do Louvre em celebração ao Ano do Brasil na França, 008. Maria Cascão Ferreira de
1 Circuitos Pneumáticos
1 Circuitos Pneumáticos Os circuitos pneumáticos são divididos em várias partes distintas e, em cada uma destas divisões, elementos pneumáticos específicos estão posicionados. Estes elementos estão agrupados
2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R
2 Conceitos Básicos Neste capítulo são apresentados alguns conceitos importantes e necessários para o desenvolvimento do trabalho. São apresentadas as definições de campo vetorial, fluxo e linhas de fluxo.
2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.
Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,
FIGURAS DE LISSAJOUS
FIGURAS DE LISSAJOUS OBJETIVOS: a) medir a diferença de fase entre dois sinais alternados e senoidais b) observar experimentalmente, as figuras de Lissajous c) comparar a frequência entre dois sinais alternados
TQS - SISEs Parte 10 Fundações em bloco sobre 3 estacas sem baldrame e sobre 1 estaca com baldra
Palavras-chave: SISEs, bloco sobre estacas, pórtico espacial, baldrames. Seguindo o assunto da Interação entre estrutura, fundação e solo, vamos apresentar agora out ras duas possíveis soluções, tendo
Figura 4.1: Diagrama de representação de uma função de 2 variáveis
1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia
Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)
Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.
8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM
8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM Introdução: histórico; definições O Sistema de Projeção UTM é resultado de modificação da projeção Transversa de Mercator (TM) que também é
Aula 8 21/09/2009 - Microeconomia. Demanda Individual e Demanda de Mercado. Bibliografia: PINDYCK (2007) Capítulo 4
Aula 8 21/09/2009 - Microeconomia. Demanda Individual e Demanda de Mercado. Bibliografia: PINDYCK (2007) Capítulo 4 Efeito de modificações no preço: Caso ocorram modificações no preço de determinada mercadoria
SÓ ABRA QUANDO AUTORIZADO.
UNIVERSIDADE FEDERAL DE MINAS GERAIS FÍSICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este Caderno de Provas contém seis questões, constituídas de itens e subitens,
Conteúdo programático por disciplina Matemática 6 o ano
60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números
ESTRUTURAS DE FUNDAÇÕES RASAS
Universidade Federal de Ouro Preto - Escola de Minas Departamento de Engenharia Civil CIV620-Construções de Concreto Armado ESTRUTURAS DE FUNDAÇÕES RASAS Profa. Rovadávia Aline Jesus Ribas Ouro Preto,
Aula 4-Movimentos,Grandezas e Processos
Movimentos de Corte Os movimentos entre ferramenta e peça durante a usinagem são aqueles que permitem a ocorrência do processo de usinagem.convencionalmente se supõe a peça parada e todo o movimento sendo
15.053 26 de fevereiro de 2002
15.053 26 de fevereiro de 2002 Análise de Sensibilidade apresentado como Perguntas Freqüentes Pontos ilustrados em um exemplo contínuo de fabricação de garrafas. Se o tempo permitir, também consideraremos
Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios
Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios O Método Intuitivo de elaboração de circuitos: As técnicas de elaboração de circuitos eletropneumáticos fazem parte
Teoria dos erros em medições
Teoria dos erros em medições Medições Podemos obter medidas diretamente e indiretamente. Diretas - quando o aparelho ( instrumento ) pode ser aplicado no terreno. Indireta - quando se obtêm a medição após
Editorial Módulo: Física
1. No gráfico a seguir, está representado o comprimento L de duas barras e em função da temperatura θ. Sabendo-se que as retas que representam os comprimentos da barra e da barra são paralelas, pode-se
Aula Prática 1 - Gerador Van de Graaff e interação entre corpos carregados
Aula Prática 1 - Gerador Van de Graaff e interação entre corpos carregados Disciplinas: Física III (DQF 06034) Fundamentos de Física III (DQF 10079) Departamento de Química e Física- CCA/UFES Objetivo:
EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel
EGEA ESAPL - IPVC Resolução de Problemas de Programação Linear, com recurso ao Excel Os Suplementos do Excel Em primeiro lugar deverá certificar-se que tem o Excel preparado para resolver problemas de
Prof. Regis de Castro Ferreira
PROJEÇÕES ORTOGRÁFICAS 1. INTRODUÇÃO A projeção ortográfica é uma forma de representar graficamente objetos tridimensionais em superfícies planas, de modo a transmitir suas características com precisão
Aula 2 - Revisão. Claudemir Claudino 2014 1 Semestre
Aula 2 - Revisão I Parte Revisão de Conceitos Básicos da Matemática aplicada à Resistência dos Materiais I: Relações Trigonométricas, Áreas, Volumes, Limite, Derivada, Integral, Vetores. II Parte Revisão
ARQUITETURA DE COMPUTADORES. Professor: Clayton Rodrigues da Siva
ARQUITETURA DE COMPUTADORES Professor: Clayton Rodrigues da Siva OBJETIVO DA AULA Objetivo: Conhecer a estrutura da arquitetura da Máquina de Von Neumann. Saber quais as funcionalidades de cada componente
Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t
Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes
Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.
Cinemática Bidimensional
Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações
WWW.RENOVAVEIS.TECNOPT.COM
Energia produzida Para a industria eólica é muito importante a discrição da variação da velocidade do vento. Os projetistas de turbinas necessitam da informação para otimizar o desenho de seus geradores,
Resolução Comentada Fuvest - 1ª fase 2014
Resolução Comentada Fuvest - 1ª fase 2014 01 - Em uma competição de salto em distância, um atleta de 70kg tem, imediatamente antes do salto, uma velocidade na direção horizontal de módulo 10m/s. Ao saltar,
Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos
Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos 1º) Para o circuito abaixo, calcular a tensão sobre R3. a) O Teorema de Thévenin estabelece que qualquer circuito linear visto de
POSICIONAMENTOS PLANIMÉTRICO E ALTIMÉTRICO UD 1 - INTRODUÇÃO
UD 1 - INTRODUÇÃO POSICIONAMENTO PLANIMÉTRICO Conjunto de operações que obtém as coordenadas bidimensionais de determinado conjunto de objetos em um sistema pré-estabelecido. P y P (x,y) x POSICIONAMENTO
Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.)
Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.) Esta é uma área essencial para aumentar as taxas de sucesso dos projetos, pois todos eles possuem riscos e precisam ser gerenciados, ou seja, saber o
Aplicações Diferentes Para Números Complexos
Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos
Resolução da Lista de Exercício 6
Teoria da Organização e Contratos - TOC / MFEE Professor: Jefferson Bertolai Fundação Getulio Vargas / EPGE Monitor: William Michon Jr 10 de novembro de 01 Exercícios referentes à aula 7 e 8. Resolução
DISPOSITIVOS ELETRÔNICOS
Universidade Federal do Piauí Centro de Tecnologia Curso de Engenharia Elétrica DISPOSITIVOS ELETRÔNICOS Transistores de Efeito de Campo - Parte I - JFETs Prof. Marcos Zurita [email protected] www.ufpi.br/zurita
ESTATÍSTICA DESCRITIVA:
UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário de Sinop(CUS) ESTATÍSTICA DESCRITIVA: Medidas de forma: Assimetria e Curtose Profº Evaldo Martins Pires SINOP -MT TEMAS TRABALHADOS ATÉ AGORA Aula
Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada
Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda
Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões
Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Prof. Carlos A. Heuser Dezembro de 2009 Duração: 2 horas Prova com consulta Questão 1 (Construção de modelo ER) Deseja-se projetar a base de
Função Seno. Gráfico da Função Seno
Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,
1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza
1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza 1) Arredonde os valores abaixo, para apenas dois algarismos significativos: (a) 34,48 m (b) 1,281 m/s (c) 8,563x10
TRABALHO DE TOPOGRAFIA LEVANTAMENTO TAQUEOMÉTRICO
TRABALHO DE TOPOGRAFIA LEVANTAMENTO TAQUEOMÉTRICO 1. Poligonal Fechada: A poligonal fechada é caracterizada por ter o último vértice coincidindo com o vértice inicial, formando, desta forma, um POLÍGONO.
Professor: José Junio Lopes
Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a. Se AB tiver diâmetro de 10 mm
STV 8 SET 2008 2. uma polaridade de sincronismo negativa, com os pulsos de sincronismo na posição para baixo, como mostrado na figura abaixo
STV 8 SET 2008 1 ANÁLISE DOS SINAIS DE VÍDEO as três partes do sinal composto de vídeo, ilustradas na figura abaixo, são: 1 o sinal da câmera correspondendo às variações de luz na cena 2 os pulsos de sincronismo
AULA 07 Distribuições Discretas de Probabilidade
1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
Aula 15 Amplificadores Operacionais (pág. 453 a 459)
Aula 15 Amplificadores Operacionais (pág. 453 a 459) Prof. Dr. Aparecido Nicolett PUC-SP Slide 1 Considerações gerais: Amplificadores Operacionais são amplificadores diferencias com ganho muito alto, impedância
UM JOGO BINOMIAL 1. INTRODUÇÃO
1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece
Relatório do Experimento 1 Sistema Massa - Mola. Fernando Henrique Ferraz Pereira da Rosa
FEP0111 - Física I Relatório do Experimento 1 Sistema Massa - Mola Fernando Henrique Ferraz Pereira da Rosa 4 de novembro de 2005 Sumário 1 Introdução 2 2 Objetivos 2 3 Procedimento experimental 2 3.1
Aplicações das derivadas ao estudo do gráfico de funções
Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer
Usando potências de 10
Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.
Física Experimental III
Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de
A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:
1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime
CADERNO DE EXERCÍCIOS 2F
CADERNO DE EXERCÍCIOS F Ensino Fundamental Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Números inteiros (positivos e negativos) H9 Proporcionalidade H37 3 Média aritmética H50 4 Comprimento
Unidade 3 Função Afim
Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo
16/Nov/2012 Aula 16 16. Circuitos RL (CC). Corrente alternada 16.1 Circuitos RL em corrente
16/Nov/01 Aula 16 16. Circuitos RL (CC). Corrente alternada 16.1 Circuitos RL em corrente contínua. 16. Corrente alternada (CA). 16..1 Numa resistência 1/Nov/01 Aula 17 17. Continuação - Corrente alternada
Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/
Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Estrutura Sistema qualquer de elementos ligados, construído para suportar ou transferir
Corrente elétrica, potência, resistores e leis de Ohm
Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de
Impressora Latex série 300. Garantia limitada
Impressora Latex série 300 Garantia limitada 2013 Hewlett-Packard Development Company, L.P. 1 Avisos legais As informações contidas neste documento estão sujeitas a alteração sem aviso prévio. As únicas
Resumo. Palavras-chave. Concreto Armado; Pórtico Plano; Dimensionamento; Otimização. Introdução
Procedimento Numérico para Busca do Dimensionamento Otimizado de Pórticos Planos de Concreto Armado Wilson T. Rosa Filho 1, Maria Cecilia A. Teixeira da Silva 2, Francisco A. Menezes 3 1 Universidade Estadual
MANUAL DO USUÁRIO. Figura 1: Tela de Apresentação do FaçaCalc.
Apresentação MANUAL DO USUÁRIO O FAÇACALC é um software que realiza cálculos hidráulicos, tais como: Motor Hidráulico, Trocador de Calor, Acumulador Hidráulico e Cilindro Hidráulico. Na sessão Funcionalidades
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:
Disciplina: Unidade III: Prof.: E-mail: Período:
Encontro 09 Disciplina: Sistemas de Banco de Dados Unidade III: Modelagem Lógico de Dados Prof.: Mario Filho E-mail: [email protected] Período: 5º. SIG - ADM 6. Introdução ao MS Access O Microsoft
AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA
AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA 1.0 INTRODUÇÃO 1.1 Ponte de Wheatstone O método da ponte de Wheatstone, estudado por Wheatstone no sec. XIX é um dos métodos mais empregados para a medição de resistências
MBA em Gerenciamento de Projetos. Teoria Geral do Planejamento. Professora: Maria Erileuza do Nascimento de Paula
MBA em Gerenciamento de Projetos Teoria Geral do Planejamento Professora: Maria Erileuza do Nascimento de Paula SOBRAL - CE 2014 O que é Planejamento É um processo contínuo e dinâmico que consiste em um
A dissertação é dividida em 6 capítulos, incluindo este capítulo 1 introdutório.
1 Introdução A escolha racional dos sistemas estruturais em projetos de galpões industriais é um fator de grande importância para o desenvolvimento de soluções padronizadas e competitivas. No mercado brasileiro
Análise de Regressão. Notas de Aula
Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas
4.4 Limite e continuidade
4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição
GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS
PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,
2.0 O PROJETO DE LAJES PROTENDIDAS - SÍNTESE
LAJES PLANAS PROTENDIDAS: DETERMINAÇÃO DA FORÇA DE PROTENSÃO E PRÉ-DIMENSIONAMENTO DOS CABOS UM PROCESSO PRÁTICO 1.0 - INTRODUÇÃO Nos projetos de lajes protendidas, as armaduras a serem determinadas resultam
Inteligência Artificial
Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?
Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período
UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor:
Prova de Fundamentos de Bancos de Dados 1 a Prova
Prova de Fundamentos de Bancos de Dados 1 a Prova Prof. Carlos A. Heuser Abril de 2009 Prova sem consulta duas horas de duração 1. (Peso 2 Deseja-se projetar um banco de dados para o sítio de uma prefeitura.
3º Ensino Médio Trabalho de Física Data /08/09 Professor Marcelo
Nome 3º Ensino Médio Trabalho de Física Data /08/09 Professor Marcelo Em física, corrente elétrica é o movimento ordenado de partículas portadoras de cargas elétricas. Microscopicamente as cargas livres
FÍSICA - 2 o ANO MÓDULO 17 ELETRODINÂMICA: CORRENTE ELÉTRICA, RESISTORES E LEI DE OHM
FÍSICA - 2 o ANO MÓDULO 17 ELETRODINÂMICA: CORRENTE ELÉTRICA, RESISTORES E LEI DE OHM A B FALTA DE CARGAS NEGATIVAS EXCESSO DE CARGAS NEGATIVAS A V A + - B V B U = V A - V B E A B U = V A - V B A + - B
Aprendendo a trabalhar com frações parciais
Parte 1: Aprendendo a trabalhar com frações parciais Para trabalhar com frações parciais em Matlab, você tem que conhecer o funcionamento das seguintes funções: roots, poly e residue. Os pontos abaixo
CAPÍTULO 4 4. ELEMENTOS ESTRUTURAIS. 4.1 Classificação Geométrica dos Elementos Estruturais
Elementos Estruturais 64 CAPÍTULO 4 4. ELEMENTOS ESTRUTURAIS 4.1 Classificação Geométrica dos Elementos Estruturais Neste item apresenta-se uma classificação dos elementos estruturais com base na geometria
