Teoria das Estruturas - Aula 08
|
|
|
- Antônio Neto Casado
- 7 Há anos
- Visualizações:
Transcrição
1 Teoria das Estruturas - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos; Aplicação da Igualdade entre o Trabalho das Forças Externas e a Energia Interna de Deformação; Prof. Juliano J. Scremin 1
2 Aula - Seção 1: Trabalho Externo das Cargas e Energia Interna de Deformação 2
3 Trabalho de Uma Força (W) WW = FF. dd. ccccccαα d : deslocamento de corpo rígido; F : força; α : ângulo da força com a horizontal; m : massa do corpo * Só há trabalho da direção do deslocamento
4 Trabalho Externo de uma Carga Aplicada W (1) L : comprimento longitudinal da barra; P : força axial aplicada dx : deslocamento relativo infinitesimal ao longo do eixo longitudinal (eixo x); A : área da seção transversal da barra; dw : trabalho realizado pela força P enquanto a barra se alonga de um comprimento dx dddd = PP. dddd 4
5 Trabalho Externo de uma Carga Aplicada W (2) O trabalho total realizado pela força P enquanto ela é gradualmente aplicada à barra resulta em: δδ WW = PPPPPP 0 5
6 Trabalho Externo de uma Carga Aplicada W (3) No caso de uma deformação linear e elástica, a porção do diagrama força-deslocamento referente ao problema estudado pode ser representada por uma linha reta de equação P = kx δδ 1 WW = PP xx dddd = 0 δδ 1 kkkk 0 ddxx WW = 1 2 kkxx2 δδ 1 0 = 1 2 kkδδ 1 2 = 1 2 kkδδ 1. δδ 1 WW = 1 2 PP. δδ 1 6
7 Teorema de Clapeyron O trabalho realizado pelas forças externas, variáveis desde zero, em um corpo de material elástico linear e que sofre pequenos deslocamentos, é igual a metade do trabalho que resultaria se as forças externas agissem de modo instantâneo WW = 1 2 PPδδ 7
8 Analogia de Mola Elástica Linear Mola Equação de Mola: (Relação Força x Deslocamento) PP = kk. δδ k : constante de rigidez da mola Barra Solicitada Axialmente Relação Força x Deslocamento PP = kk. δδ k : rigidez axial da barra Como determinar k?
9 Revisão de RESMAT (1) Barra Solicitada Axialmente Deslocamento ( δ ) δ [ unidade de comprimento ] Deformação ( εε ) δ / L [ adimensional (%) ]
10 Revisão de RESMAT (2) Barra Solicitada Axialmente Relação Força x Deslocamento PP = kk. δδ Como determinar k? σσ = PP AA : tensão normal εε = δδ LL σσ = EE. εε : deformação axial : relação tensão x deformação (Módulo de Elasticidade E)
11 Revisão de RESMAT (3) Barra Solicitada Axialmente Relação Força x Deslocamento PP = kk. δδ Como determinar k? σσ = PP AA σσ = EE. εε εε = δδ LL Logo, para uma barra solicitada axialmente a rigidez axial k é: PP AA = EE. δδ LL PP = AAAA LL δδ kk = AAAA LL
12 Energia Interna de Deformação U e o Princípio da Conservação de Energia Mecânica Quando aplicadas a um corpo, as cargas deformam o material. Desde que não haja perda de energia sob a forma de calor, o trabalho externo por elas realizado será convertido em trabalho interno denominado Energia Interna de Deformação (U). Esta energia, sempre positiva, armazena-se no corpo e é provocada pela ação das tensões normais e/ou cisalhantes. Assim sendo, o Princípio da Conservação de Energia Mecânica pode ser expresso como : WW Trabalho Externo das Cargas UU Energia Interna de Deformação 12
13 Rigidez x Módulo de Elasticidade (Barra Solicitada Axialmente) PP = kk. δδ σσ = EE. εε PP = EEEE LL. δδ PP AA = EE. δδ LL 13
14 Energia de Deformação Específica (por Unidade de Volume) u Se tomarmos a expressão da energia de deformação e dividirmos pelo volume do corpo solicitado (barra prismática axialmente solicitadada ) temos: uu = UU δδ VV = PP VV dddd 0 = PP AA 0 δδ dddd LL εε = σσdddd 0 A energia de deformação específica u independe da geometria do elemento sendo definida em função da integração das tensões em termos das deformações: uu = σσdddd εε 0
15 Energia de Deformação x Energia Específica de Deformação É interessante reconhecer que a Energia de Deformação pode ser escrita como a integral de volume da Energia de Deformação Específica sobre o corpo: UU = dddd VV Escrita em função das cargas Escrita em função dos esforços internos (M,V, N e T)
16 Estruturas com Comportamento Elástico Linear Nos estudos que se seguem, o conceito de Energia de Deformação será aplicado às estruturas de comportamento elástico linear. Em tais estruturas: a) É valida a Lei de Hooke (linearidade física, ou seja, tensões diretamente proporcionais às deformações); b) São desprezados os deslocamentos das cargas em função da deformação dos elementos, sendo utilizada sempre a configuração indeformada para posicionamento destas (linearidade geométrica); c) Como consequência é possível a aplicação do Princípio da Superposição dos Efeitos; 16
17 Estado Triplo de Tensões (1) εε xx = 1 EE [σσ xx υυ(σσ yy + σσ zz )] εε yy = 1 EE [σσ yy υυ(σσ xx + σσ zz )] εε zz = 1 EE [σσ zz υυ(σσ xx + σσ yy )] εε xx, εε yy, εε zz : deformações normais em relação aos eixos x,y e z respectivamente σσ xx, σσ yy, σσ zz : tensões normais em relação aos eixos x,y e z respectivamente EE : módulo de elasticidade normal υυ : coeficiente de Poisson 17
18 Estado Triplo de Tensões (2) γγ xxxx = ττ xxxx GG γγ xxxx = ττ xxzz GG γγ yyyy = ττ yyyy GG γγ xxxx γγ xxzz γγ yyyy : distorções angulares ττ xxxx ττ xxxx ττ xxxx : tensões tangenciais GG : módulo de elasticidade transversal (módulo de cisalhamento) 18
19 Energia Interna de Deformação Específica em Função de Estado Triplo de Tensões (1) Diferencial da Energia Interna de Deformação Espefícia correspondente às Tensões Normais: dddd σσ = σσ xxεε xx 22 + σσ yyεε yy 22 + σσ zzεε zz 22 dddddddddddd Diferencial da Energia Interna de Deformação correspondente às Tensões Tangenciais: dddd ττ = ττ xxyyγγ xxyy 22 + ττ xxxxγγ xxxx 22 + ττ yyyyγγ yyyy 22 dddddddddddd 19
20 Energia Interna de Deformação Específica em Função de Estado Triplo de Tensões (2) O trabalho elementar interno total será: dddd = dddd σσ + dddd ττ dddd = σσ xxεε xx + σσ yy εε yy + σσ zz εε zz + ττ xxxx γγ xxxx + ττ xxzz γγ xxzz + ττ yyyy γγ yyyy dddddddddddd dddd = Aplicando a Lei de Hooke Generalizada: σσ xx 22 + σσ 22 yy + σσ 22 zz υυ EE σσ xxσσ yy + σσ yy σσ zz + σσ xx σσ zz GG ττ xxyy 22 + ττ 22 xxxx + ττ 22 yyzz dddddddddddd UU = VV UU = dddd VV σσ xx 22 + σσ 22 yy + σσ 22 zz υυ EE σσ xxσσ yy + σσ yy σσ zz + σσ xx σσ zz ττ xxxx 22 + ττ 22 xxxx + ττ 22 yyzz dddd 20
21 Aula 08 - Seção 2: Relações entre Energia de Deformação e Esforços Internos 21
22 Energia Interna de Deformação devido a Solicitação Axial N (1) Para peças solicitadas somente por carga axial tem-se: σσ xx = NN AA σσ yy = σσ zz = 0 ττ xxxx = ττ xxxx = ττ yyzz = 0 22
23 Energia Interna de Deformação devido a Solicitação Axial N (2) Dado que: Logo: σσ xx = NN AA σσ yy = σσ zz = 0 ττ xxxx = ττ xxxx = ττ yyzz = 0 UU = 1 2EE σσ xx 2 + σσ 2 yy + σσ 2 zz υυ EE σσ xxσσ yy + σσ yy σσ zz + σσ xx σσ zz + 1 2GG ττ xxxx 2 + ττ 2 xxxx + ττ 2 yyzz VV dddd UU NN = 1 2EE σσ xx 2 VV dddd = 1 2EE VV NN AA 2 dddd = 1 2 NN2 EEAA 2 LL ddxx dddd AA UU NN = LL NN22 00 EEEE dddd 23
24 Energia Interna de Deformação devido a Momento Fletor M (1) Para peças solicitadas por flexão ao redor do eixo z : σσ xx = MM II yy σσ yy = σσ zz = 0 ττ xxxx = ττ xxxx = ττ yyzz = 0 UU = 1 2EE σσ xx 2 + σσ 2 yy + σσ 2 zz υυ EE σσ xxσσ yy + σσ yy σσ zz + σσ xx σσ zz + 1 2GG ττ xxxx 2 + ττ 2 xxxx + ττ 2 yyzz VV dddd UU MM = 1 2EE σσ xx 2 VV dddd 24
25 Energia Interna de Deformação devido a Momento Fletor M (2) σσ UU MM = 1 2EE σσ xx 2 xx = MM dddd II yy UU MM = 1 2EE VV VV MM II yy 2 dddd UU MM = 1 2EE VV MM 2 II 2 yy2 dddd = 1 2 MM2 EEII 2 dddd yy 2 ddaa = 1 MM2 2 EEII 2 dddd II LL AA LL UU MM = LL MM22 00 EEII dddd 25
26 Energia Interna de Deformação devido ao Cortante V (1) Para peças solicitadas por corte no plano xz : ττ xxxx = VVVV bbbb σσ xx = σσ yy = σσ zz = 0 ττ xxxx = ττ yyzz = 0 UU = 1 2EE σσ xx 2 + σσ 2 yy + σσ 2 zz υυ EE σσ xxσσ yy + σσ yy σσ zz + σσ xx σσ zz + 1 2GG ττ xxxx 2 + ττ 2 xxxx + ττ 2 yyzz VV dddd UU VV = 1 2GG ττ xxzz 2 VV dddd 26
27 Energia Interna de Deformação devido ao Cortante V (2) ττ xxxx = VVVV bbbb UU VV = 1 2GG ττ xxzz 2 VV dddd UU VV = 1 2GG VV VVVV bbii 2 dddd UU VV = 1 2GG VV VV 2 SS 2 bb 2 II 2 dddd = 1 2 VV2 GGII 2 dddd SS2 bb 2 ddaa LL AA Dado que: II = AA. ii 2 ii : raio de giração UU VV = 1 2 LL VV2 GGAA 2 ii 4 dddd SS2 bb 2 ddaa = 1 2 AA VV2 GGAA dddd LL 1 SS2 AAii4 bb 2 AA dddd χχ = 1 SS2 AAii4 bb 2 dddd AA Propriedade Geométrica da Seção Transversal 27
28 Energia Interna de Deformação devido ao Cortante V (3) Verifica-se portanto que o fator (χ) é uma constante que depende somente da forma da seção transversal, denominado Fator de Cisalhamento. Portanto é possível escrever: UU VV = 1 2 QQ2 GGGG dddd LL 1 SS2 AAii4 bb 2 AA dddd = 1 2 VV2 GGGG dddd χχ LL UU VV = χχ 22 LL VV22 00 dddd GGGG 28
29 Energia Interna de Deformação devido ao Cortante V (4) Exemplos de alguns Fatores de Cisalhamento já calculados para seções transversais mais comuns: 29
30 Princípio da Conservação de Energia Mecânica Considerando a igualdade entre o Trabalho das Forças Externas e a Energia Interna de Deformação tem-se que: WW = 1 PP. δδ 2 UU = 1 2 LL NN2 0 EEEE dddd LL MM2 0 EEII dddd + χχ 2 LL VV2 0 GGGG dddd Logo: LL PP. δδ = NN22 EEEE dddd 00 LL + MM22 EEEE dddd 00 + χχ VV22 GGGG dddd 00 LL 30
31 Aula 08 - Seção 3: Aplicação da Igualdade entre o Trabalho Externo das Cargas e a Energia Interna de Deformação 31
32 Aplicação de W = U em Treliças (1) Calcular o deslocamento do ponto B da treliça abaixo: B Como nas treliças ocorrem somente esforços axiais : M = 0 e Q = 0 A C Para todas as barras: E = 200GPa A = 10 x 30 mm LL PP. δδ = NN22 EEEE dddd Como na treliça em questão não ocorre variação da área da seção transversal das barras: 00 PP. δδ = NN ii 22 ii EEEE LL ii 32
33 Aplicação de W = U em Treliças (2) B Da expressão abaixo temos que para calcular o deslocamento do ponto B (onde está aplicada a carga de 100kN) é necessário calcularmos os esforços internos em todas as barras: A C PP. δδ = NN ii 22 ii EEEE LL ii Substituindo os valores dos esforços em cada barra e demais variáveis, tem-se que: 100kN. δδ = , , , , , kkkk mm mmm 33
34 Aplicação de W = U em Treliças (3) Isolando o deslocamento na expressão tem-se que: δδ = kkkk 22 mm kkkk = 00, = 3333 mmmm Consultando as respostas do FTOOL para os deslocamentos na estrutura, obtemos: 34
35 Aplicação de W = U em Treliças (4) Pela comparação com os resultados do FTOOL: Note-se que o software dá como resposta um deslocamento de 35 mm na direção X (Dx) Entretanto além do deslocamento em X o ponto B desloca-se 8,888 mm para baixo em Y (Dy) Conseguimos calcular os 35 mm de deslocamento porque este deslocamento é colinear à força de 100kN considerada. 35
36 Limitações da Aplicação de W = U: Do que vimos até então, o PCEM apresenta as seguintes limitações quanto ao cálculo de deslocamentos: a) Somente é possível o cálculo de deslocamentos colineares (ou correlatos) à forças aplicadas na estrutura; b) Somente é possível calcular os deslocamentos correlatos de pontos onde existam cargas aplicadas; 36
37 Questionamentos : 1. Como calcular o deslocamento vertical (Dy) da treliça que acabamos de estudar dado que a carga aplicada no ponto era somente na vertical? 2. Como calcular o deslocamento de um ponto de uma estrutura em que não há uma carga aplicada, como por exemplo no meio do vão ao lado? 37
38 Resposta aos Questionamentos: Para ambas as situações anteriormente expostas, a resposta é uma só: Imaginamos cargas virtuais unitárias na direção dos deslocamentos que queremos calcular e acoplamos os efeitos destas no segundo termo da expressão da igualdade W = U em conjunto com os efeitos das cargas reais. 38
39 FIM 39
, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE
3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE
2.1 TENSÕES NORMAIS E DEFORMAÇÕES ESPECÍFICAS NO PONTO GENÉRICO
2 ESTADO TRIPLO DE TENSÕES No ponto genérico de um corpo carregado, para cada plano que o contém, define-se um vetor tensão. Como o ponto contém uma família de planos, tem-se também uma família de vetores
MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais
MECÂNICA DO CONTÍNUO Tópico 3 Método dos Trabalhos Virtuais PROF. ISAAC NL SILVA Aspecto físico do equilíbrio Instável Estável P y1 y2 P Indiferente P Aspecto matemático: Eq. Instável d 2 V/dx 2
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.
Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo
Teoria das Estruturas - Aula 10
Teoria das Estruturas - Aula 10 Linhas de Influência de Estruturas Isostáticas (1) Introdução às Linhas de Influência; L.I. de Vigas Biapoiadas; L.I. de Vigas Engastadas em Balanço; Prof. Juliano J. Scremin
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO
TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: [email protected] victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE
Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
Estruturas de Aço e Madeira Aula 10 Ligações com Solda
Estruturas de Aço e Madeira Aula 10 Ligações com Solda - Tipos de Solda; - Definições para Soldas de Filete; - Simbologia e Dimensionamento de Soldas de Filete; Prof. Juliano J. Scremin 1 Aula 10 - Seção
Capítulo 4 Propriedades Mecânicas dos Materiais
Capítulo 4 Propriedades Mecânicas dos Materiais Resistência dos Materiais I SLIDES 04 Prof. MSc. Douglas M. A. Bittencourt [email protected] Propriedades Mecânicas dos Materiais 2 3 Propriedades
Capítulo 1 MÉTODOS DE ENERGIA
Capítulo 1 MÉTODOS DE ENERGIA 1.1. INTRODUÇÃO Em geral, o estudo da mecânica dos sólidos (corpos rígidos e deformáveis) baseia-se no Método Newtoniano, apoiando-se nas análises vetoriais, sob diversas
FLEXIBILIDADE E SUPORTAÇÃO
FLEXIBILIDADE E SUPORTAÇÃO AULA 12-14 DEFLEXÕES USANDO MÉTODOS DE ENERGIA PROF.: KAIO DUTRA Trabalho Externo e Energia de Deformação O método da energia é baseada no princípio da conservação de energia.
Capítulo 3: Propriedades mecânicas dos materiais
Capítulo 3: Propriedades mecânicas dos materiais O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade
Capítulo 5 Carga Axial
Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Determinar a tensão normal e as deformações em elementos
Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013
Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um
4 ESFORÇO DE FLEXÃO SIMPLES
4 ESFORÇO DE FLEXÃO SIMPLES O esforço de flexão simples é normalmente resultante da ação de carregamentos transversais que tendem a curvar o corpo e que geram uma distribuição de tensões aproximadamente
Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II
Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 21 Flávia
MÉTODOS DE ENERGIA 1 INTRODUÇÃO
MÉTODOS DE ENERGIA 1 INTRODUÇÃO Quando não ocorre dissipação de energia, o trabalho realizado pelas cargas aplicadas e a energia são iguais, sendo o trabalho um produto vetorial da força pelo deslocamento.
CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS
1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não
2 Teoria de Placas. Figura Placa plana retangular submetida a uma carga de superfície q z. Ref. Brush e Almroth (1975)
2 Teoria de Placas A solução mais antiga que se tem conhecimento para o problema de estabilidade de placas planas foi dada por Bryan em 1891, em seu estudo On the Stability of a Plane Plate under Thrusts
Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais
MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05
Professor: José Junio Lopes
A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada
Relações entre tensões e deformações
9 de agosto de 06 As relações entre tensões e deformações são estabelecidas a partir de ensaios experimentais simples que envolvem apenas uma componente do tensor de tensões. Ensaios complexos com tensões
RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO
CONTROLE DE QUALIDADE INDUSTRIAL Tensão Tensão é ao resultado da ação de cargas externas sobre uma unidade de área da seção analisada na peça, componente mecânico ou estrutural submetido à solicitações
Propriedades mecânicas dos materiais
Propriedades mecânicas dos materiais Ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade é inerente
Solicitações e Deslocamentos em Estruturas de Resposta Linear. Solicitações e Deslocamentos em Estruturas de Resposta Linear
Solicitações e Deslocamentos em Estruturas de Resposta Linear i Reitora Nádina Aparecida Moreno Vice-Reitora Berenice Quinzani Jordão Editora da Universidade Estadual de Londrina Diretora Conselho Editorial
Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II
Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 2011 Flávia
Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas
Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas Fonte: HIBBELER, R. C. Resistência dos Materiais. 5. ed. São Paulo: PEARSON, 2004. 14.20 /14.22 14.24 /14.26 Resposta: 11,72 mm Resposta: 33,68
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02
LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva
Sumário. Introdução O conceito de tensão 1. Tensão e deformação Carregamento axial 49
1 Introdução O conceito de tensão 1 Introdução 2 1.1 Um breve exame dos métodos da estática 2 1.2 Tensões nos elementos de uma estrutura 4 1.3 Tensão em um plano oblíquo sob carregamento axial 25 1.4 Tensão
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta
CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre 2007 Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta 1ª Questão (5,5 pontos) Determine pelo Método das Forças o diagrama de momentos fletores
Registro de descartes de lixo
s de Lixo: A B C D E Plásticos; Restos de comida; Lixo doméstico (produtos de papel, trapos, vidro, metais, garrafas, louça, etc.); Óleo de cozinha; Cinzas de incinerador; F G H I Lixo operacional; Resíduos
TC 071 PONTES E ESTRUTURAS ESPECIAIS II
5ª ula Superestrutura de onte em Grelha T 07 ONTES E ESTRUTURS ESES 5ª U (4/08/.00) SUERESTRUTUR DE ONTE E GREH - FEXDDE E RGDEZ a) arra axialmente comprimida E onsidere a barra axialmente comprimida da
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
Caso zero de carregamento: No caso zero de carregamento, aplicamos à isostática o carregamento da hiperestática.
Módulo 4 - Resolução de estruturas uma vez hiperestáticas externamente e com todas as suas barras solicitadas por momento fletor, sem a presença de torção, através do Processo dos Esforços. O Processo
Matriz de Avaliação de Matemática
Matriz de Avaliação de Matemática A prova de matemática do TRLQ (Teste de Raciocínio Lógico Quantitativo) tem por objetivo avaliar o preparo das pessoas que a realizam para cursar programas de ensino que
Teste de tração - compressão
PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Renata Machado Soares - REMA I Teste de tração - compressão Resistência capacidade de suportar carga sem deformação excessiva ou ruptura; A partir de um ensaio
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria
1) Qual propriedade de um material reproduz a lei de Hooke? Escrever a expressão que traduz a lei. 2) Um cilindro de 90,0 cm de comprimento (figura) está submetido a uma força de tração de 120 kn. Uma
Objetivo do capítulo. O ensaio de tração e compressão
Capítulo 3: Propriedades mecânicas dos materiais Adaptado pela prof. Dra. Danielle Bond Objetivo do capítulo Agora que já discutimos os conceitos básicos de tensão e deformação, mostraremos, neste capítulo,
UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem.
UFABC - Universidade Federal do ABC ESTO008-13 Mecânica dos Sólidos I Sétima Lista de Exercícios Prof. Dr. Wesley Góis CECS Prof. Dr. Cesar Freire - CECS Estudo das Deformações 1. Segundo as direções a,b
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões
Carga axial. Princípio de Saint-Venant
Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente
RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica
Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. [email protected] Conteúdo
São as vigas que são fabricadas com mais de um material.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões em Vigas Tópicos
TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS
DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de
LOM Introdução à Mecânica dos Sólidos. Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina
LOM 3081 - Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina DEMAR USP Professores responsáveis: Viktor Pastoukhov, Carlos A.R.P. Baptista Ref. 1: F.P. BEER, E.R. JOHNSTON,
Manual de Comunicação
Manual de Comunicação Índice 1 - Os Elementos da Identidade... 3 1.1 - Logotipo...4 - Construção e Proporção... 5 - Área de Segurança e Redução Máxima...6 - Cores... 7 - Versões...8 - Aplicação sobre fundos
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar cisalhamento transversal Compreender quando ocorre o cisalhamento transversal Determinar
Manual de Identidade Visual. Programa de Avaliação de Desempenho dos Técnico-Administrativos em Educação da UFJF
Manual de Identidade Visual Apresentação e Variações Manual de Identidade Visual Apresentação e Variações Manual de Identidade Visual Apresentação e Variações Manual de Identidade Visual Apresentação e
Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL
ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL O que é e por que estudar? Onde ocorre? Que fatores influenciam? Como evitar? or que, normalmente, é desejável que a diagonal das treliças
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini
Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor
Capítulo 6: Flexão Adaptado pela prof. Dra. Danielle Bond Diagramas de força cortante e momento fletor Elementos delgados que suportam carregamentos aplicados perpendicularmente a seu eixo longitudinal
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Engenharia Aeroespacial Universidade Federal do ABC 07 de março, 2016 Conteúdo 1 Introdução 2 Tensão 3 Deformação 4 Lei de Hooke
CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA
CAPÍLO 3 DINÂMICA DA PARÍCLA: RABALHO E ENERGIA Neste capítulo será analisada a lei de Newton numa de suas formas integrais, aplicada ao movimento de partículas. Define-se o conceito de trabalho e energia
UNIVERSIDADE FEDERAL DE SANTA MARIA Curso de Graduação em Engenharia Civil ECC 1006 Concreto Armado A ESTRUTURAS. Gerson Moacyr Sisniegas Alva
UNIVERSIDADE FEDERAL DE SANTA MARIA Curso de Graduação em Engenharia Civil ECC 1006 Concreto Armado A COMPORTAMENTO DOS MATERIAIS E DAS ESTRUTURAS Gerson Moacyr Sisniegas Alva A prática sem teoria é cega
RESISTÊNCIA DOS MATERIAIS AULAS 02
Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais
Torção em eixos de seção circular Análise de tensões e deformações na torção Exercícios. Momento torsor. 26 de setembro de 2016.
26 de setembro de 2016 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 Este capítulo é dividido em duas partes: 1 Torção em barras
LOM Introdução à Mecânica dos Sólidos
LOM 3081 - CAP. 2 ANÁLISE DE TENSÃO E DEFORMAÇÃO PARTE 2 ANÁLISE DE DEFORMAÇÃO COEFICIENTE DE POISSON Para uma barra delgada submetida a uma carga aial: 0 E A deformação produida na direção da força é
Programa. Centroide Momentos de Inércia Teorema dos Eixos Paralelos. 2 Propriedades Geométricas de Áreas Planas
Propriedades Geométricas de Áreas Planas Programa 2 Propriedades Geométricas de Áreas Planas Centroide Momentos de Inércia Teorema dos Eixos Paralelos L Goliatt, M Farage, A Cury (MAC/UFJF) MAC-015 Resistência
MECSOL34 Mecânica dos Sólidos I
MECSOL34 Mecânica dos Sólidos I Curso Superior em Tecnologia Mecatrônica Industrial 3ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Tópicos abordados Conceito de Tensão
(NBR 8800, Tabela C.1)
CE Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: A1 Data: 13/abr/
Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque
Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto
DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO
DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO 1) A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento de 10 mm para baixo na extremidade
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
MAC-015 Resistência dos Materiais Unidade 02
MAC-015 Resistência dos Materiais Unidade 02 Engenharia Elétrica Engenharia de Produção Engenharia Sanitária e Ambiental Leonardo Goliatt, Michèle Farage, Alexandre Cury Departamento de Mecânica Aplicada
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da
Resistência dos Materiais
Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação
FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos
FESP Faculdade de Engenharia São Paulo Avaliação: A1 Data: 12/mai/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c
Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng.
Disciplina: Resistência dos Materiais Unidade V - Flexão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.
Capítulo 2 Deformação
Capítulo 2 Deformação 2.1 O conceito de deformação Sob a ação de cargas externas, um corpo sofre mudanças de forma e de volume que são chamadas de deformação. Note as posições antes e depois de três segmentos
MECÂNICA APLICADA II
Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO EXERCICIOS PRÁTICOS Ano lectivo 2004/2005 MECÂNICA APLICADA II I - Teoria do estado de tensão I.1 - Uma barra, com a
TORÇÃO. Prof. Dr. Carlos A. Nadal
TORÇÃO Prof. Dr. Carlos A. Nadal Tipo de esforços a) Tração b) Compressão c) Flexão d) Torção e) Compressão f) flambagem Esforços axiais existe uma torção quando uma seção transversal de uma peça está
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 8
Resistências dos Materiais dos Materiais - Aula 5 - Aula 8 RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 8 Membros Carregados axialmente Professor Alberto Dresch Webler Veremos Introdução; Variações nos comprimentos
CAPÍTULO 3 ESFORÇO CORTANTE
CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento
Momentos de Inércia de Superfícies
PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para
AULA 03 - TENSÃO E DEFORMAÇÃO
AULA 03 - TENSÃO E DEFORMAÇÃO Observação: Esse texto não deverá ser considerado como apostila, somente como notas de aula. DEFORMAÇÃO Em engenharia, a deformação de um corpo é especificada pelo conceito
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 02: Estruturas com barras sob corportamento axial
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos
energia extraída do objeto é trabalho negativo. O trabalho possui a mesma unidade que energia e é uma grandeza escalar.
!!"#$#!"%&' OBS: Esta nota de aula foi elaborada com intuito de auxiliar os alunos com o conteúdo da disciplina. Entretanto, sua utilização não substitui o livro 1 texto adotado. ( ) A energia cinética
Sergio Persival Baroncini Proença
ula n.4 : ESTUDO D FLEXÃO São Carlos, outubro de 001 Sergio Persival Baroncini Proença 3-) ESTUDO D FLEXÃO 3.1 -) Introdução No caso de barras de eixo reto e com um plano longitudinal de simetria, quando
elementos estruturais
conteúdo 1 elementos estruturais 1.1 Definição As estruturas podem ser idealizadas como a composição de elementos estruturais básicos, classificados e definidos de acordo com a sua forma geométrica e a
MAC de outubro de 2009
MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em
Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.
Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
Resistência dos Materiais Teoria 2ª Parte
Condições de Equilíbrio Estático Interno Equilíbrio Estático Interno Analogamente ao estudado anteriormente para o Equilíbrio Estático Externo, o Interno tem um objetivo geral e comum de cada peça estrutural:
Instabilidade e Efeitos de 2.ª Ordem em Edifícios
Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil Capítulo Prof. Romel Dias Vanderlei Instabilidade e Efeitos de 2.ª Ordem em Edifícios Curso: Engenharia Civil Disciplina:
Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant
Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um
1. Como proceder à encomenda? Preencha a nota de encomenda e envie para
ENCOMENDAS 1. Como proceder à encomenda? Preencha a nota de encomenda e envie para [email protected]. No caso da morada de entrega ser diferente da morada de facturação, agradecemos envio
CENTRO UNIVERSITÁRIO PLANALDO DO DISTRITO FEDERAL
7. Propriedades Mecânicas dos Materiais As propriedades mecânicas de um material devem ser conhecidas para que os engenheiros possam relacionar a deformação medida no material com a tensão associada a
Módulo 4 - Princípio dos trabalhos virtuais. Método do esforço unitário. Deslocamentos em vigas com e sem articulações. Exemplos.
ódulo 4 - Princípio dos trabalhos virtuais. étodo do esforço unitário. Deslocamentos em vigas com e sem articulações. Eemplos. O Princípio dos Trabalhos Virtuais (P.T.V.), para os corpos sólidos deformáveis
