Momentos de Inércia de Superfícies
|
|
|
- João Lucas Lancastre Silva
- 9 Há anos
- Visualizações:
Transcrição
1 PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma: Plano de Aula Data: / / Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. Editora Pearson CAPÍTULO 9 Forças Distribuídas: Momento de Inércia 1. Introdução No cap. 5 analisamos vários sistemas de forças distribuídas sobre superfícies ou sólidos. Os principais tipos de força que consideramos foram pesos de placas homogêneas de espessura uniforme, cargas distribuídas em vigas e forças hidrostáticas. Em todos os casos considerados, as forças distribuídas eram proporcionais às áreas ou volumes elementares a elas associados. A resultante dessas forças podiam ser obtidas somando as correspondentes áreas e volumes. Na primeira parte deste capítulo consideraremos forças distribuídas F cujos módulos dependem da área A do elemento de superfície em que atuam e da distância desse elemento a um dado eixo. Mais precisamente, o módulo da força por unidade de área, F / A, variará linearmente com a distância ao eixo. Como veremos na próxima seção, forças desse tipo são encontradas no estudo da flexão de vigas e em problemas que envolvem superfícies submersas não-retangulares. Supondo que as forças elementares estejam distribuídas sobre uma superfície de área A e que variem linearmente com a distância y ao eixo x, verificaremos que, embora o módulo da resultante R dependa do momento de primeira ordem Q X yda da superfície de área A, a localização do ponto de aplicação de R depende do momento de segunda ordem ou momento de inércia, I X y da, da mesma superfície, com relação ao eixo x. Aprenderemos então a calcular os momentos de inércia de várias superfícies com relação a eixos x e y dados. Faremos ainda a utilização do teorema dos eixos paralelos para determinar o momento de inércia em relação a um eixo qualquer quando se conhece o momento de 1 inercia em relação ao eixo que passa pelo centróide. Na última parte deste capítulo analisaremos a transformação dos momentos de inércia pela rotação dos eixos coordenados. Momentos de Inércia de Superfícies. Momento de Segunda Ordem ou Momento de Inércia de uma Superfície Na primeira parte deste capítulo consideraremos forças distribuídas F proporcional ao elemento de área A na qual elas agem e que variam linearmente com a distância de A a um certo eixo, F kya. O módulo da resultante R das forças elementares F sobre uma seção inteira é R kyda k yda Essa última integral obtida é conhecida como momento de primeira ordem Qx da seção em relação ao eixo x. O módulo M do momento fletor
2 deve ser igual à soma dos momentos M X yf ky A das forças elementares. Integrando sobre a seção inteira, obtemos: relação ao eixo x de uma faixa retangular paralela ao eixo y, semelhante à representada na figura abaixo. M ky da k y da A última integral é conhecida como momento de segunda ordem ou momento de inércia da seção da viga em relação ao eixo x e é representada por I X. Observe que I sempre terá valores positivos. 3. Determinação do Momento de Inércia de uma Superfície por Integração. I X y da Assim: I Y x da Exemplo: Determine o momento de inércia de uma superfície retangular. 1 3 di x y dx 3 Por outro lado, temos: di y x da x ydx 4. Momento Polar de Inércia Uma integral muito importante em problemas relativos à torção de eixos cilindricos e em problemas referentes à rotação de placas é da bdy di x y bdy I x h 1 by dy bh A fórmula que acabamos de deduzir pode ser usada para determinar o momento de inércia di em x J 0 r da Onde r é a distância do elemento de área da ao pólo O. Essa integral é o momento polar de inércia.
3 Exercícios Determine, por integração direta, o momento de inércia da superfície sombreada, em relação aos eixos x e y e o raio de giração para ambos os eixos: 1 R: I 3 3 y a b / 10 I x b 3 a / 6 Temos ainda: J 0 r da ( x y ) da y da x da J 0 I X I Y 5. Raio de Giração de uma Superfície R: I 3 y a b / 11 I 3 x b a / 51 Consideremos uma superfície de área A, que tem um momento de inércia Ix em relação ao eixo x. Imaginemos que concentramos esta área em uma faixa estreita, paralela ao eixo x. Se a área A, assim concentrada, deve ter o mesmo momento de inércia em relação ao eixo x, a faixa deve estar colocada a uma distância kx desse eixo, definida pela relação I x k x A expressão acima tem um análogo ao eixo y. A grandeza kx é conhecida como raio de giração. A 3 R: I 3 y a b / 15 I 3 x b a / 7 4 R: I a 3 y b / 1 I b 3 x a / 30 3
4 6. Teorema dos Eixos Paralelos 7. Momentos de Inércia de Superfícies Compostas Consideremos o momento de inércia I de uma superfície de área A em relação a um eixo AA '. Seja y a distância de um elemento de área da a AA '. Escrevemos: I y da Tracemos agora um eixo BB ' paralelo a AA ', que passa pelo baricentro C da superfície; esse eixo é denominado eixo baricêntrico. Sendo y ' a distância do elemento da a temos y y' d, escrevemos: BB ', I I y da y' da d ( y' d) da y' da d da I I Ad 4
5 Exercícios 5 Determine o momento de inércia e o raio de giração da superfície sombreada em relação ao eixo x e ao eixo y: 6 Determine o momento de inércia e o raio de giração da superfície sombreada em relação ao eixo x e ao eixo y: 8. Produto de Inércia A integral P xy xyda Obtida multiplicando-se cada elemento da de uma superfície A por suas coordenadas x e y e integrando-se cada elemento da de uma superfície A por suas coordenadas x e y e integrando sobre a superfície é conhecida como produto de inércia da superfície A em relação aos eixos x e y. Ao contrário dos momentos de inércia, o produto de inércia tanto pode ser positivo quanto negativo. Quando um ou ambos os eixos x e y são eixos de simetria da superfície A, o produto de inércia é zero. Isso se deve ao fato de que para cada elemento de área de coordenada x e y existe um elemento oposto de coordenada x e y. Evidentemente, a contribuição de cada par de elementos escolhidos desse modo se cancela mutuamente, e a integral se reduz a zero. Deixarei a cargo do aluno a demonstração abaixo que é um teorema dos eixos paralelos semelhante àquele estabelecido para calculos de momento de inércia válido para produto de inércia (Mecânica Vetorial para Engenheiros, 5ª edição, pag. 636, PEARSON): P xy P x' y' xya 5
6 Exercícios 7 Determine por integração direta o produto de inércia da superfície dada em relação aos eixos x e y: 9. Eixos e Momentos Principais de Inércia R: a 4 /8 6
7 7
8 8
9 9
10 10
11 11
12 1
13 Exercício: Determinar o produto de inercia do triangulo retângulo ilustrado tanto em relação aos eixos x e y quanto em relação aos eixos baricêntricos paralelos aos eixos x e y. 13
14 14
Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.
PUC - Goiás Curso Arquitetura Disciplina Esforço nas Estruturas Corpo Docente Geisa Pires Turma----------- Plano de Aula Data ------/--------/---------- Leitura obrigatória Mecânica Vetorial para Engenheiros,
TM Estática II
TM 332 - Estática II Emílio Eiji Kavamura, MSc Departamento de Engenaharia Mecânica UFPR TM-332, 2012 [email protected] (UFPR) Estática 2012 1 / 78 Roteiro da aula Centróides e Baricentros Formas
10- Momentos de Inércia
1 10- Momentos de Inércia Momento de inércia de área: medida da resistência à flexão de uma viga. Momento de inércia de massa: medida da inércia (resistência) ao movimento de rotação de um corpo sólido.
Disciplina: Mecânica Geral - Estática
Disciplina: Mecânica Geral - Estática IV. Propriedades Mecânicas de Figuras Planas Parte 1: Momento de Primeira Ordem ou Estático Prof. Dr. Eng. Fernando Porto Momentos de Primeira Ordem O momento de primeira
2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho
1 Te McGraw-Hill Companies, nc. All rigts reserved. Prof.: Anastácio Pinto Gonçalves Filo Momentos de nércia de uma Superfície por ntegração Os Momentos de Segunda Ordem ou Momentos de nércia de Superfícies
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RETÊNCA DO MATERA Ferdinand P. Beer E. Russell Johnston, Jr. Carregamento Transversal Capítulo 5 Carregamento Transversal 5.1 ntrodução 5.2 Carregamento Transversal 5.3 Distribuição
PLANO DE ENSINO Mecânica Geral
PLANO DE ENSINO Mecânica Geral PARA ENGENHARIA AMBIENTAL/ CIVIL DOCENTE - ENG. JÚLIO CÉSAR SWARTELÉ RODRIGUES PLANO DE ENSINO Carga Horária: 40 horas 2 horas semanais (Segunda feira) Docente: Júlio César
Disciplina: Mecânica Geral - Estática
Disciplina: Mecânica Geral - Estática II. Forças Distribuídas Prof. Dr. Eng. Fernando Porto A barragem Grand Coulee (EUA) suporta 3 tipos diferentes de forças distribuídas: o peso de seus elementos construtivos,
Prof. MSc. David Roza José -
1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê
Volume de um sólido de Revolução
Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
Resistência dos Materiais
- Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão
Propriedades Geométricas de Seções Transversais
D-1 pêndice D Propriedades Geométricas de Seções Transversais D.1 Momento Estático Considere uma superfície plana de área e dois eixos ortogonais x e y de seu plano mostrados na Figura D.1. Seja d um elemento
Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.
PUC - Goiás Curso: Engenharia Civil Disciplina: Mecânica Vetorial Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para
01/08/2017. Prof. Neckel
Mecânica Geral I Estática PROF. LEANDRO NECKEL Ementa Princípios e conceitos fundamentais da mecânica. Estática do ponto material. Corpos rígidos: Sistemas equivalentes de forças. Equilíbrio de corpos
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
1 Introdução 3. 2 Estática de partículas 17 SUMÁRIO. Forças no plano 18. Forças no espaço 47
SUMÁRIO 1 Introdução 3 1.1 O que é mecânica? 4 1.2 Conceitos e princípios fundamentais 4 1.3 Sistemas de unidades 7 1.4 Conversão de um sistema de unidades para outro 12 1.5 Método de resolução de problemas
São as vigas que são fabricadas com mais de um material.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões em Vigas Tópicos
REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.
MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL
CENTRO DE MASSA - CENTRÓIDE.
Beer e Johnston, 1995 CENTRO DE MASSA - CENTRÓIDE. Consideremos, como na figura abaixo, uma placa horizontal. Podemos dividir essa placa em i pequenos elementos. As coordenadas do primeiro elemento são
Professor: Eduardo Nobre Lages Associado 2 40h/DE CTEC/UFAL Sala de permanência: Núcleo de Pesquisa Multidisciplinar NPM (Severinão) Laboratório de Co
Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Turma: B Período Letivo: 2008-22 Professor: Eduardo Nobre Lages Horários:
5 CISALHAMENTO SIMPLES
5 CISALHAMENTO SIMPLES Conforme visto anteriormente, sabe-se que um carregamento transversal aplicado em uma viga resulta em tensões normais e de cisalhamento em qualquer seção transversal dessa viga.
CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS
CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS Baricentro geométrico: Maneira prática de se determinar o baricentro geométrico: fio de prumo fio de prumo O Centro de Gravidade está na intersecção das
Departamento de Engenharia Civil e Arquitectura MECÂNICA I
Departamento de Engenharia Civil e rquitectura Secção de Mecânica Estrutural e Estruturas Mestrado em Engenharia Civil MECÂNIC I pontamentos sobre centros de gravidade Luís uerreiro 21/211 CENTROS DE RIDDE
CAPÍTULO IV GEOMETRIA DAS MASSAS
CPÍTULO IV GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluída dentro dos objetivos principais de Resistência dos Materiais, vamos estudar algumas grandezas características da geometria das massas
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
Aplicações à Física e à Engenharia
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física
PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Seções Transversais Objetivos
TORÇÃO. Prof. Dr. Carlos A. Nadal
TORÇÃO Prof. Dr. Carlos A. Nadal Tipo de esforços a) Tração b) Compressão c) Flexão d) Torção e) Compressão f) flambagem Esforços axiais existe uma torção quando uma seção transversal de uma peça está
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2014-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eixos Principais de Inércia
CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS
CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade
UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique
1 Aula 06 Continuação/Revisão Prof: João Henrique Sumário Pilares de Seção Transversal em forma de L e U... 1 Principais propriedades de figuras planas... 2 Área (A)... 2 Momento Estático (Me)... 2 Centro
APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de. figuras planas
245 APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de figuras planas 1. Demonstração da localização do centro de gravidade de um paralelogramo por Arquimedes (287-212 a.c) Arquimedes
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
MAC-015 Resistência dos Materiais Unidade 03
MAC-015 Resistência dos Materiais Unidade 03 Engenharia Elétrica Engenharia de Produção Engenharia Sanitária e Ambiental Leonardo Goliatt, Michèle Farage, Alexandre Cury Departamento de Mecânica Aplicada
Palavras-chave: Momento de inércia, momento de inércia de área, momento de inércia de massa.
MOMENTO DE INÉRCIA, DE MASSA OU DE ÁREA? SILVA; Adriano de Aquino Paiva [email protected] Faculdade de Tecnologia de Mogi-Mirim Resumo - Este artigo apresenta e explica o Momento de Inércia utilizado
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão
Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2012-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2018-2 Objetivos Apresentar os conceitos: Momento de inércia: retangular e polar Produto de Inércia Eixos Principais de Inércia
MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA
MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. eer E. Russell Johnston, Jr. Deflexão de Vigas por Integração Capítulo 7 Deflexão de Vigas por Integração 7.1 Introdução 7. Deformação de
FIS 26. Mecânica II. Aula 3: Corpo rígido. Momento angular.
FIS 26 Mecânica II Aula 3:. Momento angular. - Roteiro Resumo das últimas aulas Momento de Inércia - Momento angular no movimento planar - Momento de inércia em relação a um eixo - Raio de giração - Teorema
Tensões de Cisalhamento em Vigas sob Flexão
31 de outubro de 2016 (a) Peças sem acoplamento. (b) Peças com acoplamento. (a) Peças sem acoplamento. (b) Peças com acoplamento. Na primeira situação, mostrada na Figura (a), as peças trabalham de forma
RESISTÊNCIA DOS MATERIAIS AULAS 01
Engenaria da Computação 1 4º / 5 Semestre RESISTÊNCI DOS MTERIIS ULS 01 Prof Daniel Hasse Características Geométricas de Figuras Planas SÃO JOSÉ DOS CMPOS, SP ula 01 Figuras Planas I 1- FIGURS PLNS Nesta
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-1 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.
DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho [email protected] Juiz de Fora MG Introdução: Objetivo: Desenvolver
Assunto: Características Geométricas das Figuras Planas Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] O dimensionamento e a verificação da capacidade resistente de barras, como de
Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori.
Bibliografia Básica: BEER, F. P.; JOHNSTON JUNIOR, E. R. Mecânica vetorial para engenheiros: cinemática e dinâmica 5ª ed. 2v. São Paulo: Makron, 1994. HIBBELER, R. C. Dinâmica: Mecânica para Engenharia.
Lei de Gauss Objetivos:
Lei de Gauss Objetivos: Calcular o Fluxo de Campo Elétrico através de superfícies fechadas; Resolver problemas de Campo Elétrico, usando a simetria do sistema, com emprego da Lei de Gauss. Sobre a Apresentação
CAPÍTULO 6 CENTROS DE GRAVIDADE E MOMENTOS ESTÁTICOS
CAPÍTULO 6 CENTROS DE GRAVIDADE E OENTOS ESTÁTICOS CENTRO DE GRAVIDADE DE U CORPO BIDIENSIONAL Considere um corpo bidimensional no plano. A acção da gravidade actua sobre o corpo como uma força distribuída,
Exercícios de Mecânica - Área 2
1) A placa da Figura tem espessura de 0,30 pé e peso específico de γ= 190 lb/pé 3. Determine a localização de seu centro de gravidade. Encontre também o peso total da placa. Xg = 3,2 pés ; yg = 3,2 pés
Aula 04 Sistemas Equivalentes
Aula 04 Sistemas Equivalentes Prof. Wanderson S. Paris, M.Eng. [email protected] Sistema Equivalente Representa um sistema no qual a força e o momento resultantes produzam na estrutura, o mesmo
Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria
Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo
Mecânica Geral. Momento de Inércia de áreas Momento de uma força. Prof. Ettore Baldini-Neto
Mecânica Geral Momento de Inércia de áreas Momento de uma força Prof. Ettore Baldini-Neto [email protected] Nas aulas anteriores aprendemos: A calcular os Centros de Massa de um sistema com poucas partículas
Problema resolvido 4.2
Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)
Disciplina : Mecânica dos fluidos I. Aula 5: Estática dos Fluidos
Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos I ula 5: Estática dos Fluidos Prof. Evandro Rodrigo Dário, Dr. Eng. Estática dos Fluidos Sistemas Hidráulicos Os sistemas hidráulicos são caracterizados
Barras prismáticas submetidas a momento fletor e força cortante
Barras prismáticas submetidas a momento fletor e força cortante Introdução Os esforços mais comuns de incidência em vigas estruturais são a força cortante e o momento fletor, os quais são causados por
Capítulo X Parte I Momentos de Inércia
Universidade Federal Fluminense - UFF Escola de Engenharia de Volta Redonda EEMVR Departamento de Ciências Eatas Capítulo X Parte Momentos de nércia Profa. Salete Souza de Oliveira Home: http://www.professores.uff.br/salete
Sumário. Estática das Partículas... 1 CAPÍTULO 1
Sumário CAPÍTULO 1 Estática das Partículas... 1 1.1 Fundamentos... 1 1.1.1 Introdução.... 1 1.1.2 Princípios da Estática... 5 1.1.3 Vínculos e suas Reações... 9 1.2 Estática das Partículas Forças Coplanares....
Valter B. Dantas. Momento de Inércia
Valter B. Dantas Momento de Inércia Momento de Inércia de um Sistema Contínuo de Partículas Como calcular o momento de inércia de uma barra retilínea de material homogêneo em relação a um eixo perpendicular
Carregamentos Combinados Mecânica Dos Materiais II
Carregamentos Combinados Mecânica Dos Materiais II Universidade de Brasília UnB Departamento de Engenharia Mecânica ENM Grupo de Mecânica dos Materiais GMM ÍNDICE Revisão sobre vigas Revisão de ropriedades
Polígrafo Mecânica para Engenharia Civil
Universidade Federal do Pampa (UFP/UFSM) Centro de Tecnologia de Alegrete - CTA Curso de Engenharia Civil Polígrafo Mecânica para Engenharia Civil Prof Almir Barros da S. Santos Neto Polígrafo elaborado
DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:
PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;
Aula 06 Introdução e Equilíbrio de um corpo deformável
Aula 06 Introdução e Equilíbrio de um corpo deformável Prof. Wanderson S. Paris, M.Eng. [email protected] Resistência dos Materiais Definição: É um ramo da mecânica que estuda as relações entre
6 TORÇÃO SIMPLES. Equação 6.1. Ou, uma vez que df = da, com sendo a tensão de cisalhamento do elementos de área da, Equação 6.2
6 TORÇÃO SIMPLES Torção simples ocorre quando a resultante na seção for um binário cujo plano de ação é o da própria seção. Considerando a barra de seção circular AB submetida em A e B a toques iguais
Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng.
Disciplina: Resistência dos Materiais Unidade V - Flexão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.
Cálculo Diferencial e Integral 2: Integrais Duplas
Cálculo Diferencial e Integral 2: Integrais Duplas Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Integrais Duplas sobre Retângulos 2 3 Lembrete:
Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:
Flexão Composta PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL 2015
PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL 2015 Encontramos diversas situações em Engenharia em que as peças estão solicitadas simultaneamente pela ação de momentos fletores
raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.
Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO Prof. Bruno Farias Campo Elétrico A força elétrica exercida por uma carga
Objetivos do estudo de superfície plana submersa - unidade 2:
122 Curso Básico de Mecânica dos Fluidos Objetivos do estudo de superfície plana submersa - unidade 2: Mencionar em que situações têm-se uma distribuição uniforme de pressões em uma superfície plana submersa;
Carregamentos Combinados
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Carregamentos Combinados
PLANO DO CURSO. CARGA HORÁRIA SEMANAL Bacharelado em Engenharia Mecânica Geral 3 h NOME DA DISCIPLINA. Ano / Semestre / 3º
ASSOCIAÇÃO EDUCATIVA E CULTURAL DE CAMAÇARI FAMEC Faculdade Metropolitana de Camaçari Autorizada a funcionar pela Portaria Ministerial nº 231/98 publicada no Diário Oficial da União em 27/04/98 CURSO PLANO
Unidade: Equilíbrio do Ponto material e Momento de uma. Unidade I: força
Unidade: Equilíbrio do Ponto material e Momento de uma Unidade I: força 0 3 EQUILÍBRIO DO PONTO MATERIAL 3.1 Introdução Quando algo está em equilíbrio significa que está parado (equilíbrio estático) ou
Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais
MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05
Volumes de Sólidos de Revolução
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos
Programa. Centroide Momentos de Inércia Teorema dos Eixos Paralelos. 2 Propriedades Geométricas de Áreas Planas
Propriedades Geométricas de Áreas Planas Programa 2 Propriedades Geométricas de Áreas Planas Centroide Momentos de Inércia Teorema dos Eixos Paralelos L Goliatt, M Farage, A Cury (MAC/UFJF) MAC-015 Resistência
MECÂNICA - MAC Prof a Michèle Farage. 14 de março de Programa Princípios Gerais Forças, vetores e operações vetoriais
MECÂNICA - MAC010-01 Prof a Michèle Farage 14 de março de 2011 Programa Princípios Gerais Forças, vetores e operações vetoriais Programa 1. Introdução: conceitos e definições básicos da Mecânica, sistemas
Tensões de Flexão nas Vigas
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões de Flexão nas Vigas
Álgebra Linear I - Aula 2. Roteiro
Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 3 Flexão
Capítulo 3 Flexão 3.1 Revisão Flexão provoca uma tensão de tração de um lado da viga e uma tensão de compressão do outro lado. 3.2 A fórmula da flexão O momento resultante na seção transversal é igual
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria
Jorge M. V. Capela, Marisa V. Capela. Araraquara, SP
Vetores no Espaço Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Vetores no Espaço 2 3 4 Vetor no espaço Vetores no Espaço Operações
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #11: INTRODUÇÃO À TEORIA DE PLACAS E CASCAS 1 11.1. Introdução Recebem a denominação geral de folhas as estruturas nas quais duas dimensões predominam sobre uma terceira
Exercício 02: Determine o momento de inércia da área em relação ao eixo X e em relação ao eixo Y.
UFPR - ST DCC MECÂNICA GERAL II TC023 Lista 4: Momentos de Inércia Exercício 01: Determine o momento de inércia da área em relação ao eixo X e em relação ao eixo Y. Exercício 02: Determine o momento de
