Exercícios de Mecânica - Área 2
|
|
|
- Flávio da Fonseca Alcântara
- 9 Há anos
- Visualizações:
Transcrição
1 1) A placa da Figura tem espessura de 0,30 pé e peso específico de γ= 190 lb/pé 3. Determine a localização de seu centro de gravidade. Encontre também o peso total da placa. Xg = 3,2 pés ; yg = 3,2 pés ; peso = 2432 lb 2) Determine o produto de inércia para a área da seção transversal da viga em relação aos eixos u, v.
2 3) Determine a coordenada y do centróide C da seção reta da viga. Em seguida calcule o momento de inércia da área em relação ao eixo xx. 4) A barragem circular é feita de concreto. Utilizando o teorema de Pappus e Guldinus determine a massa total da barragem se o concreto tem: γ= 2,5 Mg/m3. Faça a = 3 m, b = 10 m, c = 1,5 m e r = 20 m.
3 5) Localize o centróide (x,y) da placa mostrada na figura xg = 4,625 pol ; yg = 1 pol 6) Determinar os momentos de inércia Iu e Iv e o produto de inércia Iuv da área da seção transversal da viga. Considere que θ = 45 o Iu= 3,47(10 3 ) pol 4 ; Iv= 3,47(10 3 ) pol 4 ; Iuv=2,05(10 3 ) pol 4
4 7) A roda de aço tem diâmetro de 840 mm e seção transversal, como mostra a figura. Determine a massa total da roda sendo a densidade de 5t/m 3. m=138 kg 8) Localize o centróide (x,y) do fio uniforme dobrado no formato mostrado. x=34,4 mm ; y=85,8 mm
5 9) Determine o produto de inércia da área da seção transversal da viga em relação aos eixos x,y, que tem sua origem localizada no centróide C. Ixy=-28,1(103) mm 4 10) A placa composta mostrada na figura 1 é feita de segmentos de aço (A) e de latão (B). Determinar sua massa e a localização (xg, yg, zg) de seu centro de massa G. Faça ρaço = 7,85 Mg/m 3 e ρlatão = 8,74 Mg/m 3 xg = 153mm, yg = 15mm ; zg = 111mm
6 11) Utilizando o processo de integração calcule a área e a coordenada do centróide da região sombreada. Em seguida utilizando o segundo teorema de Pappus-Guldinus, determine o volume do sólido gerado pelo giro da área sombreada em torno do eixo aa. x = 6 pés ; A = 21,3 pés 2 ; V = 1,34*10 3 pés 3 12) Determinar o centro de gravidade da área sombreada da figura. Em seguida determinar os momentos de inércia em relação aos eixos x e y. xg = 2,532 pol ; yg = 4,624 pol ; Ix = 1,21*10 3 pol 4 ; Iy = 368 pol 4
7 13) Determinar as direções dos eixos principais com origem localizada no ponto O. 14) Localize o centróide da seção reta da viga. Faça a = 25 mm. xg = 0,0 mm ; yg = 40,95 mm 15) Uma correia circular em V tem um raio interno de 600 mm e a área de seção transversal ilustrada na figura abaixo. Determine o volume de material necessário para fabricar a correia. (Utilizar o teorema de Pappus e Guldinus).
8 V = 2,268*10 7 mm 3 16) Determine as reações nos apoios A e B. RA = 1,333 kn ; RB = 1,167 kn 17) Determine o momento de inércia da seção reta da viga em relação ao eixo xx que passa pelo centróide C. Nos cálculos despreze as dimensões das soldas em A e B. y = 90,5 mm. Iy = 2,07*10 7 mm 3
9 18) Localize o centro de gravidade do volume. xg = yg = 0,0m. z = 4/3m 19) a) Localize a posição y do eixo XX que passa pelo centróide da seção reta da Figura b) Determine o momento de inércia da seção reta da figura em relação ao eixo XX yg = 154,443 mm ; Ixx = 9,59*10 7 mm 4 20) Quanto vale o produto de inércia da seção transversal da figura 2 em relação aos eixos X e Y? (Considerar A = 10; B = 2,5; C = 15 cm; R = 15)
10 Ixy = - 1,688*10 4 mm 4 ; 21) Se os valores encontrados na questão anterior forem: IxG = 1 x 107 cm4; IyG = 1 x 106 cm4 e IxGyG = 1 x 105 cm4. Determine os momentos principais centrais de inércia. Calcule as direções centrais principais. 22) Na figura o furo tem um diâmetro igual a b. Determine: a) a posição do centroíde da figura em relação aos eixos (X, Y); b) o volume gerado pelo furo quando a placa gira um ângulo de 170o em torno do eixo Y; c) a área descrita pela reta GH. Considerar: r=20 m a=3,5 m b=1,5 m c=2 m d=5 m Xg = 23,31m ; Yg = 2,37m ; Vol = 123,216 m 3 ; A = 574,28 m 2
11 23) Determinar, para os dados da figura 2: a) a resultante individual de cada carregamento e sua poisção; b) a resultante do sistema formado pelos dos carregamentos e sua posição. Cp = 202,5 kgf; xcp = 1,994m ; Ct = 150kgf ; xct = 1m ; R = 352,5 kgf ; xr = 1,543m 24) Determinar o momento de inércia em relação ao eixo x utilizando elementos diferenciais retangulares de largura dx. Considerar h=3,6 pés e b = 25) Dada a seção da figura, determinar: a) a posição yg do centróide da seção, b) o momento de inércia em relação ao eixo y.
12 ; 26) Para a seção retangular da figura determinar: a) as direções dos eixos principais com origem no ponto O; b) os momentos de inércia principais em relação a estes eixos. ; ; ; 27) Utilizando o teorema de Pappus Guldin, determinar o volume descrito pela figura quando gira um ângulo de 75 graus ao redor do eixo y. As medidas estão em cm.
13 28) Determinar as coordenadas do centro de gravidade de um corpo que tem a forma de uma cadeira, figura, composta de varas de igual comprimento e peso. O comprimento de uma das varas vale 44 cm. xc = -22 ; yc = 16 ; zc = 0
Exercício 02: Determine o momento de inércia da área em relação ao eixo X e em relação ao eixo Y.
UFPR - ST DCC MECÂNICA GERAL II TC023 Lista 4: Momentos de Inércia Exercício 01: Determine o momento de inércia da área em relação ao eixo X e em relação ao eixo Y. Exercício 02: Determine o momento de
xdv ydv zdv Mecânica Geral II Lista de Exercícios 2 Prof. Dr. Cláudio S. Sartori
Use 1lb = 4,448 N 1 in = 0,0254 m 1 ft = 0,3048 m Baricentro de corpos em 2D e 3D Carregamentos xdl ydl x = ; y = L L x = N x i i= 1 N i= 1 A A i i y = N y i i= 1 N i= 1 A xdv ydv zdv x = y z V = V = V
TM Estática II
TM 332 - Estática II Emílio Eiji Kavamura, MSc Departamento de Engenaharia Mecânica UFPR TM-332, 2012 [email protected] (UFPR) Estática 2012 1 / 78 Roteiro da aula Centróides e Baricentros Formas
Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori.
Bibliografia Básica: BEER, F. P.; JOHNSTON JUNIOR, E. R. Mecânica vetorial para engenheiros: cinemática e dinâmica 5ª ed. 2v. São Paulo: Makron, 1994. HIBBELER, R. C. Dinâmica: Mecânica para Engenharia.
1 Introdução 3. 2 Estática de partículas 17 SUMÁRIO. Forças no plano 18. Forças no espaço 47
SUMÁRIO 1 Introdução 3 1.1 O que é mecânica? 4 1.2 Conceitos e princípios fundamentais 4 1.3 Sistemas de unidades 7 1.4 Conversão de um sistema de unidades para outro 12 1.5 Método de resolução de problemas
Exercícios de Resistência dos Materiais A - Área 3
1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento
Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme
CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS
CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS Baricentro geométrico: Maneira prática de se determinar o baricentro geométrico: fio de prumo fio de prumo O Centro de Gravidade está na intersecção das
SUMÁRIO. 1 Introdução Vetores: Força e Posição Engenharia e Estática...1
SUMÁRIO 1 Introdução... 1 1.1 Engenharia e Estática...1 1.2 Uma Breve História da Estática...3 Galileu Galilei (1564-1642)... 4 Isaac Newton (1643-1727)... 4 1.3 Princípios Fundamentais...5 Leis do movimento
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
RESISTÊNCIA DOS MATERIAIS
RESISTÊNCIA DOS MATERIAIS LISTA DE EXERCÍCIOS Torção 1º SEM./2001 1) O eixo circular BC é vazado e tem diâmetros interno e externo de 90 mm e 120 mm, respectivamente. Os eixo AB e CD são maciços, com diâmetro
Prof. MSc. David Roza José -
1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para
1.38. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em
1.36. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em A. Determinar qual das hastes está sujeita à maior tensão normal média e calcular seu valor. Suponha que θ = 60º.
UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique
1 Aula 06 Continuação/Revisão Prof: João Henrique Sumário Pilares de Seção Transversal em forma de L e U... 1 Principais propriedades de figuras planas... 2 Área (A)... 2 Momento Estático (Me)... 2 Centro
FIS-26 Lista-02 Fevereiro/2013
FIS-26 Lista-02 Fevereiro/2013 Exercícios de revisão de FIS-14. 1. Determine as componentes de força horizontal e vertical no pino A e a reação no ponto B oscilante da viga em curva. 2. A caixa de 15,0
Momentos de Inércia de Superfícies
PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para
Resposta: F AB = 1738,7 N F AC = 1272,8 N
Trabalho 1 (Cap. 1 a Cap. 4) Mecânica Aplicada - Estática Prof. André Luis Christoforo, e-mail: [email protected] Departamento de Engenharia Civil - DECiv/UFSCar Cap. 1 Vetores de Força 1) A força
Lista de Exercícios 5 Corrente elétrica e campo magnético
Lista de Exercícios 5 Corrente elétrica e campo magnético Exercícios Sugeridos (13/04/2010) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2 î 4 ĵ + ˆk)
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.
ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para
Seção 7 (Flexão) - Exemplos dados em aula
UFPR - MECÂNICA DOS SÓLIDOS I Seção 7 (Flexão) - Exemplos dados em aula Prof. Marcos S. Lenzi May 24, 2016 Exemplo 7.1 - Considere uma barra de aço com seção tranversal retangular conforme mostrado abaixo
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
(atualizado em 12/07/2014)
ENG285 4ª Unidade 1 (atualizado em 12/07/2014) Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para
Professor: José Junio Lopes
A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada
Professor: José Junio Lopes
Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.
Engenharia de Telecomunicações Projeto Final de Mecânica dos Sólidos
Engenharia de Telecomunicações Projeto Final de Mecânica dos Sólidos Para todas as questões, utilize os valores de F1 e F2 indicados. Sugerimos uso do programa FTOOL para realização dos cálculos intermediários.
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto
Carregamentos Combinados Mecânica Dos Materiais II
Carregamentos Combinados Mecânica Dos Materiais II Universidade de Brasília UnB Departamento de Engenharia Mecânica ENM Grupo de Mecânica dos Materiais GMM ÍNDICE Revisão sobre vigas Revisão de ropriedades
LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02
LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva
Entender o funcionamento de um pêndulo, correlacioná-lo com o pêndulo simples, determinar a aceleração da gravidade e o momento de inércia do corpo.
UNIVERSIDADE DE SÃO PAULO Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Física Fone: (016) 3.3718/3693 Fax: (016) 3 949 USP EXPERIÊNCIA PÊNDULO Objetivos Entender o funcionamento
Aplicações à Física e à Engenharia
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física
UERJ/DFNAE Física Geral - Lista /2
UERJ/DFNAE Física Geral - Lista 2-2018/2 1. Identifique as forças que atuam sobre os corpos indicados nas figuras. 2. Dois blocos de peso P, são mantidos em equilíbrio em um plano inclinado sem atrito,
Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng.
Disciplina: Resistência dos Materiais Unidade V - Flexão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.
para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por:
Lista de torção livre Circular Fechada - Valério SA. - 2015 1 1) a. Determinar a dimensão a de modo a se ter a mesma tensão de cisalhamento máxima nos trechos B-C e C-D. b. Com tal dimensão pede-se a máxima
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto
Cisalhamento transversal
Capítulo 7: Cisalhamento transversal Adaptado pela prof. Dra. Danielle Bond Cisalhamento em elementos retos Vimos que por conta dos carregamentos aplicados, as vigas desenvolvem uma força de cisalhamento
ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos
ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 6 Corpos Submersos 1 Prova P3 2013.1 - O corpo submerso da figura abaixo tem 1m de comprimento perpendicularmente ao plano do papel e é formado
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área
Capítulo 7 Cisalhamento
Capítulo 7 Cisalhamento 7.1 Cisalhamento em elementos retos O cisalhamento V é o resultado de uma distribução de tensões de cisalhamento transversal que age na seção da viga. Devido à propriedade complementar
Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial.
Sumário e Objectivos Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial. Objectivos da Aula: Apreensão da forma de Cálculo das Tensões Axiais
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 3 Flexão
Capítulo 3 Flexão 3.1 Revisão Flexão provoca uma tensão de tração de um lado da viga e uma tensão de compressão do outro lado. 3.2 A fórmula da flexão O momento resultante na seção transversal é igual
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
Enunciados Exames 2002/2003 Enunciados Exames 2003/2004 Enunciados Trabalhos 2003/2004 Enunciados Exames 2004/2005 Enunciados Mini-testes 2004/2005
INSTITUTO POLITÉCNICO DE BRAANÇA MECÂNICA APLICADA I Escola Superior de Tecnologia e de estão Curso: Engenharia Civil Departamento de Mecânica Aplicada Ano lectivo: 2005/2006 Enunciados Exames 2002/2003
2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho
1 Te McGraw-Hill Companies, nc. All rigts reserved. Prof.: Anastácio Pinto Gonçalves Filo Momentos de nércia de uma Superfície por ntegração Os Momentos de Segunda Ordem ou Momentos de nércia de Superfícies
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área
FENÔMENOS DE TRANSPORTE
Universidade Federal Fluminense Escola de Engenharia Disciplina: FENÔMENOS DE TRANSPORTE Aula 5 Hidrostática Prof.: Gabriel Nascimento (Depto. de Engenharia Agrícola e Meio Ambiente) Elson Nascimento (Depto.
Lista de Exercícios 1: Eletrostática
Lista de Exercícios 1: Eletrostática 1. Uma carga Q é distribuída uniformemente sobre um fio semicircular de raio a, que está no plano xy. Calcule a força F com que atua sobre uma carga de sinal oposto
ESTUDO DE CASO 1 MASP
ESTUDO DE CASO 1 MASP MUSEU DE ARTE DE SÃO PAULO Janeiro/2007 Seqüência da Apresentação 1. Características Geométricas e Arquitetônicas 2. Características/Cargas Estruturais 3. Modelo Estrutural 4. Análise
Física 3 - EMB5043. Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017
Física 3 - EMB5043 Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017 1. A figura 1 mostra dois fios. O fio de baixo conduz uma corrente i 1 = 0,40 A e inclui
CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS
CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade
MECSOL34 Mecânica dos Sólidos I
MECSOL34 Mecânica dos Sólidos I Curso Superior em Tecnologia Mecatrônica Industrial 3ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Tópicos abordados Conceito de Tensão
Mecânica dos Sólidos I Lista de exercícios I Barras e treliças
Mecânica dos Sólidos I Lista de exercícios I arras e treliças (1)Uma biela consiste em três barras de aço de 6.25 mm de espessura e 31.25mm de largura, conforme esquematizado na figura. Durante a montagem,
Tecnologia em Automação Industrial Mecânica Aplicada 1 Lista 06 página 1/6
urso de Tecnologia em utomação Industrial Disciplina de Mecânica plicada 1 prof. Lin Lista de exercícios nº 6 (Equilíbrio de um corpo rígido) 0,5 m 1,0 m orma 1. figura ao lado ilustra uma prensa para
LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2
LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 I) TRANSFORMAÇÃO DE TENSÕES 1) Uma única força horizontal P de intensidade de 670N é aplicada à extremidade D da alavanca ABD. Sabendo que a parte AB da
FIS-14 Prova 02 Novembro/2013
FIS-14 Prova 02 Novembro/2013 Nome: Nota: Duração máxima da prova: 240 min. Responda às questões de forma clara, completa e concisa dentro do espaço previsto. Uma parte da pontuação de cada questão será
Lista de Exercícios 3 Corrente elétrica e campo magnético
Lista de Exercícios 3 Corrente elétrica e campo magnético Exercícios Sugeridos (16/04/2007) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2i 4j + k) m/s
Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque
Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto
PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Seções Transversais Objetivos
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão
Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. eer E. Russell Johnston, Jr. Deflexão de Vigas por Integração Capítulo 7 Deflexão de Vigas por Integração 7.1 Introdução 7. Deformação de
Propriedades Geométricas de Seções Transversais
D-1 pêndice D Propriedades Geométricas de Seções Transversais D.1 Momento Estático Considere uma superfície plana de área e dois eixos ortogonais x e y de seu plano mostrados na Figura D.1. Seja d um elemento
Exercícios Aulas Práticas 2004/2005
Exercícios Aulas Práticas 2004/2005 Manuel Teixeira Brás César Mário Nuno Moreira Matos Valente 1/17 2/17 Tema: Corpos Rígidos: Sistemas Equivalentes de Forças 7 - Uma força de 150 N é aplicada à alavanca
a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial
TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular
Pressão Interna + Momento Fletor e Esforço Axial.
3 Método Anaĺıtico Este capítulo apresenta o desenvolvimento analítico para determinação das tensões atuantes no tubo da bancada de ensaios descrita anteriormente, causadas pelos carregamentos de pressão
Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.
PUC - Goiás Curso Arquitetura Disciplina Esforço nas Estruturas Corpo Docente Geisa Pires Turma----------- Plano de Aula Data ------/--------/---------- Leitura obrigatória Mecânica Vetorial para Engenheiros,
Lista de Exercícios de Estática / Resistência dos Materiais Fonte: ESTATICA: Mecânica para engenharia. 10ª edição. R.C.Hibbeler.
Lista de Exercícios de Estática / Resistência dos Materiais Fonte: ESTATICA: Mecânica para engenharia. 10ª edição. R.C.Hibbeler. MOMENTO DE UMA FORÇA 2D E 3D 01) A chave de boca é usada para soltar o parafuso.
Resistência dos Materiais
Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade
Exercícios Aulas Práticas 2005/2006
Exercícios Aulas Práticas 2005/2006 Manuel Teixeira Brás César Mário Nuno Moreira Matos Valente 3 1/17 2/17 Tema: Corpos Rígidos: Sistemas Equivalentes de Forças 7 - Uma força de 150 N é aplicada à alavanca
Volume de um sólido de Revolução
Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas
FORÇA SOBRE ÁREAS PLANAS
FLUIDOSTÁTICA II FORÇA SOBRE ÁREAS PLANAS Centro de Gravidade (CG) CG constatações Se a figura possui eixo de simetria, o CG está contido neste eixo. Eixo de simetria Eixo de simetria Eixo de simetria
REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.
MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL
Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.
Lista 12: Rotação de corpos rígidos NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder
Lista de Exercícios 1 Forças e Campos Elétricos
Lista de Exercícios 1 Forças e Campos Elétricos Exercícios Sugeridos (21/03/2007) A numeração corresponde ao Livros Textos A e B. A19.1 (a) Calcule o número de elétrons em um pequeno alfinete de prata
LISTA 3 - ANÁLISE DE TENSÃO E DEFORMAÇÃO
LISTA 3 - ANÁLISE DE TENSÃO E DEFORMAÇÃO 3.1. Para os estados planos de tensão da figura abaixo, determinar: (a) componentes planas de tensão; (b) componentes de tensão num plano rotacionado a 35º no sentido
M0 = F.d
Marcio Varela M0 = F.d M = F.d M R = F.d Exemplo: Determine o momento da força em relação ao ponto 0 em cada caso ilustrado abaixo. Determine os momentos da força 800 N que atua sobre a estrutura na figura
Lista de exercícios 4 Mecânica Geral I
Lista de exercícios 4 Mecânica Geral I 5.9. Desenhe o diagrama de corpo livre da barra, que possui uma espessura desprezível e pontos de contato lisos em A, B e C. Explique o significado de cada força
Introdução cargas externas cargas internas deformações estabilidade
TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também
TORÇÃO. Prof. Dr. Carlos A. Nadal
TORÇÃO Prof. Dr. Carlos A. Nadal Tipo de esforços a) Tração b) Compressão c) Flexão d) Torção e) Compressão f) flambagem Esforços axiais existe uma torção quando uma seção transversal de uma peça está
Compactação Exercícios
Compactação Exercícios 1. Num ensaio de compactação foram obtidos os dados listados na tabela abaixo Identificação 1 2 3 4 5 Teor de umidade, w (%) 5,2 6,8 8,7 11,0 13,0 Massa do cilindro + solo (g) 9810
Resistência dos materiais 1
Resistência dos materiais 1 Prof. Dr. Iêdo Alves de Souza Assunto: torção em barras de seção transversal circular DECE: UEMA & DCC: IFMA Plano de estudo Plano de estudo Introdução Plano de estudo Introdução
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 2 Torção
Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.
Tensões no Solo Exercícios
Tensões no Solo Exercícios 1. Dado o perfil geotécnico abaixo, calcule: a) as tensões devidas ao peso próprio do solo σ e σ e as pressões neutras; ( ) V V b) adotando o valor de k 0 = 0,5 para todas as
Capítulo 4 Cisalhamento
Capítulo 4 Cisalhamento 4.1 Revisão V dm dx 4.2 A fórmula do cisalhamento A fórmula do cisalhamento é usada para encontrar a tensão de cisalhamento na seção transversal. VQ It onde Q yda y' A' A' Q= momento
Tipo do chassi F700 F800 F950 F957 F958 Largura e tolerância do chassi (mm) 9,5 R11 R11. Peso (kg) por viga e por metro (kg) 21,4 26,2 30,7 50,7 54,0
Faixa de chassis da Scania Faixa de chassis da Scania A faixa de chassis abrange os seguintes tipos: Tipo do chassi F700 F800 F950 F957 F958 Largura e tolerância do chassi (mm) 766 +1 768 +1 771 +1 768
Estática. Prof. Willyan Machado Giufrida. Estática
Estática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma medida da tendência dessa força de provocar a rotação de um corpo em torno do ponto ou do eixo.
Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão = (1)
PRÁTICA 13: CENTRO DE MASSA Centro de massa (ou centro de gravidade) de um objeto pode ser definido como o ponto em que ele pode ser equilibrado horizontalmente. Seu significado físico tem muita utilidade
Disciplina: Mecânica Geral - Estática
Disciplina: Mecânica Geral - Estática IV. Propriedades Mecânicas de Figuras Planas Parte 1: Momento de Primeira Ordem ou Estático Prof. Dr. Eng. Fernando Porto Momentos de Primeira Ordem O momento de primeira
PROBLEMAS DE PROVA. EXERCÍCIOS DA 3 a. ÁREA. UFRGS - ESCOLA DE ENGENHARIA ENG Mecânica. Atualizada em 11/11/2008
UFRS - ESOL E ENENHRI EN 01156 - Mecânica epartamento de Engenharia ivil tualizada em 11/11/2008 EXERÍIOS 3 a. ÁRE Prof. Inácio envegnu Morsch PROLEMS E PROV 1) alcule para o instante representado na figura
AC C A AB AB AB i j k ˆ. i j k AC AC AB B A ˆ ˆ ˆ. T T nˆ AB. Pontos x(ft) y(ft) z(ft) A B C Vetores
Exercícios. 1. Encontre a decomposição de cada força indicada, escrevendo na forma F F iˆ F ˆj. Em seguida encontre a força resultante que atua no corpo A. x y Pontos x(ft) y(ft) z(ft) A 16 0-11 B 0 8
Problema resolvido 4.2
Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)
. Use esta regra para calcular um valor aproximado de 1
MAT 2 - a Lista de Exercícios. Faça o gráfico de F(t) = t f(x). Calcule F nos pontos onde a derivada existe, para as seguintes funções: (a) f(x) =, se x > e f(x) =, se x (b) f(x) = x, se x > e f(x) = 2,
