RESISTÊNCIA DOS MATERIAIS
|
|
|
- Matheus Henrique Beltrão Azambuja
- 9 Há anos
- Visualizações:
Transcrição
1 RESISTÊNCIA DOS MATERIAIS LISTA DE EXERCÍCIOS Torção 1º SEM./2001 1) O eixo circular BC é vazado e tem diâmetros interno e externo de 90 mm e 120 mm, respectivamente. Os eixo AB e CD são maciços, com diâmetro d. determinar: (i) os valores máximo e mínimo da tensão de cisalhamento no eixo BC; (ii) o diâmetro necessário dos eixos AB e CD, tal que as tensões de cisalhamento sejam inferiores a 65 MPa. R.: (i) 86,2 MPa; 64,7 MPa; (ii) 77,8 mm 2) O projeto preliminar de um eixo de transmissão levou à escolha de uma barra de seção vazada, com diâmetro interno de 100 mm e externo de 150 mm. Pede-se determinar o máximo momento de torção que pode ser transmitido, tal que as tensões de cisalhamento não sejam superiores a 83 MPa, considerando-se: (i) o projeto preliminar; (ii) supondo um eixo sólido maciço com mesmo peso daquele do anteprojeto; (iii) um eixo de seção vazada com 200 mm de diâmetro externo e de mesmo peso do eixo do anteprojeto. R.: (i) 44 KN.m (ii) 22,9 KN.m (iii) 68,9 KN.m - 1 -
2 3) Sabendo-se que todo o eixo é maciço e tem 120 mm de comprimento, determinar: (i) o máximo valor da tensão de cisalhamento (ii) o ângulo de torção nos trechos AB e AE (G=70 GPa). R.: (i) 85,9 MPa (CD) 4) O eixo maciço AB tem um diâmetro de 38 mm e é feito de um aço com G=77 GPa, enquanto que o tubo CD é feito de latão com G=39 GPa. Determinar o maior ângulo de torção admissível na extremidade A, tal que as tensões de cisalhamento não sejam superiores a 83 MPa no aço e 48,5 MPa no latão. t=6,3 mm R.: 1,140 5) O eixo composto mostrado consiste em uma camisa de latão (G l =39 GPa) com 5,5 mm de espessura, colado a um núcleo de aço (G a =77 GPa) com diâmetro de 40 mm. Sabendo-se que o eixo é submetido a um momento de torção de 600 N.m, determinar: (i) a máxima tensão de cisalhamento na camisa de latão; (ii) a máxima tensão de cisalhamento no núcleo de aço; (iii) o ângulo de torção na seção B, com relação à seção A. R.: (i) 17,47 MPa ; 27,6 MPa ; (ii) 2,05-2 -
3 6) Os cilindro maciços AB e BC estão unidos em B e engastados em A e C. sabendos-se que AB é de alumínio (G al =26 GPa) e BC é de latão (G l =39 GPa), determinar: (i) a reação em cada extremidade fixa; (ii) a máxima tensão de cisalhamento em AB; (iii) a máxima tensão de cisalhamento em BC. R.: (i)t A = 9,68 KN.m; T B =2,82 KN.m; (ii) 25,2 MPa ; (iii) 34,1 MPa ; 7) Determinar o maior valor do Momento de Torção que pode ser aplicado a cada uma das barras de latão indicadas na Figura abaixo, adotando-se τ = 40 MPa. Notar que as duas barras maciças têm a mesma área de seção transversal, enquanto a barra quadrada e o tubo de seção quadrada têm as mesmas dimensões externas. Resp: T 1 =532 N m T 2 =414 N m T 3 =555 N m - 3 -
4 10) 10.1) Cada uma das três barras de aço mostradas na Figura abaixo está sujeita a um Momento de Torção de intensidade T = 275 N m. Sabendo-se que a tensão de cisalhamento máxima admitida é de 50 MPa, determinar a dimensão b necessária para cada barra. 10.2) Cada uma das três barras de aço mostradas na Figura está sujeita a um Momento de Torção de intensidade T = 565 N m. Sabendo-se que a tensão de cisalhamento máxima admitida é de 55 MPa, determinar a dimensão b necessária para cada barra. 10.3) Cada uma das três barras de alumínio mostradas devem ser rotacionadas de um ângulo de 1,25. Sabendo-se que b = 38 mm, a tensão de cisalhamento máxima permitida é de 50 MPa e G = 26 GPa, determinar o menor comprimento de cada barra. 10.4) Cada uma das três barras de alumínio mostradas devem ser rotacionadas de um ângulo de 2. Sabendo-se que b = 30 mm, a tensão de cisalhamento máxima permitida é de 50 MPa e G = 26 GPa, determinar o menor comprimento de cada barra. Resp. : 10.1 : a) b= 29,8mm b) b= 30,4mm c) b= 27,6mm 10.4 : a) L= 368mm b) L= 272mm c) L= 413mm - 4 -
5 11) 11.1) Os eixos A e B, Figura abaixo, são feitos de mesmo material e têm a mesma área de seção transversal, porém o eixo A tem seção circular enquanto que o B tem a seção quadrada. Determinar a relação entre as máximas tensões de cisalhamento que ocorrem em A e B, respectivamente, quando os dois eixos são submetidos ao mesmo momento de torção (T A = T B ). Assumir que ambas deformações são elásticas. 11.2) Os eixos A e B, Figura abaixo, são feitos de mesmo material e têm a mesma área de seção transversal, porém o eixo A tem seção circular e B tem seção quadrada. Determinar a relação entre os máximos Momentos de Torção, T A e T B, que podem ser aplicados, com segurança, em A e B, respectivamente. 11.3) Os eixos A e B da Figura são feitos de mesmo material e têm a mesma área de seção transversal, porém o eixo A tem seção circular e B tem seção quadrada. Determinar a relação entre os máximos giros, ϕ A e ϕ B, que os eixos A e B, respectivamente, podem executar com segurança. 11.4) Os eixos A e B da Figura são feitos de mesmo material e têm a mesma área de seção transversal, porém o eixo A tem seção circular e B tem seção quadrada. Determinar a relação entre os giros, ϕ A e ϕ B, que os eixos A e B, respectivamente, podem executar quando estão sujeitos ao mesmo Momento de Torção, T A = T B. Assumir que ambas as deformações sejam elásticas. Resp. : 11.1) τ A / τ B = 0,737; 11.3) ϕ A / ϕ B = 1,
6 12)Tem-se um perfil L 8" x 6" x ½" com 3 m de comprimento conforme Figura. Sabendo-se que a tensão máxima permitida deve ser 50 MPa, e G = 77 MPa, e desprezando-se o efeito da concentração de tensões, determinar: A - o máximo Momento de Torção, T, que pode ser aplicado B - o correspondente ângulo de torção Resp. : A ) T = 900 N m; B) ϕ = 8,79 13) Um Momento de torção é aplicado a uma cantoneira L 8" x 8" x 1", conforme Figura, cuja área da seção é 96,8 cm 2. Sabendo que G = 77 GPa, determinar: A - a máxima tensão de cisalhamento ao longo da linha a-a B - o ângulo de torção 14) Um Momento de Torção de 6,8 kn m é aplicado a um eixo vazado de alumínio de 1,2 m que tem a seção transversal conforme Figura. Desprezando-se o efeito da concentração de tensões, determinar a tensão de cisalhamento nos pontos a e b e o ângulo de torção (G=26 GPa)
7 15) Um eixo vazado de latão tem a seção transversal mostrada na Figura; sabendo-se que a tensão de cisalhamento não deve exceder 80 MPa e desprezando-se o efeito da concentração de tensões, determinar o máximo Momento de Torção que pode ser aplicado ao eixo. Resp. : T = 5,26 kn m 16) Um Momento de Torção de 1,2 kn m é aplicado a uma barra vazada de alumínio de 900 mm de comprimento, que tem a seção mostrada na Figura. Desprezando-se o efeito da concentração de tensões, determinar a tensão de cisalhamento na barra e ângulo de torção (G=26 GPa). Resp. : τ = 44,4 MPa 17)Um tubo de parede fina foi fabricado com uma placa de metal, de espessura t, de maneira que a placa dobrada tenha a forma de um tubo de seção transversal quadrada de lado c. Um Momento de Torção T é aplicado ao tubo, produzindo uma tensão τ 1 e um ângulo de torção ϕ 1. Chamando de τ 2 e ϕ 2, respectivamente a tensão de cisalhamento e o ângulo de torção, que irá se desenvolver se a união subitamente vier a falhar, determinar a relação τ 2 / τ 1 e ϕ 2 / ϕ 1, em termos da relação c / t
LISTA DE EXERCICIOS RM - TORÇÃO
PROBLEMAS DE TORÇÃO SIMPLES 1 1) Um eixo circular oco de aço com diâmetro externo de 4 cm e espessura de parede de 0,30 cm está sujeito ao torque puro de 190 N.m. O eixo tem 2,3 m de comprimento. G=83
Resistência dos materiais 1
Resistência dos materiais 1 Prof. Dr. Iêdo Alves de Souza Assunto: torção em barras de seção transversal circular DECE: UEMA & DCC: IFMA Plano de estudo Plano de estudo Introdução Plano de estudo Introdução
para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por:
Lista de torção livre Circular Fechada - Valério SA. - 2015 1 1) a. Determinar a dimensão a de modo a se ter a mesma tensão de cisalhamento máxima nos trechos B-C e C-D. b. Com tal dimensão pede-se a máxima
Prof. Willyan Machado Giufrida. Torção Deformação por torção de um eixo circular
Torção Deformação por torção de um eixo circular Torque: É um movimento que tende a torcer um elemento em torno do seu eixo tangencial -Quando o torque é aplicado os círculos e retas longitudinais originais
4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES
Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 2 Torção
Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes
LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02
LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva
Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque
Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto
3ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO DIAGRAMA DE ESFORÇO NORMAL
Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 3ª LISTA
1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)
11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.
Exercícios de Resistência dos Materiais A - Área 3
1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2014-2 Objetivos Conceituar e capacitar para a resolução de problemas estaticamente indeterminados na torção Compreender as limitações
Resistência dos Materiais
Aula 7 Estudo de Torção, Ângulo de Torção Ângulo de Torção O projeto de um eixo depende de limitações na quantidade de rotação ou torção ocorrida quando o eixo é submetido ao torque, desse modo, o ângulo
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto
Professor: José Junio Lopes
A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN)
PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015 Resolução 1ª Questão (4,0 pontos) barra prismática da figura tem comprimento L=2m. Ela está L/2 L/2 engastada em e livre em C. seção transversal
Capítulo 5. Torção Pearson Prentice Hall. Todos os direitos reservados.
Capítulo 5 Torção slide 1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar e capacitar paa a resolução de problemas estaticamente indeterminados na torção Compreender as limitações
Momento torsor. Torção em Eixos de Seção Retangular. 26 de setembro de 2016
Torção em Eixos de Seção Retangular 26 de setembro de 2016 Torção em Eixos de Seção Retangular Quando um torque é aplicado a um eixo de seção transversal circular, as deforamções por cisalhamento variam
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV Prof. Dr. Daniel Caetano 2018-1 Objetivos Conceituar fluxo de cisalhamento Determinar distribuição de tensões de cisalhamento em tubos de paredes finas sob
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar fluxo de cisalhamento Determinar distribuição de tensões de cisalhamento em tubos de paredes finas sob
LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2
LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 I) TRANSFORMAÇÃO DE TENSÕES 1) Uma única força horizontal P de intensidade de 670N é aplicada à extremidade D da alavanca ABD. Sabendo que a parte AB da
1ª Lista de Exercícios
Universidade do Estado de Mato Grosso Engenharia Elétrica Mecânica dos Sólidos Prof. MSc. Letícia R. Batista Rosas 1ª Lista de Exercícios 01) A coluna está sujeita a uma força axial de 8 kn aplicada no
Quarta Lista de Exercícios
Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Quarta Lista de Exercícios 1. O tubo de aço (E s = 210 GPa) tem núcleo de alumínio (E a = 69 GPa)
Capítulo 3 Esforço Normal. 1ª. Questão
Capítulo 3 Esforço Normal 1ª. Questão A estaca da figura possui 60 mm de diâmetro e está submetida a uma carga de 20 kn. O solo tem a capacidade de resistir lateralmente, por meio de uma carga que varia
Torção em eixos de seção circular Análise de tensões e deformações na torção Exercícios. Momento torsor. 26 de setembro de 2016.
26 de setembro de 2016 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 Este capítulo é dividido em duas partes: 1 Torção em barras
- 1ª LISTA DE RESISTÊNCIA DOS MATERIAIS II Carga axial
- 1ª LISTA DE RESISTÊNCIA DOS MATERIAIS II Carga axial 1) O tubo de aço tem raio externo de 20mm e raio interno de 15mm. Se ele se ajustar exatamente entre as paredes fixas antes de ser carregado, determine
Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013
Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um
a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial
TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular
Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme
Seção 7 (Flexão) - Exemplos dados em aula
UFPR - MECÂNICA DOS SÓLIDOS I Seção 7 (Flexão) - Exemplos dados em aula Prof. Marcos S. Lenzi May 24, 2016 Exemplo 7.1 - Considere uma barra de aço com seção tranversal retangular conforme mostrado abaixo
1.38. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em
1.36. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em A. Determinar qual das hastes está sujeita à maior tensão normal média e calcular seu valor. Suponha que θ = 60º.
ENG285 TORÇÃO. =. á. = G. (material linear-elástico) Adriano Alberto
ENG285 1 Adriano Alberto Fonte: Hibbeler, R.C., Resistência dos Materiais 5ª edição; Beer 5ª Ed; Barroso, L.C., Cálculo Numérico (com aplicações) 2ª edição; slides do Prof. Alberto B. Vieira Jr.; http://pessoal.sercomtel.com.br/matematica/geometria/geom-areas/geomareas-circ.htm
FORMULAÇÃO TRELIÇA PLANA
CE ESTABILIDADE DAS CONSTRUÇÕES II FORMULAÇÃO TRELIÇA PLANA MODELO 1 Para a treliça hiperestática, indicada na Figura 1a, determinar por Análise Matricial de Estruturas: a) o deslocamento vertical do ponto
E = 70GPA σ e = 215MPa. A = 7500mm 2 I x = 61,3x10 6 mm 4 I y = 23,2x10 6 mm 4
Lista 1 1. A coluna de alumínio mostrada na figura é engastada em sua base e fixada em seu topo por meios de cabos de forma a impedir seu movimento ao longo do eixo x. Determinar a maior carga de compressão
Mecânica dos Sólidos I Lista de exercícios I Barras e treliças
Mecânica dos Sólidos I Lista de exercícios I arras e treliças (1)Uma biela consiste em três barras de aço de 6.25 mm de espessura e 31.25mm de largura, conforme esquematizado na figura. Durante a montagem,
Introdução cargas externas cargas internas deformações estabilidade
TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também
Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2
Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça
DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:
PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;
Aula 2 - Tensão Normal e de Cisalhamento.
Aula 2 - Tensão Normal e de Cisalhamento. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a figura 1.17a. Se AB tiver diâmetro de 10 mm
RESISTÊNCIA DE MATERIAIS II
RESISTÊNCIA DE MATERIAIS II - 014-015 Problema 1 PROBLEMAS DE TORÇÃO A viga em consola representada na figura tem secção em T e está submetida a uma carga distribuída e a uma carga concentrada, ambas aplicadas
Torção Não-Uniforme - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI
- UNIVERSIDADE FEDERA FUMINENSE ESCOA DE ENGENHARIA INDUSRIA MEAÚRGICA DE VOA REDONDA SAEE SOUZA DE OIVEIRA BUFFONI RESISÊNCIA DOS MAERIAIS orção Não-Uniforme A barra não precisa ser prismática e os torques
Terceira Lista de Exercícios
Universidade Católica de Petrópolis Disciplina: Resistência dos Materiais II Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Para os estados de tensões abaixo, Pede-se: a) Componentes de tensão
Torção. Deformação por torção de um eixo circular. Deformação por torção de um eixo circular. Capítulo 5:
Capítulo 5: Torção Adaptado pela prof. Dra. Danielle Bond Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal: preocupação no
LOM Introdução à Mecânica dos Sólidos
LOM 3081 - CAP. 2 ANÁLISE DE TENSÃO E DEFORMAÇÃO PARTE 2 ANÁLISE DE DEFORMAÇÃO COEFICIENTE DE POISSON Para uma barra delgada submetida a uma carga aial: 0 E A deformação produida na direção da força é
Carga axial. Princípio de Saint-Venant
Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente
1. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em termos de deformação.
Mecânica dos Sólidos I Lista de xercícios III Tensões, Deformações e Relações Constitutivas.. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em
Professor: José Junio Lopes
Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.
RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica
Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. [email protected] Conteúdo
(atualizado em 12/07/2014)
ENG285 4ª Unidade 1 (atualizado em 12/07/2014) Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para
Assunto: Principios da Resistencia dos Materiais Prof. Ederaldo Azevedo Aula 5 e-mail: [email protected] 6.2 Tensão: Tensão: é ao resultado da ação de cargas sobre uma área da seção analisada
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Calcular deformações (rotações) por torção Capacitar para o traçado de diagramas de momento torçor em barras Material
Tensão. Introdução. Introdução
Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e
ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES 2016 1 a QUESTÃO Valor: 1,00 A figura acima mostra uma viga de comprimento L e rigidez à flexão EJ
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2013-1 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.
ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para
1) Qual propriedade de um material reproduz a lei de Hooke? Escrever a expressão que traduz a lei. 2) Um cilindro de 90,0 cm de comprimento (figura) está submetido a uma força de tração de 120 kn. Uma
TORÇÃO. Prof. Dr. Carlos A. Nadal
TORÇÃO Prof. Dr. Carlos A. Nadal Tipo de esforços a) Tração b) Compressão c) Flexão d) Torção e) Compressão f) flambagem Esforços axiais existe uma torção quando uma seção transversal de uma peça está
P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL RESISTÊNCIA DOS MATERIAIS
U R S ONTIFÍI UNIVERSIDDE TÓLI DO RIO GRNDE DO SUL FULDDE DE ENGENHRI URSO DE ENGENHRI IVIL RESISTÊNI DOS MTERIIS (MEÂNI DOS SÓLIDOS) EXERÍIOS rof. lmir Schäffer ORTO LEGRE JULHO DE 2007 URS - FENG Resistência
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender a deformação por torção Compreender os esforços de torção Determinar distribuição de tensões de cisalhamento
Uniderp Engenharia Civil Resistência dos Materiais Exame Modelo
C=3,9 cm Uniderp Engenharia Civil Resistência dos Materiais Exame Modelo 1) treliça é feita de três elementos acoplados por pinos tendo as áreas das seções transversais: B = 9,7 cm, = 5, cm e C = 3,9 cm.
QUESTÕES DE PROVAS QUESTÕES APROFUNDADAS
UNIVERSIDDE FEDERL DO RIO GRNDE DO SUL ESOL DE ENGENHRI DEPRTMENTO DE ENGENHRI IVIL ENG 01201 MEÂNI ESTRUTURL I QUESTÕES DE PROVS QUESTÕES PROFUNDDS ISLHMENTO ONVENIONL TEORI TÉNI DO ISLHMENTO TORÇÃO SIMPLES
MECSOL34 Mecânica dos Sólidos I
MECSOL34 Mecânica dos Sólidos I Curso Superior em Tecnologia Mecatrônica Industrial 3ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Tópicos abordados Conceito de Tensão
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção 2da. Parte Ângulo de Torção no Regime Elástico Lembre-se que o ângulo de torção e a deformação de
LISTA 3 - ANÁLISE DE TENSÃO E DEFORMAÇÃO
LISTA 3 - ANÁLISE DE TENSÃO E DEFORMAÇÃO 3.1. Para os estados planos de tensão da figura abaixo, determinar: (a) componentes planas de tensão; (b) componentes de tensão num plano rotacionado a 35º no sentido
b Questões Tração / Compressão (Revisão) 10kN (1) Calcule as força no pino B dos mecanismos abaixo: mm 90mm H I
10kN Questões Tração / ompressão (Revisão) (1) alcule as força no pino dos mecanismos abaixo: 250 N a b 120 6 40 T 120 90mm 0 0 200 0 720mm c 250 N 0 0 G H I J 12kN (2) alcule os esforços solicitantes
Resistência dos Materiais
Capítulo 3: Tensões em Vasos de Pressão de Paredes Finas Coeficiente de Dilatação Térmica Professor Fernando Porto Resistência dos Materiais Tensões em Vasos de Pressão de Paredes Finas Vasos de pressão
Torção Deformação por torção de um eixo circular
Torção Deformação por torção de um eixo irular Torque é um momento que tende a torer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o omprimento e o raio do eixo permaneerão
Resistência dos Materiais
Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade
Aula 16 - Elementos esta0camente indeterminados carregados com torque.
Aula 16 - Elementos esta0camente indeterminados carregados com torque. Prof. Wanderson S. Paris, M.Eng. [email protected] Conceito Um eixo carregado com torque pode ser classificado como esta4camente
LOM Introdução à Mecânica dos Sólidos. Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina
LOM 3081 - Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina DEMAR USP Professores responsáveis: Viktor Pastoukhov, Carlos A.R.P. Baptista Ref. 1: F.P. BEER, E.R. JOHNSTON,
Aula 15 - Estudo de Torção e Ângulo de Torção.
Aula 15 - Estudo de Torção e Ângulo de Torção. Prof. Wanderson S. Paris, M.Eng. [email protected] Ângulo de Torção O projeto de um eixo depende de limitações na quan5dade de rotação ou torção ocorrida
Figura 1 Viga poligonal de aço estrutural
PÓRTICO, QUADROS E ESTRUTURAS MISTAS MODELO 01 Para a viga poligonal contínua, indicada na Figura 1, determinar por Análise Matricial de Estruturas as rotações e as reações verticais nos apoios e. Dados:
Escola de Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Elétrica
PROBLEMA 01 (Sussekind, p.264, prob.9.3) Determinar, pelo Método dos Nós, os esforços normais nas barras da treliça. vãos: 2m x 2m PROBLEMA 02 (Sussekind, p.264, prob.9.5) Determinar, pelo Método dos Nós,
Pressão Interna + Momento Fletor e Esforço Axial.
3 Método Anaĺıtico Este capítulo apresenta o desenvolvimento analítico para determinação das tensões atuantes no tubo da bancada de ensaios descrita anteriormente, causadas pelos carregamentos de pressão
MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano
MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer o comportamento dos materiais na tração e compressão Compreender o gráfico de tensão x deformação
Capítulo 1 Carga axial
Capítulo 1 Carga axial 1.1 - Revisão Definição de deformação e de tensão: L P A Da Lei de Hooke: P 1 P E E A E EA Barra homogênea BC, de comprimento L e seção uniforme de área A, submetida a uma força
Lista de Exercícios de Resistência dos Materiais
Lista de Exercícios de Resistência dos Materiais Carga Interna e Tensão: 1-) Uma força de 80 N é suportada pelo suporte como mostrado. Determinar a resultante das cargas internas que atuam na seção que
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios - Sapatas
Lista de Exercícios - Sapatas 1 Dimensione uma sapata rígida para um pilar de dimensões 30 x 40, sendo dados: N k = 1020 kn; M k = 80 kn.m (em torno do eixo de maior inércia); A s,pilar = 10φ12,5 σ adm
Resistência dos Materiais II: Torção de Perfis Abertos e Fechados
Resistência dos Materiais II: Torção de Perfis Abertos e Fechados Prof. Jorge A. R. Durán Enga. Mecânica UFF Volta Redonda [email protected] June 15 1 Objetivos Desenvolvimento das principais equações da
Várias formas da seção transversal
Várias formas da seção transversal Seções simétricas ou assimétricas em relação à LN Com o objetivo de obter maior eficiência (na avaliação) ou maior economia (no dimensionamento) devemos projetar com
Programa. Centroide Momentos de Inércia Teorema dos Eixos Paralelos. 2 Propriedades Geométricas de Áreas Planas
Propriedades Geométricas de Áreas Planas Programa 2 Propriedades Geométricas de Áreas Planas Centroide Momentos de Inércia Teorema dos Eixos Paralelos L Goliatt, M Farage, A Cury (MAC/UFJF) MAC-015 Resistência
Exercícios de flexão pura e composta - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Obter o máximo valor admissível de P para a estrutura abaixo. Admita que o cabo CD esteja preso em C no CG da seção da viga AB. Dados para a viga AB: 250 MPa, 100 MPa. Dados
Problema resolvido 4.2
Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)
Aula 10 - Transmissão de Potência e Torque.
Aula 10 - Transmissão de Potência e Torque. Prof. Wanderson S. Paris, M.Eng. [email protected] Transmissão de Potência Eixos e tubos com seção transversal circular são freqüentemente empregados
DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO
DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO 1) A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento de 10 mm para baixo na extremidade
Deformação. - comportamento de um material quando carregado
Deformação - comportamento de um material quando carregado : tipos de deformação Deformação - deformação normal variação do comprimento de uma fibra em relação a uma direção. : tipos de deformação Deformação
