Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão = (1)

Tamanho: px
Começar a partir da página:

Download "Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão = (1)"

Transcrição

1 PRÁTICA 13: CENTRO DE MASSA Centro de massa (ou centro de gravidade) de um objeto pode ser definido como o ponto em que ele pode ser equilibrado horizontalmente. Seu significado físico tem muita utilidade prática, pois podemos aproximar um sistema de várias partículas de massas diferentes como sendo apenas uma partícula com massa total localizada no seu centro de massa. O caso mais simples para se estudar o centro de massa é um sistema formado por duas partículas de massas 1 e 2 presas a um bastão de massa desprezível em lados opostos. Imaginemos que consigamos apoiá-lo perfeitamente como mostrado na Figura 1. Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão Para o caso da Figura 1, o bastão fica apoiado perfeitamente se: = (1) Este fato experimental, primeiramente observado por Arquimedes, é designado de lei da Alavanca. Considere agora que o bastão esteja sobre a coordenada das abscissas (eixo ), deslocada com relação à origem. Desta forma, a partícula de massa está localizada na posição, enquanto a na. O centro de massa está em (Figura 2). Figura 2. Bostão com as duas massas sobre o eixo.. Detalhes no texto.

2 Analisando a Figura 2, obtemos que = e =. Substituindo na relação (1) encontramos: = (2) Os produtos e são chamados de momentos das massas e em relação à origem. Analisando a relação (2), podemos concluir que o centro de massa é obtido pela soma dos momentos das massas e divisão pela massa total. Generalizando para um sistema de partículas com massas,..., localizadas nos pontos,,...,, sobre o eixo, o centro de massa está localizado em: = = (3) Na equação (3), = é a massa total do sistema. A soma individual dos momentos, dada pela relação =, é chamada de momento do sistema em relação à origem. Fazendo estas considerações, podemos reescrever a equação (3) na forma =, que diz que se a massa total fosse considerada como concentrada no centro de massa, então sei momento deveria ser o mesmo que o momento do sistema. Considere agora um sistema contendo partículas com massas,..., localizados nos pontos cartesianos (, ), (, ),..., (, ), como mostrado na Figura 3. Definimos o momento do sistema com relação ao eixo como: e o momento do sistema com relação ao eixo como: = (4) = (5) Fisicamente, e medem a tendência do sistema girar ao redor do eixo e eixo, respectivamente. Figura 3. Sistema formado por três partículas, sendo que cada uma está situada em um ponto diferente no sistema cartesiano. Como no caso unidimensional, as coordenadas (,) do centro de massa são dadas em termos dos momentos pelas fórmulas: = (6)

3 = (7) sendo a massa total do sistema. Como = e =, o centro de massa (, ) é o ponto onde uma partícula única de massa teria os mesmos momentos do sistema. No caso de uma placa plana (lâmina) com densidade superficial uniforme, o centróide (centro geométrico) coincide com o centro de massa. Uma forma de verificar isso é considerando o princípio da simetria, que diz que se uma placa plana for simétrica ao redor de uma rela, então o centroide da placa estará em. Utilizando esse princípio, concluímos que o centróide de um retângulo, ou seu centro de massa, é o seu ponto central (para chegar à essa conclusão, basta você projetar duas retas perpendiculares no centro de simetria do retângulo. A intersecção entre elas é o centroide). Podemos utilizar essa informação para desenvolver uma relação geral objetivando determinar o centro de massa de qualquer placa plana, quando possível definir uma função para o seu formato. Para calcular o centro de massa da placa plana, dividimos um intervalo da função [a,b] (que corresponde às dimensões no eixo da placa) em subintervalos, com larguras iguais a. Escolhemos um subintervalo e identificamos o centróide (,,, 2) e, após, calculamos a massa (= ==, ) e os momentos desse subintervalo para cada eixo, sendo a área da placa. A soma do momento de cada subintervalo dividido pela massa total, como já deduzimos nas expressões (6) e (7), é a posição do centro de massa da placa em relação aos eixos. Por meio desse raciocínio, chegamos à coordenada do centro de massa (, ): = = (8) (9) Se a placa pode ser definida por uma região entre as curvas = e =, sendo, então as coordenadas do centro de massa serão dadas por: = = (10) (11) Nesta prática, estaremos encontrando o centro de massa de uma placa circular de papel cartão e de uma placa de acrílico por meio de seu centro de gravidade, e comparar com os valores teóricos, que devem ser calculados utilizando as relações (8) e (9). MATERIAIS NECESSÁRIOS Suporte com tripé universal / garra universal / massa / linha / placa de acrílico / caneta hidrocolor / papel sulfite / papel vegetal / folha milimetrada / régua / paquímetro / micrômetro / compasso / balança / papel milimetrado.

4 PROCEDIMENTO a) Faça um desenho esquemático da placa de acrílico no Esquema 1, anotando as dimensões encontradas. Esquema 1 b) Meça a massa da placa de acrílico. c) Por meio dos dados do Esquema 1, determine a área () da placa. d) Meça, em cinco diferentes pontos da placa, a sua espessura utilizando o micrômetro. Anote os valores na Tabela 1 (Nota Nota: Não se esqueça de anotar o desvio do instrumento) Tabela 1. Dados de massa, área e espessura da placa de acrílico Massa (kg): Área (m 2 ): Medidas da espessura da placa Leitura Espessura (mm) Resultados da Espessura Média Desvio padrão Desvio padrão da média Desvio total e) A placa possui uma espessura homogênea? (Dica. Para podermos calcular teoricamente o centro de massa de uma placa, ele deve ter espessura e densidades homogêneas). f) Faça a montagem experimental conforme Figura 4a para determinação experimental do centro de massa. Os detalhes da montagem são comentados a seguir. g) Amarre a massa à haste do suporte universal. Ela terá a função de servir como fio de prumo (instrumento utilizado para a determinação da direção vertical).

5 Figura 4. (a) Montagem geral do experimento. (b) Replicando as retas no papel vegetal. Posicione o papel vegetal com o contorno da placa exatamente sobre a placa e replique as retas. (c) Exemplo de medida ( ( ) entre os pontos de interseção das retas. (d) Área ampliada do item (c). Por meio da média dos valores de, é possível o círculo com raio que contenha a maior número possível de intersecções.. O centro deste círculo é o centro de massa da placa obtido experimentalmente. h) Passe uma linha por um dos furos das extremidades da placa de acrílico. A seguir pendure-a no suporte universal, onde está o fio de prumo. i) Com o auxílio de uma régua e de uma caneta tipo hidrocor risque na placa de acrílico uma reta sobre a linha vertical definida pelo fio de prumo. Repita os procedimentos g e h para os outros diferentes furos. (Atenção: cuidado para não apagar ou borrar as retas desenhadas com a caneta hidrocor, pois elas serão usadas como modelo para réplica na folha de papel). Nota: As intersecções entre as várias retas verticais demarcam a região onde deve estar localizado o centro de gravidade da placa de acrílico. j) Desenhe o contorno da placa, em mesma escala, no papel vegetal. k) Marque as retas obtidas na placa na folha de papel vegetal. Para isso, posicione o papel vegetal com o contorno do formato da placa (item j) sobre a placa e trace no papel, com um lápis, as retas obtidas (Figura 4b). l) Com o paquímetro, anote na Tabela 2 os valores das distâncias d entre, pelo menos, três diferentes pontos de intersecção das retas verticais na folha de papel vegetal. Estas distâncias fornecem o diâmetro experimental da região da placa que contém o centro de gravidade. Veja as Figuras 4c e 4d. Tabela 2. Valores das distâncias Leitura Diâmetro m) Calcule o valor médio e o desvio padrão do diâmetro da região das intersecções (região do centro de gravidade). Determine o raio da região (r=d 2), escrevendo-o a seguir:

6 = ± = (..±..) mm = ± = (..±..) mm n) Com o auxílio de um compasso, trace uma circunferência de raio na folha de papel, com o centro (ponta seca do compasso) escolhido de modo que a circunferência contenha a maioria dos pontos de intersecção das retas, conforme a Figura 4c. o) Trace os eixos e na folha de papel, de modo que fiquem alinhados com os lados retos da chapa de acrílico, conforme mostrado na figura 4b. p) A posição experimental do centro de gravidade é dada pelo centro da circunferência em relação ao referencial e (, ). Escreva as coordenadas e o vetor posição do centro de gravidade (obtidos experimentalmente): Resultados obtidos pelos dados experimentais. = e = Em notação vetorial (vetor posição): = + = + Em valor modular: = + = q) Calcule o centro de massa da placa de acrílico. Para isso, divida a figura da placa em duas partes e encontre o centro de massa para cada parte utilizando as relações (8) e (9). Como o centro de massa de cada parte contém a massa total da parte, podemos encontrar o centro de massa da placa por meio das relações (6) e (7). Resultados obtidos pelo cálculo teórico: = e = Em notação vetorial (vetor posição): = + = + Em valor modular: = + =

7 r) Compare com o encontrado experimentalmente por meio do cálculo do erro: s) Discuta os resultados. ó %=100 ó Perguntas 1. Calcule os momentos e os centros de massa do sistema de objetos que têm massas 3 kg, 4kg e 8 kg nos pontos (-1,1), (2,-1) e (3,2). Utilizando um papel milimetrado, esboce as coordenadas de cada ponto e a do centro de massa. 2. Demonstre que o centro de massa de um bastão retangular de espessura e comprimento é a coordenada dada pela metade de cada dimensão. 3. Calcule o centro de massa de uma placa semicircular de raio. 4. Encontre o centro de massa da região limitada pela reta = e a parábola = (Figura 5) f(x)=x f(x)=x 2 y x Figura 5. Exercício Três partículas de massas =1,2 kg, =2,5 kg e =3,4 kg formam um triângulo equilátero cujos lados medem = 140. Encontre o centro de massa e plote as coordenadas no plano cartesiano utilizando papel milimetrado. 6. Prove que o centro de massa de uma chapa triangular de lados iguais () é o ponto localizado na posição central. Referências Halliday, Renick, Walker. Fundamentos de Física, v. 1. Editora LTC, 2002, 6 edição André Koch Torres Assis, Arquimedes, o Centro de Gravidade e a Lei da Alavanca. Editora Apeiron Montreal, James Stewart. Cálculo, v.1. Editora Pioneira, 2005, 4 edição.

Aplicações à Física e à Engenharia

Aplicações à Física e à Engenharia UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê

Leia mais

EXPERIMENTO I MEDIDAS E ERROS

EXPERIMENTO I MEDIDAS E ERROS EXPERIMENTO I MEDIDAS E ERROS Introdução Na leitura de uma medida física deve-se registrar apenas os algarismos significativos, ou seja, todos aqueles que a escala do instrumento permite ler mais um único

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II Pêndulos

Departamento de Física - ICE/UFJF Laboratório de Física II Pêndulos Pêndulos Pêndulo 1 Pêndulo Simples e Pêndulo Físico 1 Objetivos Gerais: Determinar experimentalmente o período de oscilação de um pêndulo físico e de um pêndulo simples; Determinar experimentalmente o

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori.

Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori. Bibliografia Básica: BEER, F. P.; JOHNSTON JUNIOR, E. R. Mecânica vetorial para engenheiros: cinemática e dinâmica 5ª ed. 2v. São Paulo: Makron, 1994. HIBBELER, R. C. Dinâmica: Mecânica para Engenharia.

Leia mais

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016 INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a

Leia mais

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 12

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 12 Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 12 Princípio de Conservação do Momento Linear e Colisões Disciplina: Física Experimental GRUPO DE TRABALHO:

Leia mais

Quantos cones cabem em um cilindro?

Quantos cones cabem em um cilindro? Reforço escolar M ate mática Quantos cones cabem em um cilindro? Dinâmica 4 2º Série 3º Bimestre Aluno Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Prismas e Cilindros. PRIMEIRA ETAPA

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

INTERFERÊNCIA E DIFRAÇÃO DA LUZ

INTERFERÊNCIA E DIFRAÇÃO DA LUZ INTERFERÊNCIA E DIFRAÇÃO DA LUZ INTRODUÇÃO A luz é uma onda eletromagnética; portanto é constituída por campos elétrico e magnético que oscilam, periodicamente, no tempo e no espaço, perpendiculares entre

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Lista de Exercícios 1 Forças e Campos Elétricos

Lista de Exercícios 1 Forças e Campos Elétricos Lista de Exercícios 1 Forças e Campos Elétricos Exercícios Sugeridos (21/03/2007) A numeração corresponde ao Livros Textos A e B. A19.1 (a) Calcule o número de elétrons em um pequeno alfinete de prata

Leia mais

Geometria Descritiva. Geometria Descritiva. Geometria Descritiva 14/08/2012. Definição:

Geometria Descritiva. Geometria Descritiva. Geometria Descritiva 14/08/2012. Definição: Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br Origem: Criada para fins militares (projeto de fortes militares) para Napoleão Bonaparte pelo matemático francês Gaspar Monge.

Leia mais

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10).

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10). Lista 3: Cônicas - Engenharia Mecânica Professora Elisandra Bär de Figueiredo 1. Determine a equação do conjunto de pontos P (x, y) que são equidistantes da reta x = e do ponto (0, ). A seguir construa

Leia mais

Mat. Monitor: Roberta Teixeira

Mat. Monitor: Roberta Teixeira 1 Professor: Alex Amaral Monitor: Roberta Teixeira 2 Geometria analítica plana: circunferência e elipse 26 out RESUMO 1) Circunferência 1.1) Definição: Circunferência é o nome dado ao conjunto de pontos

Leia mais

Introdução às Ciências Físicas Módulo 1 Aula 1

Introdução às Ciências Físicas Módulo 1 Aula 1 Experimento 2 A emissão da luz por diferentes fontes Objetivo: Construir um modelo para a emissão de luz por uma fonte não puntiforme. Material utilizado! caixa escura! máscaras! fonte de luz 1 com lâmpadas

Leia mais

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no

Leia mais

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita). QUÁDRICAS/CÔNICAS - Cálculo II MAT 147 FEAUSP Segundo semestre de 2018 Professor Oswaldo Rio Branco de Oliveira [ Veja também http://www.ime.usp.br/~oliveira/ele-conicas.pdf] No plano euclidiano consideremos

Leia mais

Apresentação: Movimento unidimensional

Apresentação: Movimento unidimensional Apresentação: Movimento unidimensional INTRODUÇÃO Um objeto em movimento uniformemente acelerado, ou seja, com aceleração constante, é um importante caso da cinemática. O exemplo mais comum desse tipo

Leia mais

Vetores no plano Cartesiano

Vetores no plano Cartesiano Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,

Leia mais

Entender o funcionamento de um pêndulo, correlacioná-lo com o pêndulo simples, determinar a aceleração da gravidade e o momento de inércia do corpo.

Entender o funcionamento de um pêndulo, correlacioná-lo com o pêndulo simples, determinar a aceleração da gravidade e o momento de inércia do corpo. UNIVERSIDADE DE SÃO PAULO Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Física Fone: (016) 3.3718/3693 Fax: (016) 3 949 USP EXPERIÊNCIA PÊNDULO Objetivos Entender o funcionamento

Leia mais

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1

Leia mais

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis 9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado

Leia mais

Geometria Analítica I

Geometria Analítica I Geom. Analítica I Respostas do Módulo I - Aula 14 1 Geometria Analítica I 10/03/011 Respostas dos Exercícios do Módulo I - Aula 14 Aula 14 1. a. A equação do círculo de centro h, k) e raio r é x h) + y

Leia mais

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro

Leia mais

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1 PLANTÕES DE JULHO MATEMÁTICA AULA 1 Nome: Nº: Série: 3º ANO Turma: Prof: Luis Felipe Bortoletto Data: JULHO 2018 Lista 1 1) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar

Leia mais

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 = QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)

Leia mais

MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido. Professor Renan

MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido. Professor Renan MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido Professor Renan 1 Centro de massa Um corpo extenso pode ser considerado um sistema de partículas, cada uma com sua massa. A resultante total das massas

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

INSTRUMENTAL DE DESENHO TÉCNICO

INSTRUMENTAL DE DESENHO TÉCNICO INSTRUMENTAL DE DESENHO TÉCNICO ADQUIRIR Lápis ou lapiseiras; Borracha; Jogo de Esquadros; Régua graduada Compasso; Gabaritos; Escalímetro; Prancheta; Régua paralela. Fita adesiva; LAPISEIRA Não necessita

Leia mais

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii)

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii) MINISTÉRIO DA EDUCAÇÃO DESEMPENHO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a Dayse Batistus, Dr a.

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Exemplo: As retas r: 2x 3y = 1 e s: 10x 15y = 18 são paralelas?

Exemplo: As retas r: 2x 3y = 1 e s: 10x 15y = 18 são paralelas? 4.13. Condição de Paralelismo. Analisando as retas com equação na forma geral, facilmente sabemos, pela resolução do sistema de equações, qual é a posição relativa entre as retas. Agora, se as equações

Leia mais

VETORES + O - vetor V 2 vetor posição do ponto P 2

VETORES + O - vetor V 2 vetor posição do ponto P 2 Objetivo VETORES Estudar propriedades de vetores e a obtenção de resultantes. Introdução Para localizar um ponto P em uma reta, três elementos são necessários: uma referência R, escolhida arbitrariamente,

Leia mais

PRÁTICA 6: COLISÕES EM UMA DIMENSÃO

PRÁTICA 6: COLISÕES EM UMA DIMENSÃO PRÁTICA 6: COLISÕES EM UMA DIMENSÃO Nesta prática, estudaremos o fenômeno da colisão em uma dimensão, fazendo a aproximação de que o sistema é fechado (não há variação de massa) e isolado (não há forças

Leia mais

Laboratório de Física

Laboratório de Física Laboratório de Física Experimento 00: Densidade de Massa Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/8 00 - Densidade de Massa Professor: Alunos:

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO

Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO 1 Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO 1.1. O que é desenho geométrico Desenho Geométrico é o conjunto de técnicas utilizadas

Leia mais

Campos Magnéticos Produzidos por Correntes 29-1 O CAMPO MAGNÉTICO PRODUZIDO POR UMA CORRENTE CAPÍTULO 29. Objetivos do Aprendizado.

Campos Magnéticos Produzidos por Correntes 29-1 O CAMPO MAGNÉTICO PRODUZIDO POR UMA CORRENTE CAPÍTULO 29. Objetivos do Aprendizado. CAPÍTULO 29 Campos Magnéticos Produzidos por Correntes 29-1 O CAMPO MAGNÉTICO PRODUZIDO POR UMA CORRENTE Objetivos do Aprendizado Depois de ler este módulo, você será capaz de... 29.01 Desenhar um elemento

Leia mais

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

GASES: DETEMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR À TEMPERATURA CONSTANTE (LEI DE BOYLE)

GASES: DETEMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR À TEMPERATURA CONSTANTE (LEI DE BOYLE) GASES: DETEMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR À TEMPERATURA CONSTANTE (LEI DE BOYLE) 1. Introdução 1.1) Lei de Boyle: à temperatura constante, o volume ocupado por uma determinada

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática 10º ANO Novembro 004 Ficha de Trabalho nº 4 - Conjuntos de pontos e condições Distância entre dois pontos Mediatriz de um segmento de recta Circunferência

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de. figuras planas

APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de. figuras planas 245 APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de figuras planas 1. Demonstração da localização do centro de gravidade de um paralelogramo por Arquimedes (287-212 a.c) Arquimedes

Leia mais

Geometria Analítica Circunferência

Geometria Analítica Circunferência Formação Continuada em Matemática Fundação Cecierj/Consórcio CEDERJ Matemática 3º ano - 4º Bimestre 13 Plano de Trabalho Geometria Analítica Circunferência Tarefa - Grupo Aluna: Thelma Maria Teixeira Tutora:

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura

Leia mais

3 a fase prova experimental para alunos da 2 a série

3 a fase prova experimental para alunos da 2 a série Olimpíada Brasileira de Física 2006 3 a fase - 2ªsérie - Experimental 01 3 a fase prova experimental para alunos da 2 a série Experimento Condições de Equilíbrio LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

Leia mais

Ricardo Bianconi. Fevereiro de 2015

Ricardo Bianconi. Fevereiro de 2015 Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das

Leia mais

3 ano E.M. Professores Cleber Assis e Tiago Miranda

3 ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole b) (y 1)2 (x + )2 1 Exercícios Introdutórios Exercício 1. de equação a) (1, 2). O ponto que representa o centro da

Leia mais

CÔNICAS - MAT CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco ELIPSE

CÔNICAS - MAT CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco ELIPSE CÔNICAS - MAT 2127 - CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco No plano euclidiano consideremos F 1 e F 2 dois pontos (focos) distintos. ELIPSE (1) Se

Leia mais

Cap. 24. Potencial Elétrico. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Cap. 24. Potencial Elétrico. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Cap. 24 Potencial Elétrico Copyright 24-1 Potencial Elétrico O potencial elétrico V em um ponto P devido ao campo elétrico produzido por um objeto carregado é dado por Carga de prova q 0 no ponto P onde

Leia mais

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0 Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica

Leia mais

Objetivo: Determinar experimentalmente a resistividade elétrica do Constantan.

Objetivo: Determinar experimentalmente a resistividade elétrica do Constantan. Determinação da resistividade elétrica do Constantan Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica

LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica Experimento N 0 03: MOVIMENTO RETILINEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORME VARIADO Objetivos Gerais Ao termino desta atividade o aluno deverá

Leia mais

Introdução ao Cálculo Vetorial

Introdução ao Cálculo Vetorial Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

CENTRO DE MASSA E MOMENTO LINEAR

CENTRO DE MASSA E MOMENTO LINEAR CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I CENTRO DE MASSA E MOMENTO LINEAR Prof. Bruno Farias Introdução Neste módulo vamos discutir

Leia mais

Universidade Federal do Recôncavo da Bahia GCET095.P - Física Geral e Experimental I Roteiro para Experimento: Lei de Hooke

Universidade Federal do Recôncavo da Bahia GCET095.P - Física Geral e Experimental I Roteiro para Experimento: Lei de Hooke Universidade Federal do Recôncavo da Bahia GCET095.P - Física Geral e Experimental I 2016.1 Roteiro para Experimento: Lei de Hooke Professora: Sânzia Alves 17 de março de 2017 1 Preparação Responda as

Leia mais

SEGUNDA LEI DE NEWTON

SEGUNDA LEI DE NEWTON Experimento 2 SEGUNDA LEI DE NEWTON Objetivo Introdução Verificar a Segunda Lei de Newton a partir da análise do movimento de translação de um corpo sobre um plano horizontal variando-se a força resultante,

Leia mais

E(r) = 2. Uma carga q está distribuída uniformemente por todo um volume esférico de raio R.

E(r) = 2. Uma carga q está distribuída uniformemente por todo um volume esférico de raio R. 1. O campo elétrico no interior de uma esfera não-condutora de raio R, com carga distribuída uniformemente em seu volume, possui direção radial e intensidade dada por E(r) = qr 4πɛ 0 R 3. Nesta equação,

Leia mais

MEDIDAS FÍSICAS. Objetivos. Teoria. Paquímetro

MEDIDAS FÍSICAS. Objetivos. Teoria. Paquímetro MEDIDAS FÍSICAS Objetivos Realizar medidas diretas (diâmetro, comprimento, largura, espessura e massa) expressandoas com a quantidade correta de algarismos signicativos. Realizar medidas indiretas (área,

Leia mais

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5). GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Integral definida. Prof Luis Carlos Fabricação 2º sem

Integral definida. Prof Luis Carlos Fabricação 2º sem Integral definida Prof Luis Carlos Fabricação 2º sem Cálculo de Áreas Para calcular esta área, aproximamos a região por retângulos e fazemos o número de retângulos se tornar muito grande. A área exata

Leia mais

Capítulo 3 - Geometria Analítica

Capítulo 3 - Geometria Analítica 1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec x) y = cosx), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x a reta tangente

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente

Leia mais

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em. Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Eatas Cursos de Engenharia Laboratório de Física Centro de assa e Centro de Gravidade utor: Prof Luiz de Oliveira Xavier dm ( dm X( BNCD:

Leia mais

E03 - CAMPO ELÉTRICO E MAPEAMENTO DE EQUIPOTENCIAIS. Figura 1: Materiais necessários para a realização desta experiência.

E03 - CAMPO ELÉTRICO E MAPEAMENTO DE EQUIPOTENCIAIS. Figura 1: Materiais necessários para a realização desta experiência. E03 - CAMPO ELÉTRICO E MAPEAMENTO DE EQUIPOTENCIAIS 1- OBJETIVOS Traçar as equipotenciais de um campo elétrico, em uma cuba eletrolítica. Determinar o campo elétrico, em módulo, direção e sentido, devido

Leia mais

Retas Tangentes à Circunferência

Retas Tangentes à Circunferência Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18

Leia mais

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo.

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo. 74 9.4 Experiência 4: Deformações Elásticas e Pêndulo Simples 9.4.1 Objetivos Interpretar o gráfico força x elongação; Enunciar e verificar a validade da lei de Hooke; Verificar as equações para a constante

Leia mais

Tipos de Linhas, Legenda e Construção Geométricas Simples. Prof. Marciano dos Santos Dionizio

Tipos de Linhas, Legenda e Construção Geométricas Simples. Prof. Marciano dos Santos Dionizio Tipos de Linhas, Legenda e Construção Geométricas Simples. Prof. Marciano dos Santos Dionizio Linhas Norma ABNT NBR 8403 de 1994 As linhas são as formas de mostrar como objeto se caracteriza. Para cada

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho

Leia mais

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano:

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano: Círculo Trigonométrico A circunferência trigonométrica é de extrema importância para o nosso estudo da Trigonometria, pois é baseado nela que todos os teoremas serão deduzidos. Trata-se de uma circunferência

Leia mais

Atividade Experimental - Aula 13 Óptica: Espelhos Planos e Esféricos

Atividade Experimental - Aula 13 Óptica: Espelhos Planos e Esféricos Nome: RA: NOTA: Engenharia Professor Dr. Alysson Cristiano Beneti FAESO Ourinhos - SP º Semestre / 20 Data: / /20 Disciplina: Física Teórica Experimental II Avaliação: Relatório Aula 13 Atividade Experimental

Leia mais

Eduardo Colli. C cabo de metal D A

Eduardo Colli. C cabo de metal D A aranha Eduardo olli cabo de metal gabarito sulco horizontal E chapa transparente aranha ranha é o nome que se dá a este instrumento mecânico de desenho, inventado para reproduzir letras em diferentes alturas

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

Cálculo IV EP3. Aula 5 Aplicações da Integrais Duplas. Estudar algumas aplicações físicas como massa, centro de massa e momento de inércia.

Cálculo IV EP3. Aula 5 Aplicações da Integrais Duplas. Estudar algumas aplicações físicas como massa, centro de massa e momento de inércia. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP3 Aula Aplicações da Integrais uplas

Leia mais