Apresentação: Movimento unidimensional
|
|
|
- Madalena Aranha
- 7 Há anos
- Visualizações:
Transcrição
1 Apresentação: Movimento unidimensional INTRODUÇÃO Um objeto em movimento uniformemente acelerado, ou seja, com aceleração constante, é um importante caso da cinemática. O exemplo mais comum desse tipo de movimento é dado por um objeto qualquer caindo próximo à superfície de um planeta. Um objeto que cai apenas sob a ação da força gravitacional é dito estar em queda livre e possui uma aceleração que depende de sua massa e da massa do planeta. Próximo à superfície da Terra, a aceleração de um objeto em queda livre é aproximadamente constante com um valor médio g = 9,81 m/s 2 = 981 cm/s 2. É claro que a resistência do ar afeta a aceleração do objeto em queda. Porém, para objetos relativamente densos, caindo de pequenas alturas em relação à superfície da Terra, o efeito da resistência do ar é desprezível. Usualmente é uma boa aproximação considerar que um objeto em queda livre possua uma aceleração constante igual a g. Nesta atividade, a aceleração devido à força gravitacional é usada para investigar um objeto em movimento com aceleração constante. Este movimento será caracterizado pelo modo como a velocidade e a posição variam com o tempo. Por outro lado, com as medidas da posição e do tempo, o valor de g será determinado. Os dados coletados na atividade e sua análise produzirão um melhor entendimento das equações da cinemática na descrição do movimento unidimensional. OBJETIVOS DA ATIVIDADE Após realizar o experimento e analisar os dados, você deverá ser capaz de: 1. Distinguir velocidade média da velocidade instantânea. 2. Expressar como a velocidade de um objeto em movimento uniformemente variado muda com o tempo. 3. Expressar como a distância percorrida por um objeto em movimento uniformemente acelerado muda com o tempo. 4. Explicar como a aceleração uniforme de um objeto pode ser determinada a partir das medidas de distância e tempo. Página 1
2 Experimento: Movimento unidimensional EQUIPAMENTOS Trilho de ar com gerador de fluxo de ar Um carrinho deslizante Adaptadores do carrinho: suportes de colisões, etc Calço para elevar o trilho APRESENTAÇÃO TEÓRICA Quando um objeto está em movimento com aceleração constante ao longo de uma direção, sua posição x em um dado instante t é dada por x(t) = x 0 + v 0 t + at2 2, (1) em que v 0 é a velocidade inicial e a é a aceleração do objeto. Para uma posição inicial arbitrária, escolhida convenientemente como x 0 = 0, e com o objeto inicialmente em repouso, v 0 = 0, a equação acima é reduzida a x(t) = 1 2 at2. (2) Para um objeto em queda livre, a altura y (de cima para baixo é o sentido em que y aumenta na direção vertical) é dada por y(t) = 1 2 gt2. Consequentemente, medindo o tempo t que demora para um objeto cair de uma altura y, a aceleração g devido à interação gravitacional pode ser facilmente determinada. Perceba que a relação entre a posição e o tempo não é linear para qualquer caso em que a aceleração é constante: a posição é proporcional ao quadrado do tempo. O gráfico de x em função de t será uma parábola. Se o objeto possui aceleração constante, então sua velocidade varia a uma taxa constante. Sua velocidade em qualquer tempo é dado por v(t) = v 0 + at, (3) ou seja, v é uma função linear do tempo. O gráfico de v em função de t será uma linha reta. O movimento de um objeto com aceleração constante deve ser analisado para entender melhor o que significa dizer que a posição varia com o quadrado do tempo. De forma equivalente, é necessário entender o significado de uma velocidade diretamente proporcional ao tempo. Estes resultados aplicam-se a qualquer tipo de movimento uniformemente acelerado. Trilho de ar O trilho de ar linear usado nesta atividade é similar ao modelo apresentado na Figura 1. O gerador de fluxo de ar (não mostrado na figura) direciona o ar ao interior do trilho oco que emerge através de uma série de pequenos furos na superfície do trilho. Isso produz um colchão de ar no qual o carrinho é deslocado com pouco atrito. No caso do carrinho deslocando-se livremente no trilho nivelado horizontalmente, o movimento terá aceleração nula pois sua velocidade permanece constante. Ao deslocar x no intervalo de tempo t, sua velocidade é dada por v = x t. (4) Régua (ou trena) Paquímetro Dois cronômetros com detecção fotoelétrica Folha de papel milimetrado para gráficos Tomando intervalos de tempo cada vez menores ( t 0), esta equação fornece, de maneira cada vez mais exata, a velocidade do objeto em um dado instante. Essa é a definição de velocidade instantânea. Para que o carrinho se mova sob a influência da gravidade, uma extremidade do trilho deve ser elevada com um calço. A aceleração do carrinho ao longo do trilho é devida a uma componente da força gravitacional, F = ma = mg sin θ (veja a Figura 2). A aceleração do carrilho ao longo do trilho é a = g sin θ, (5) sendo sin θ = h/l obtido pela razão trigonométrica entre os lados do triângulo. Consequentemente, a = gh L. (6) O módulo da velocidade instantânea v do carrinho, com aceleração constante, em um instante t é dada pela Equação 3. Assim, como no caso da queda livre, o gráfico de v versus t é uma linha reta com coeficiente de inclinação a e coeficiente linear v 0. Figura 1: Trilho de ar utilizado na atividade. Na parte inferior, o diagrama representa o carrinho deslizando sobre o trilho próximo ao cronômetro com sensor fotoelétrico. Página 2
3 PROCEDIMENTOS Tome cuidado ao manipular o trilho de ar. Com o gerador de fluxo de ar ligado, coloque o carrinho sobre o trilho e gire os parafusos da base do trilho para que o mesmo fique nivelado horizontalmente. O nivelamento ideal será alcançado quando o carrinho permanecer em repouso sobre o trilho. A. Carrinho no trilho de ar horizontal 1. Com o gerador de fluxo de ar ligado, coloque o carrinho em movimento aplicando uma pequena força (paralela ao trilho) no carrinho. Não tente mover o carrinho sem fluxo de ar no trilho. 2. Posicione os dois cronômetros com detecção fotoelétrica ao longo da direção do trilho e determine os tempos necessários para que o carrinho percorra diferentes distâncias (por exemplo: 0,20 m, 0,40 m, 0,50 m, etc). Registre os tempos e as distâncias na Tabela I da Folha de respostas. 3. Determine a velocidade do carrinho usando a Eq. 4. Em seguida calcule o erro propagado à velocidade considerando as incertezas nas medidas de distância e tempo. Registre os resultados na Tabela I. Nota: Sendo z = p/q, em que p e q são valores medidos com incertezas δp e δq respectivamente, o erro propagado ao valor de z é dado por δz = z (δp/p) 2 + (δq/q) 2. B. Carrinho no trilho de ar inclinado θ L S mg mg cos θ mg sin θ Figura 2: Diagrama representando o trilho de ar inclinado. Quando uma extremidade do trilho é elevada, a aceleração do carrinho é devido a componente da força peso paralela ao trilho, mg sin θ. 4. Com o devido cuidado, eleve uma extremidade do trilho usando o calço e posicione um cronômetro com detecção fotoelétrica próximo à extremidade mais baixa do trilho. O cronômetro deve ser operado no modo GATE. Meça h e L e insira os resultados na Tabela II. Perceba que h é a altura do calço e L é a distância entre os dois pontos de apoio do trilho (veja a Figura 2). 5. Meça o comprimento da lâmina S e registre a medida na Folha de respostas 6. Posicione o carrinho próximo à extremidade elevada do trilho. Para minimizar o erro, use uma caneta ou um lápis na frente do carrinho e, em seguida, solte-o h de forma suave. Soltando o carrinho de diferentes posições, meça e registre os intervalos de tempo que a lâmina cruza o sensor do cronômetro ( t). Anote os dados na Tabela II. 7. Altere a elevação do trilho de ar e repita o procedimento anterior para uma nova altura (h 2 ). Insira os dados na Tabela III. 8. Usando a Equação 4, com x = S, determine a velocidade instantânea do carrinho e registre os resultados na Folha de respostas. 9. Usando uma folha papel milimetrado, faça um gráfico de v 2 em função do deslocamento x = x x 0 e determine a inclinação da reta para cada caso. Desenhe os dois gráficos no mesmo plano cartesiano. 10. Usando a Equação 6 e a aceleração a obtida pelo gráfico, determine o valor de g para cada caso. Nota: Para um conjunto de dados com tendência linear, a equação de ajuste aos pontos é dada por y(x) = Ax+B, em que A é o coeficiente de inclinação da reta e B é o coeficiente linear. Após desenhar a reta que melhor se ajusta aos pontos (veja a figura abaixo), utilize dois pontos na reta para encontrar os coeficientes. Por exemplo, para os pontos (x 1, y 1 ) e (x 2, y 2 ) pertencentes à reta, a inclinação é dada por A = y 2 y 1 x 2 x 1 (7) e assim o coeficiente linear é determinado como B = y 1 Ax 1. y y 2 y 1 x 1 C. Carrinho no trilho de ar inclinado com acréscimo de massa 11. Adicione massa ao carrinho e repita os procedimentos 6 e 8 usando o calço de altura h. Anote os dados na Tabela IV. 12. Determine a inclinação da reta do gráfico de v 2 em função de x e repita o procedimento 10 para encontrar o valor de g. x 2 x Página 3
4 Folha de respostas: Movimento unidimensional Nomes dos integrantes do grupo: Data: A. Carrinho no trilho de ar horizontal Utilize o espaço abaixo para apresentar todos os cálculos realizados. Atenção com as unidades. Objetivo: Determinar a velocidade do carrinho (v) com o respectivo erro (δv). x 0 x x = x x 0 t v = x/ t δv Cálculos: Tabela I: Dados coletados na Parte A da atividade. Página 4
5 B. Carrinho no trilho de ar inclinado Objetivo: Obter o valor de g através da gráfico de v 2 em função do deslocamento x. Valor de h: Valor de L: Valor de S: Valor de x: x 0 t x = x x 0 v = S/ t v 2 Tabela II: Dados coletados na Parte B do experimento usando o trilho de ar inclinado com elevação h. Cálculos: Objetivo: Obter o valor de g através da gráfico de v 2 em função do deslocamento x. Valor de h 2 : Valor de x: x 0 t x = x x 0 v = S/ t v 2 Tabela III: Dados coletados na Parte B do experimento usando o trilho de ar inclinado com elevação h 2. Cálculos: Página 5
6 C. Carrinho no trilho de ar inclinado com acréscimo de massa Objetivo: Obter o valor de g através da gráfico de v 2 em função do deslocamento x. Valor do acréscimo de massa: Valor de x: x 0 t x = x x 0 v = S/ t v 2 Tabela IV: Dados coletados na Parte C do experimento usando o trilho de ar inclinado com elevação h e acréscimo de massa no carrinho Cálculos: Página 6
7 QUESTIONÁRIO 1. Usando as equações 1 e 3, encontre a relação entre v e x, para x = x x 0 e v 0 = 0. [utilize apenas símbolos (letras), não use números] 2. Qual é o significado físico da inclinação da reta no gráfico de v 2 versus x para o caso do trilho de ar inclinado? 3. Qual é o valor máximo possível da inclinação da reta no gráfico de v 2 versus x para o carrinho liberado do repouso no trilho de ar inclinado? 4. Com base nos seus resultados experimentais, escreva uma conclusão sobre a dependência da aceleração do carrinho com a altura do trilho de ar e com a massa do carrinho. Página 7
8 Página 8
Apresentação: Força de atrito
DEIS - ICEB - UOP Apresentação: orça de atrito ITRODUÇÃO Quando duas superfícies deslizam ou tendem a deslizar uma sobre a outra, haverá uma força de atrito. O atrito entre superfícies não lubrificadas
Apresentação: Trabalho e energia
Apresentação: Trabalho e energia INTRODUÇÃO Como enfatizado na comum definição de energia como a habilidade de realizar trabalho, os conceitos de trabalho e energia estão intimamente relacionados. Dizemos
MOVIMENTO EM UMA DIMENSÃO
MOVIMENTO EM UMA DIMENSÃO Material Utilizado: - um conjunto para experimentos com trilho de ar composto de: - um trilho de ar (PASCO SF-9214) - um gerador de fluxo de ar (PASCO SF-9216) - um carrinho deslizante
Experimento A1: Movimento Retilíneo Uniforme (MRU) E Movimento Retilíneo Uniformemente Variado (MRUV)
Experimento A1: Movimento Retilíneo Uniforme (MRU) E Movimento Retilíneo Uniformemente Variado (MRUV) 1 - INTRODUÇÃO A Mecânica é a área da Física que estuda o movimento dos objetos. Por razões de organização
Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.
84 10.3 Experimento 3: Segunda Lei de Newton 10.3.1 Objetivo Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.
BC Fenômenos Mecânicos. Experimento 1 - Roteiro
BC 0208 - Fenômenos Mecânicos Experimento 1 - Roteiro Movimento Retilíneo Uniforme (MRU) Professor: Turma: Data: / /2015 Introdução e Objetivos Na disciplina de Fenômenos Mecânicos estamos interessados
LANÇAMENTO DE PROJETEIS
LANÇAMENTO DE PROJETEIS 1- INTRODUÇÃO O movimento de um projétil lançado de forma oblíqua é bidimensional. Este movimento pode ser analisado nas direções x e y separadamente, ou seja, dois movimentos unidimensionais
SEGUNDA LEI DE NEWTON
Experimento 2 SEGUNDA LEI DE NEWTON Objetivo Introdução Verificar a Segunda Lei de Newton a partir da análise do movimento de translação de um corpo sobre um plano horizontal variando-se a força resultante,
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5)
Física I para a Escola Politécnica (4323101) - P1 (10/04/2015) [16A7]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5) ando necessário, use g=10 m/s 2 (1) [1,0 pt] A figura abaixo representa dois blocos 1 e 2,
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE FÍSICA
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE FÍSICA Disciplina: Física Experimental I Data: 8/12/2017 Roteiro de experimento Experimento de Lançamento de projéteis Este
LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica
LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica Experimento N 0 03: MOVIMENTO RETILINEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORME VARIADO Objetivos Gerais Ao termino desta atividade o aluno deverá
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento
Movimento Retilíneo Uniforme Variado M08
FSC5122 2017/1 Movimento Retilíneo Uniforme Variado M08 Ø Introdução e teoria básica Nesta experiência estudaremos o movimento retilíneo uniformemente variado (vulgo MRUV) observando o movimento de um
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS 1 Esta lista trata dos conceitos de cinemática 1D, cinemática 2D, leis de Newton e aplicações. Tais temas são abordados nos capítulos 2, 3, 4 e 5 do livro-texto: Moysés Nussenzveig,
Movimento Retilíneo Uniforme
Movimento Retilíneo Uniforme 1 Objetivos Estudar o Movimento Unidimensional realizando experimentos com um carrinho, em Movimento Retilíneo Uniforme, sobre um trilho de ar. Construir e análisar grácos
Lista 2: Cinemática em uma Dimensão
Lista 2: Cinemática em uma Dimensão Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução
EXPERIMENTO II MOVIMENTO RETILÍNEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO.
EXPERIMENTO II MOVIMENTO RETILÍNEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO. Este experimento consiste em duas etapas. A primeira é a realização do Movimento Retilíneo Uniforme. A segunda é
Universidade Federal do Espírito Santo
Universidade Federal do Espírito Santo Prof. Paulo Moscon Cinemática Utilizando um colchão de ar São Mateus, 30 de agosto de 2016 Conteúdo 1 Objetivo 1 2 Equipamentos Utilizados 1 3 Procedimento Experimental
Primeira Verificação de Aprendizagem (1 a V.A.) - 28/05/2014
UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Primeira Verificação
Experimento 1: Colisões
Experimento 1: Colisões Objetivo Verificar a Conservação Quantidade de Movimento Linear e a Conservação da Energia Cinética. a) A conservação do momento linear e da energia cinética numa colisão unidimensional.
1ª Prova de Física I - FCM0101
1ª Prova de Física I - FCM11 #USP: Nome: Instruções: 1. Escreva seu nome e número USP no espaço acima.. A duração da prova é de horas. A prova tem 4 questões. 3. Não é permitido consultar livros, anotações
Laboratório de Física
Laboratório de Física Experimento 03 - Trilho de Ar Movimento a Força Constante Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/11 03 - Trilho de
Cirlei Xavier Bacharel e Mestre em Física pela Universidade Federal da Bahia
TIPLER & MOSCA SOLUÇÃO MECÂNICA, OSCILAÇÕES E ONDAS, TERMODINÂMICA Bacharel e Mestre em Física pela Universidade Federal da Bahia Maracás Bahia Outubro de 2015 Sumário 1 Movimento em Uma Dimensão 3 2 Bibliografia
Movimento Retilíneo Uniforme e Uniformemente Variado MRU e MRUV
Movimento Retilíneo Uniforme e Uniformemente Variado MRU e MRUV Evandro Bastos dos Santos 22 de Fevereiro de 2017 1 Movimento Retilíneo Uniforme(MRU) Um corpo que se desloca em trajetória retilínea e possui
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de
Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 04. Física Geral e Experimental I (2011/01) Experimento: Queda Livre e Anamorfose
Diretoria de Ciências Exatas Laboratório de Física Roteiro 04 Física Geral e Experimental I (011/01) Experimento: Queda Livre e Anamorfose 1. Cinemática do Movimento de um objeto em Queda Livre. Nesta
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 6
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 6 Condições de equilíbrio estático utilizando o plano inclinado por fuso Disciplina: Física Experimental
(1) O vetor posição de uma partícula que se move no plano XY é dado por:
4320195-Física Geral e Exp. para a Engenharia I - 1 a Prova - 12/04/2012 Nome: N o USP: Professor: Turma: A duração da prova é de 2 horas. Material: lápis, caneta, borracha, régua. O uso de calculadora
DISCURSIVAS. Solução: (a) Com os eixos escolhidos conforme a figura, a altura instantânea da caixa a partir do instante t=0 em que começa a cair é
DISCURSIVAS 1. Um pequeno avião monomotor, à altitude de 500m, deixa cair uma caixa. No instante em que a caixa é largada, o avião voava a 60,0m/s inclinado de 30,0 0 acima da horizontal. (a) A caixa atinge
Movimento Uniforme (MU)
Faculdade de Engenharia de Sorocaba Laboratório de Física Física Experimental I EXPERIÊNCIA 02 Nome Número Turma Data Movimento Uniforme (MU) 2.1 Fundamentos Teóricos A cinemática é a parte da física que
Considerações Iniciais
Considerações Iniciais Mecânica Estudo do Movimento; Cinemática Descarta as causa do moviemento; Reducionismo redução de variáveis envolvidas em algum problema. Por exemplo: no lançamento de uma caneta
APÊNDICE B. Interpretação de Gráficos da Cinemática (Teste Final)
APÊNDICE B Interpretação de Gráficos da Cinemática (Teste Final) Este teste é constituído por 25 questões de escolha simples com cinco alternativas. Dentre as alternativas escolha apenas uma, a que melhor
Fundamentos de Mecânica
Fundamentos de Mecânica 45 Lista de exercícios Primeiro semestre de Os exercícios da lista deverão ser todos feitos. Não há necessidade de entregá-los. O conteúdo será cobrado nas provas e provinhas, ao
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para
Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção
Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção / GRUPO I (Exame 2013-2ª Fase) 1. (B) 2. 3. 3.1. Para que a intensidade média da radiação solar seja 1,3 x 10 3 Wm -2 é necessário que
Experimento 1: Colisões *
Experimento : Colisões * Objetivo Avaliar a Conservação Quantidade de Movimento Linear e a Conservação da Energia Cinética nos seguintes experimentos: a) Colisão unidimensional. b) Colisão bidimensional.
1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k
1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,
Escola Secundária de Casquilhos Teste Sumativo 1- Física e Química A 11º ANO 04/10/ minutos
* Escola Secundária de Casquilhos Teste Sumativo 1- Física e Química A 11º ANO 04/10/2013 90 minutos NOME Nº Turma Informação Professor Enc. de Educação TABELA DE CONSTANTES Velocidade de propagação da
Notação Científica. n é um expoente inteiro; N é tal que:
Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 7
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 7 Determinação da constante elástica de uma mola utilizando o plano inclinado por fuso Disciplina:
COLISÃO EM UMA DIMENSÃO
COLISÃO EM UMA DIMENSÃO Material Utilizado: - um conjunto para experimentos com trilho de ar composto de: - um trilho de ar (PASCO SF-9214) - um gerador de fluxo de ar (PASCO SF-9216) - dois carrinhos
Física 1. Resumo e Exercícios P1
Física 1 Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Derivada de polinômios - Considerando um polinômio P x = ax %, temos: d P x = anx%() dx Integral de polinômios - Considerando um polinômio
1ª Ficha de Laboratório Turma: 11ºA. Física e Química A - 11ºAno
1ª Ficha de Laboratório Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 10 de janeiro 2017 Ano Letivo: 2016/2017 90 min 1. Para investigar se o módulo da aceleração da gravidade
Cinemática I Movimento Retilíneo
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Cinemática I Movimento Retilíneo Rafael Silva P. de Santana Engenharia Civil 5º Período Cinemática Na cinemática vamos estudar os movimentos sem
Parte 2 - P1 de Física I NOME: DRE Teste 1. Assinatura:
Parte 2 - P1 de Física I - 2018-1 NOME: DRE Teste 1 Assinatura: Questão 1 - [2,5 pontos] Considere a situação ilustrada na figura abaixo. Um bloco de massa m está conectado através de fios e polias ideais
Física I Prova 1 29/03/2014
Posição na sala Física I Prova 1 9/03/014 NOME MATRÍCULA TURMA PROF. Lembrete: Todas as questões discursivas deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente. BOA PROVA
Física 1. 1 a prova 22/09/2018. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 1 a prova 22/09/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período
Curso de Engenharia Civil Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Posição e Coordenada de Referência Posição é o lugar no espaço onde se situa o corpo. Imagine três pontos
Introdução às medidas físicas ( ) Aula 6 e 7 Queda livre. Qual é o método que usará para atingir seu objetivo?
Introdução às medidas físicas (430015) Aula 6 e 7 Queda livre Grupo: Nome: Nome: Nome: Introdução: Qual é o objetivo do experimento? Qual é o método que usará para atingir seu objetivo? Medidas Experimentais:
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 3
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental: EXPERIMENTO 3 Determinação da aceleração da gravidade local utilizando o plano inclinado por fuso Disciplina:
Física I Prova 1 6/09/2014
Nota Física I Prova 1 6/09/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8
SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS
SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein # Ler todas as teorias # Refazer todos os exercícios dados em aula. # Refazer todos os exercícios feitos do livro. # Refazer
MOVIMENTO EM UMA LINHA RETA
MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA Objetivos de aprendizagem: Descrever o movimento em uma linha reta em termos de velocidade média, velocidade instantânea, aceleração média e aceleração
Parte 2 - P2 de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1
Parte - P de Física I - 017- Nota Q1 88888 Nota Q Nota Q3 NOME: DRE Teste 1 Assinatura: AS RESPOSTAS DAS QUESTÕES DISCURSIVAS DEVEM SER APRESENTADAS APENAS NAS FOLHAS GRAMPEA- DAS DE FORMA CLARA E ORGANIZADA.
LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER)
LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER) 1) Uma máquina consome 4000 J de energia em 100 segundos. Sabendo-se que o rendimento dessa máquina é de 80%, calcule
Física 1 - EMB5034. Prof. Diego Duarte Rolamento, torque e momento angular (lista 15) 24 de novembro de 2017
Física 1 - EMB5034 Prof. Diego Duarte Rolamento, torque e momento angular (lista 15) 24 de novembro de 2017 1. Um corpo de massa M e raio R está em repouso sobre a superfície de um plano inclinado de inclinação
Experimento 1: Colisões
Experimento : Colisões Objetivo Verificar a Conservação Quantidade de Movimento Linear e a Conservação da Energia. a) A conservação do momento linear e da energia cinética numa colisão unidimensional.
Movimentos na Terra e no Espaço Dulce Campos 2
Unidade 1 Síntese Movimentos na Terra e no Espaço 23-11-2011 Dulce Campos 2 Sobre a função x(t) podemos resumir: X(t) é crescente A partícula move-se no sentido positivo da trajetória X(t) é decrescente
P2 MECÂNICA NEWTONIANA A (FIS 1025) 28/10/2011. Questão Valor Grau Revisão. -As respostas sem justificativas ou cálculos não serão computadas.
P2 MECÂNICA NEWTONIANA A (FIS 1025) 28/10/2011 Nome: respostas Assinatura: Matrícula: Turma: Questão Valor Grau Revisão 1 a 3,0 2 a 2,5 3 a 3,0 Total 8,5 -As respostas sem justificativas ou cálculos não
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Ciências Físico-Químicas 11º ano Ficha de trabalho nº5 Mecânica 5: Forças e movimentos: movimentos retilíneos.
1. Uma criança lança uma bola verticalmente para cima a partir de uma altura de 80 cm, comunicando-lhe uma velocidade inicial de módulo 4,0 ms -1. Considera o referencial com origem no solo e sentido positivo
Introdução às medidas físicas ( ) Aulas 6 e 7 Queda livre
Introdução às medidas físicas (43005) Aulas 6 e 7 Queda livre Grupo: Nome: Nome: Nome: Introdução: Qual é o objetivo do experimento? Qual é o método que usará para atingir seu objetivo? Medidas Experimentais:
Colisões. 1. Introdução
Colisões 1. Introdução Uma grandeza muito importante para o estudo de colisões é o momento linear ou quantidade de movimento, representado por e definido por: (1) Onde: é a massa e a velocidade do objeto
Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações.
Lista 10: Energia Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de problemas
Experimento 3 Rolamento
Experimento 3 Rolamento Determinar os tempos de queda de objetos cilíndricos rolando sem escorregamento em um plano inclinado e relacioná-los com a distribuição de massa dos objetos. Introdução Considere
2.2 Segunda Lei de Newton
50 CAPÍTULO 2. SÉRIE A 2.2 Segunda Lei de Newton 2.2.1 Material Necessário 01 trilho de ar 120 cm com polia no fim do curso; 01 carrinho para trilho de ar; 01 pino para carrinho para interrupção de sensor;
GABARITO DA AFE02 FÍSICA 2ª SÉRIE 2016
GABARITO DA AFE0 FÍSICA ª SÉRIE 016 1) A figura abaixo representa um móvel m que descreve um movimento circular uniforme de raio R, no sentido horário, com velocidade de módulo V. Assinale a alternativa
Parte 2 - P2 de Física I NOME: DRE Teste 0. Assinatura:
Parte 2 - P2 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [2,7 pontos] Uma granada é deixada cair livremente de uma alturahapartir do repouso. Ao atingir a altura3h/4 ela explode em dois
FEP Física Geral e Experimental para Engenharia I
FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado
CAPITULO 2 PROF. OSCAR
CAPITULO 2 PROF. OSCAR O que é física? Um dos propósitos da física é estudar o movimento dos objetos: a rapidez com que se movem, por exemplo, ou a distância percorrida em um certo intervalo de tempo.
Gabarito da Prova P1 - Física 1
Gabarito da Prova P1 - Física 1 1. Duas partículas (1 e 2) se movem ao longo do eixo x e y, respectivamente, com velocidades constantes v 1 = 2ˆx cm/s e v 2 = 3ŷ cm/s. Em t = 0 s elas estão nas posições:
Desprezando todo tipo de atrito, se as esferas forem soltas em um mesmo instante, é CORRETO afirmar que:
6 GAB. 1 1 o DIA PASES 1 a ETAPA TRIÊNIO 005-007 FÍSICA QUESTÕES DE 11 A 0 11. Três esferas pequenas de massas e raios iguais encontram-se em repouso a uma altura (h) nas extremidades de três trilhos (I,
Componente Química 11ºAno Professora Paula Melo Silva Unidade 1 Mecânica 1.1. Tempo, posição e velocidade
Referencial e posição: coordenadas cartesianas em movimentos retilíneos Componente Química 11ºAno Professora Paula Melo Silva Unidade 1 Mecânica 1.1. Tempo, posição e velocidade Distância percorrida sobre
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Dois blocos de massas 4, 00 kg e 8, 00 kg estão ligados por um fio e deslizam para baixo de um plano inclinado de
Lista de Exercícios para a P1-2014
Lista de Exercícios para a P1-2014 OBJETIVAS www.engenhariafacil.weebly.com 1)(Halliday-Adaptad Uma pessoa saltou do topo de um edifício de H m, caindo em cima da caixa de um ventilador metálico, que afundou
Atividade Complementar para a DP de Física 1. Profs. Dulceval Andrade e Luiz Tomaz
Atividade Complementar para a DP de Física 1. Profs. Dulceval Andrade e Luiz Tomaz QUESTÕES DO CAPÍTULO 2 DO LIVRO FUNDAMENTOS DE FÍSICA HALLIDAY & RESNICK - JEARL WALKER 6 ª - 7 ª e 9ª EDIÇÃO VOLUME 1
IDEIAS - CHAVE. A massa de um corpo é uma medida da sua inércia.
IDEIAS - CHAVE Os corpos interatuam por ação de forças. As interações são devidas ao contacto entre os corpos ou podem ocorrer à distância. Por exemplo, a força gravitacional é uma força de ação à distância.
MOVIMENTO RETILINEO UNIFORMEMENTE VARIADO
EXPERIMENTO 02: MOVIMENTO RETILINEO UNIFORMEMENTE VARIADO 1. OBJETIVO Este experimento tem como objetivo caracterizar o MRUA; estudar as equações e os diferentes gráficos do MRUA e interpretá-los; 2. INTRODUÇÃO
MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO
b) a intensidade da força de contato entre A e B.
LISTA DE ATRITO 1. (FGV-SP) O sistema indicado está em repouso devido à força de atrito entre o bloco de massa de 10 kg e o plano horizontal de apoio. Os fios e as polias são ideais e adota-se g = 10 m/s
Segunda lei de Newton
Segunda lei de Newton Pela 1ª lei de Newton, não precisamos de força para manter a velocidade de um corpo, mas sim para produzir mudanças (variações) dessa velocidade. Newton apresenta a relação existente
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015 OBS: Quando necessário, considere como dados a aceleração da
LISTAGEM DE CONTEÚDOS DE FÍSICA PARA O EXAME 1 ANO / 2012
LISTAGEM DE CONTEÚDOS DE FÍSICA PARA O EXAME 1 ANO / 2012 # Velocidade escalar média # Movimento retilíneo uniforme # Movimento retilíneo uniformemente variado # Movimento de queda livre dos corpos # Movimento
LISTA 2. Cinemática e dinâmica
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA 4323101 - Física I LISTA 2 Cinemática e dinâmica Observe os diferentes graus de dificuldade para as questões: (*), (**), (***) 1. (*) O gráfico da figura abaixo
Movimento Retilíneo Uniformemente Acelerado
Movimento Retilíneo Uniformemente Acelerado 1 Objetivo Estudar o movimento retilíneo uniformemente acelerado e o problema de queda livre. Para uma melhor compreensão dos resultados desta experiência, é
ESCOAMENTOS UNIFORMES EM CANAIS
ESCOAMENTOS UNIFORMES EM CANAIS Nome: nº turma INTRODUÇÃO Um escoamento em canal aberto é caracterizado pela existência de uma superfície livre. Esta superfície é na realidade uma interface entre dois
FÍSICA - 3 o ANO MÓDULO 06 PLANO INCLINADO
FÍSICA - 3 o ANO MÓDULO 06 PLANO INCLINADO P T P N θ P Como pode cair no enem? Uma máquina utiliza um carrinho para retirar carvão do interior de uma mina, puxando-o, sobre um plano inclinado, por meio
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Fís. Semana. Leonardo Gomes (Guilherme Brigagão)
Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
EQUAÇÃO DE TORRICELLI E LANÇAMENTO VERTICAL EXERCÍCIOS
EQUAÇÃO DE TORRICELLI E LANÇAMENTO VERTICAL EXERCÍCIOS 1. Uma partícula, inicialmente a 2 m/s, é acelerada uniformemente e, após percorrer 8 m, alcança a velocidade de 6 m/s. Nessas condições, sua aceleração,
Departamento de Física - ICE/UFJF Laboratório de Física II
1 - Objetivos Gerais: Viscosidade Estudo da velocidade terminal de uma esfera num líquido; Determinação da viscosidade do líquido em estudo; *Anote a incerteza dos instrumentos de medida utilizados: ap
