Apresentação: Trabalho e energia
|
|
|
- Gustavo Marreiro
- 7 Há anos
- Visualizações:
Transcrição
1 Apresentação: Trabalho e energia INTRODUÇÃO Como enfatizado na comum definição de energia como a habilidade de realizar trabalho, os conceitos de trabalho e energia estão intimamente relacionados. Dizemos que um objeto ou sistema que possui energia tem a capacidade de realizar trabalho. Quando o trabalho é realizado pelo sistema, sua energia é consumida e o sistema perde energia. Por outro lado, quando o trabalho é realizado sobre o sistema, este recebe energia. Aqui, perder e receber energia são termos associados com as transformações das diferentes formas de manifestação da energia. Em um sistema conservativo ideal, a energia mecânica é transformada entre energia cinética e energia potencial. Em tal sistema, a soma das energias cinética e potencial é constante, como expresso na lei de conservação da energia mecânica. Todavia, em sistema reais, o atrito está sempre presente e estes sistemas são considerados não-conservativos (ou dissipativos). Isso significa que alguma energia é perdida como resultado do trabalho realizado pelas forças de atrito. Mesmo assim, a energia total é conservada (conservação da energia total). A energia desaparecida foi transformada em alguma outra forma. Neste experimento, a conservação de energia será usada para estudar a relação entre o trabalho e a energia no caso de um carrinho deslizando para cima e para baixo em um plano inclinado. A força de atrito de contato entre superfícies e o trabalho realizado pela mesma serão investigados a fim de produzir um melhor entendimento dos conceitos de trabalho e energia. Para simplificar, condições experimentais com velocidade constante serão usadas de modo que apenas a relação entre trabalho e as variações na energia potencial gravitacional sejam consideradas. OBJETIVOS DA ATIVIDADE Após realizar o experimento e analisar os dados, você deverá ser capaz de: 1. Explicar como os conceitos de trabalho e energia estão relacionados. 2. Descreve como o trabalho realizado pela força de atrito pode ser determinado experimentalmente usando força e distância ou considerações sobre energia. 3. Avaliar aspectos dissipativos de situações reais a fim de diferenciar a conservação da energia mecânica da conservação da energia total. Página 1
2 Experimento: Trabalho e energia EQUIPAMENTOS Plataforma inclinável Polia Um carrinho deslizante Suporte de massa e conjunto de massas Barbante Régua (ou trena) Transferidor Balança APRESENTAÇÃO TEÓRICA A. Trabalho da força de atrito: usando força e distância descendo A situação na qual um carrinho desce um plano inclinado, com inclinação θ em relaçao à horizontal e velocidade constante, é ilustrada na Figura 1. Como o carrinho possui aceleração nula, a força para baixo deve ser igual em magnitude a soma das forças para cima (paralelas ao plano), ou seja, F N f at θ F T m c v θ d h m b v T P b h F = T + f at, em que f at é a força de atrito e F = m c g sin θ é a componente da força peso do carrinho paralela ao plano. m c é a massa do carrinho e g é a aceleração da gravidade. Desde que a magnitude de T é igual ao peso P b da massa suspensa, m b, então F = P b + f at. Resolvendo para f at e expressando as outras forças em termos dos parâmetros experimentais obtemos: f at = F P b e, portanto, subindo f at = m c g sin θ m b g. (1) A situação para o carrinho movendo-se para cima no plano inclinado com a mesma velocidade constante é similar a ilustrada na Figura 1. Em relação às forças, a principal diferença está no sentido da força de atrito, que é sempre oposta ao sentido do movimento. Novamente, como o carro não está acelerado, a soma das forças para cima no plano é igual em magnitude às forças que apontam para baixo e assim T = F + f at em que, neste caso, a direção de f at aponta para baixo na direção paralela ao plano. Como T = P b, então P b = F + f at. Logo, f at = m b g m c g sin θ. (2) Em ambos os casos, o módulo do trabalho realizado pela força de atrito é dado por: τ = f at d, (3) sendo d a distância percorrida pelo carrinho. Se o carrinho move-se aproximadamente na mesma velocidade constante em ambos os casos, pode-se supor que a magnitude da força de atrito é a mesma em cada caso (mesmo Figura 1: movendo-se com velocidade constante ao longo do plano inclinado. Isso será investigado experi- ângulo de inclinação e massa). mentalmente. B. Trabalho da força de atrito: usando energia Uma outra maneira de calcular o trabalho produzido pela força de atrito é usando considerações sobre a energia do sistema. subindo Para o caso do carrinho subindo pelo plano, de acordo com a conservação de energia, o decréscimo na energia potencial da massa no suporte descendo, U b = m b gh, é igual ao acréscimo da energia potencial do carrinho, U c = m c gh, mais a energia perdida por atrito, que é igual ao trabalho realizado pela força de atrito, τ. Ou seja, Portanto, U b = U c + τ ou τ = U b U c. descendo τ = m b gh m c gh. (4) Similarmente, para o caso do carrinho descendo o plano inclinado, de acordo com a conservação da energia, o decréscimo na energia potencial do carrinho é igual ao acréscimo na energia potencial da massa no suporte subindo, mais o trabalho realizado pela força de atrito: Portanto, U c = U b + τ ou τ = U c U b. τ = m c gh m b gh. (5) Em termos experimentais, os dois métodos para determinar o trabalho são equivalentes. Isso também será investigado na atividade. Página 2
3 PROCEDIMENTOS Usando força e distância 1. Usando a balança, determine a massa do carrinho, m c, e registre o resultado na Folha de respostas. 2. Ajuste o plano inclinado e o carrinho como representado na Figura 1, com um ângulo de inclinação de 30 o. Certifique-se que a polia está ajustada de tal maneira que o barbante amarrado ao carrinho esteja paralelo ao plano. Se o carrinho movimentar-se devido ao peso do suporte vazio, adicione massa ao carrinho até que o mesmo permaneça parado. Anote a massa adicional na Folha de respostas. 3. Adicione massas ao suporte até que o carrinho entre em movimento com velocidade constante com um pequeno impulso. Registre o valor da massa que encontra-se no suporte na Tabela I. 4. Com o carrinho posicionado na parte mais baixa do plano, marque a posição das rodas dianteiras do carro e, em seguida, coloque-o em movimento. Pare o carrinho em uma posição próxima ao topo do plano e meça a distância d percorrida. Use novamente a roda dianteira como referência. Alternativamente, você pode medir a altura h. Veja a ilustração na Figura 1. Registre essas medidas na Tabela I. 5. Com o carrinho posicionado na parte superior do plano, remova algumas massas no suporte para que o carrinho possa descer o plano inclinado com uma velocidade uniforme após um pequeno impulso. Se possível, mantenha o carrinho com velocidade próxima ao caso anterior. Registre a massa total no suporte na Tabela I. Por conveniência, pare o carrinho em um posição que produza o mesmo d (ou h ) do procedimento anterior. 6. Calcule a força de atrito f at (veja as equações 1 e 2) e o trabalho realizado pela força de atrito τ (Equação 3) para cada caso. Anote os resultados na Tabela I. 7. Compare o trabalho realizado pela força de atrito calculando a diferença percentual para os dois casos. 8. Ajuste o ângulo do plano inclinado para 45 o e repita todos os passos do procedimento 3 até o 7. Anote as medidas na Tabela II. 9. Para cada caso, carrinho subindo ou descendo, encontre o erro absoluto de τ considerando as incertezas das massas e dos comprimentos. Usando energia 10. Sabendo que d = h, calcule τ para todos os casos anteriores usando o método da energia (equações 4 e 5) e registre os resultados na Folha de respostas. 11. Compare os valores de τ com aqueles encontrados usando força e distância em termos da diferença percentual. 12. Encontre o erro absoluto de τ considerando as incertezas das massas e dos comprimentos. Página 3
4 Folha de respostas: Trabalho e energia Nomes dos integrantes do grupo: Data: Utilize o espaço abaixo para apresentar todos os cálculos realizados. Objetivo: Determinar o trabalho realizado pela força de atrito. Ângulo de inclinação, θ: Massa do carrinho, m c : subindo descendo Massa no suporte m b ( ) d( ) f at( ) τ( ) δτ( ) Tabela I: Tabela com os dados obtidos durante a atividade. Inclinação do plano próxima a 30 o. Diferença percentual do valor de τ: Cálculos: Valor de τ obtido usando energia: Página 4
5 Objetivo: Determinar o trabalho realizado pela força de atrito. Ângulo de inclinação, θ: Massa do carrinho, m c : subindo descendo Massa no suporte m b ( ) d( ) f at( ) τ( ) δτ( ) Tabela II: Tabela com os dados obtidos durante a atividade. Inclinação do plano próxima a 45 o. Diferença percentual do valor de τ: Cálculos: Valor de τ obtido usando energia: Página 5
6 QUESTIONÁRIO 1. Qual foi o trabalho realizado pela massa suspensa quando o carrinho (a) estava subindo e depois (b) descendo ao longo do plano inclinado? Considere os dois casos com inclinações de 30 o e 45 o. 2. Qual foi o trabalho realizado pela força da gravidade atuando sobre o carrinho quando (a) ele estava descendo e (b) quando estava subindo ao longo do plano inclinado? Considere os dois casos com inclinações de 30 o e 45 o. 3. Suponha que o carrinho estivesse em movimento acelerado, tanto subindo quanto descendo ao longo do plano inclinado. Como os resultados experimentais podem ser afetados por esta consideração? 4. Mostre que o coeficiente de atrito (devido ao rolamento) do carro descendo o plano inclinado com velocidade constante é dado por µ = tan θ. [utilize apenas símbolos (letras), não use números] m b m c cos θ Página 6
Apresentação: Força de atrito
DEIS - ICEB - UOP Apresentação: orça de atrito ITRODUÇÃO Quando duas superfícies deslizam ou tendem a deslizar uma sobre a outra, haverá uma força de atrito. O atrito entre superfícies não lubrificadas
Apresentação: Movimento unidimensional
Apresentação: Movimento unidimensional INTRODUÇÃO Um objeto em movimento uniformemente acelerado, ou seja, com aceleração constante, é um importante caso da cinemática. O exemplo mais comum desse tipo
Estudo Dirigido de Plano Inclinado
Curso: Engenharia Civil Disciplina: Física Geral e Experimental I Período: 1 período Data: 30/03/2012 Prof.a: Érica Estanislau Muniz Faustino 1ª Etapa Estudo Dirigido de Plano Inclinado 1- O bloco representado
Força de atrito e as leis de Newton. Isaac Newton
Força de atrito e as leis de Newton Isaac Newton o Causadas pelo movimento de um corpo em relação a outro ou em relação ao ambiente o Sempre apontam na direção contrária ao movimento (frenagem) o Força
Física 1. 1 a prova 23/09/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 1 a prova 23/09/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 6
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 6 Condições de equilíbrio estático utilizando o plano inclinado por fuso Disciplina: Física Experimental
Física I Prova 1 04/06/2016a
Física I Prova 1 04/06/016a NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 0 questões de múltipla escolha valendo 0,5 ponto cada. Utilize: g = 9,80 m/s, exceto se houver alguma indicação em contrário.
6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações:
6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações: a) em relação ao eixo que passa pelo centro e é perpendicular ao plano da régua; b) em relação
Aplicações de Leis de Newton
Aplicações de Leis de Newton Evandro Bastos dos Santos 22 de Maio de 2017 1 Introdução Na aula anterior vimos o conceito de massa inercial e enunciamos as leis de Newton. Nessa aula, nossa tarefa é aplicar
Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações.
Lista 10: Energia Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de problemas
Física I Prova 1 04/06/2016c
Física I Prova 1 04/06/016c NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 0 questões de múltipla escolha valendo 0,5 ponto cada. Utilize:g = 9,80 m/s, exceto se houver alguma indicação em contrário.
FÍSICA - 3 o ANO MÓDULO 06 PLANO INCLINADO
FÍSICA - 3 o ANO MÓDULO 06 PLANO INCLINADO P T P N θ P Como pode cair no enem? Uma máquina utiliza um carrinho para retirar carvão do interior de uma mina, puxando-o, sobre um plano inclinado, por meio
Experimento A1: Movimento Retilíneo Uniforme (MRU) E Movimento Retilíneo Uniformemente Variado (MRUV)
Experimento A1: Movimento Retilíneo Uniforme (MRU) E Movimento Retilíneo Uniformemente Variado (MRUV) 1 - INTRODUÇÃO A Mecânica é a área da Física que estuda o movimento dos objetos. Por razões de organização
Exemplos de aplicação das leis de Newton e Conservação da Energia
Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo
LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS
DINÂMICA É a parte da Mecânica que estuda as causas e os movimentos. LEIS DE NEWTON 1ª Lei de Newton 2ª Lei de Newton 3ª Lei de Newton 1ª LEI LEI DA INÉRCIA Quando a resultante das forças que agem sobre
Experimento: Determinação do coeficiente de atrito
Física Mecânica Roteiros de Experiências 50 UNIMONTE, Engenharia Laboratório de Física Mecânica Experimento: Determinação do coeficiente de atrito Turma: Data: : Nota: Participantes Nome RA Introdução
Lista de exercícios 2 Mecânica Geral III
Lista de exercícios 2 Mecânica Geral III 13.3 O trem de 160 Mg parte do repouso e começa a subir o aclive, como mostrado na figura. Se o motor exerce uma força de tração F de 1/8 do peso do trem, determine
APL 2.1 ENERGIA CINÉTICA AO LONGO DE UM PLANO INCLINADO
APL 2.1 ENERGIA CINÉTICA AO LONGO DE UM PLANO INCLINADO Questão Problema: Um carro encontra-se parado no cimo de uma rampa. Acidentalmente, é destravado e começa a descer a rampa. Como se relaciona a energia
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015 OBS: Quando necessário, considere como dados a aceleração da
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015 1. Uma partícula move-se em linha reta, partindo do repouso
Física I. Dinâmica de Corpos Rígidos Lista de Exercícios
Física I Dinâmica de Corpos Rígidos Lista de Exercícios 1. Campo de Velocidades e Centro Instantâneo de Rotação Dados os itens abaixo, responda ao que se pede: a. O disco abaixo está preso a uma articulação
SEGUNDA LEI DE NEWTON
Experimento 2 SEGUNDA LEI DE NEWTON Objetivo Introdução Verificar a Segunda Lei de Newton a partir da análise do movimento de translação de um corpo sobre um plano horizontal variando-se a força resultante,
Experimento 3 Rolamento
Experimento 3 Rolamento Determinar os tempos de queda de objetos cilíndricos rolando sem escorregamento em um plano inclinado e relacioná-los com a distribuição de massa dos objetos. Introdução Considere
LANÇAMENTO DE PROJETEIS
LANÇAMENTO DE PROJETEIS 1- INTRODUÇÃO O movimento de um projétil lançado de forma oblíqua é bidimensional. Este movimento pode ser analisado nas direções x e y separadamente, ou seja, dois movimentos unidimensionais
Questão 1. Questão 2. Questão 3
Questões de Física para 1º ano e 2º ano Questão 1 Em um acidente, um carro de 1200 kg e velocidade de 162 Km/h chocou-se com um muro e gastou 0,3 s para parar. Marque a alternativa que indica a comparação
Notas de Física - Mecânica Trabalho e Energia. P. S. Volpiani
Resumo Exercício 1 Exercício Exercício Exercício 4 Exercício 5 Exercício 6 Notas de Física - Mecânica Trabalho e Energia P. S. Volpiani www.psvolpiani.com Aula 05 P. S. Volpiani Física Mecânica www.psvolpiani.com
LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO
LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO 1 Um bloco de massa m = 10 kg, inicialmente a uma altura de 2 m do solo, desliza em uma rampa de inclinação 30 o com a horizontal. O bloco é seguro
Física 1. Prof. Marim. Prof. Marim
Física 1 Física 1 CONSERVAÇÃO DA ENERGIA MECÂNICA Energia Mecânica A Energia Mecânica de um sistema é a soma da energia cinética (K) com a energia potencial (U). E m e c = K + U A energia total, E, de
Ismael Rodrigues Silva Física-Matemática - UFSC.
Ismael Rodrigues Silva Física-Matemática - UFSC www.ismaelfisica.wordpress.com Trabalho... Potência... DefiniçãodeEnergia... EnergiaCinética... TrabalhoeEnergiaCinética... EnergiaPotencial... Gravitacional...
Plano inclinado Comitê Olímpico
Plano inclinado Comitê Olímpico 1. (Ufpe) O trabalho realizado para levantar uma caixa até uma altura h, arrastando-a sobre um plano inclinado com coeficiente de atrito e inclinação de 30 relativo à horizontal,
Laboratório de Física
Laboratório de Física Experimento 03 - Trilho de Ar Movimento a Força Constante Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/11 03 - Trilho de
CINEMÁTICA E DINÂMICA
PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)
Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução
Pêndulo Físico 1. Introdução Nesta experiência estudaremos o movimento periódico executado por um corpo rígido que oscila em torno de um eixo que passa pelo corpo, o que é denominado de pêndulo físico,
Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014. a) (1,0) Massa e Peso são a mesma coisa? Justifique sua resposta.
UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Segunda Verificação
NOME: N O : TURMA: 1. PROFESSOR: Glênon Dutra
Apostila de Revisão n 5 DISCIPLINA: Física NOME: N O : TURMA: 1 PROFESSOR: Glênon Dutra DATA: Mecânica - 5. Trabalho e Energia 5.1. Trabalho realizado por forças constantes. 5.2. Energia cinética. 5.3.
Física 1 VS 16/12/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 VS 16/12/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua resposta.
Data e horário da realização: 17/07/2018 das 14 às 17 horas
re UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE DEPARTAMENTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA Exame de Seleção para o curso de mestrado em Física - 2018-2 Data e horário da realização: 17/07/2018
Parte 2 - P2 de Física I NOME: DRE Teste 0. Assinatura:
Parte 2 - P2 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [3,0 pontos] Um sistema formado por dois blocos de mesma massa m, presos por uma mola de constante elástica k e massa desprezível,
Múltipla escolha [0,5 cada]:
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO - INSTITUTO DE FÍSICA P de Física I - EQN - 015- Prof.: Gabriel Bié Alves Versão: A Nas questões em que for necessário, considere que: todos os fios e molas são ideais;
Cap.11 Trabalho Trabalho e energia cinética Calculando e usando trabalho
Cap.11 Trabalho Do professor para o aluno ajudando na avaliação de compreensão do capítulo. É fundamental que o aluno tenha lido o capítulo. 11.2 Trabalho e energia cinética Consultar o arquivo Cap10_Energia.pdf:
Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.
84 10.3 Experimento 3: Segunda Lei de Newton 10.3.1 Objetivo Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.
1 MECÂNICA GRÁFICA para alunos do ensino médio utilizando o SAM 7. Conservação da Energia Mecânica
FÍSICA d 1 MECÂNICA GRÁFICA para alunos do ensino médio utilizando o SAM 7. Conservação da Energia Mecânica NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA Questão prévia Uma esfera foi abandonada sucessivamente
Gabarito. (a)[0,3] (b)[1,0] Pela segunda lei de Newton teremos que. m~a = ~ F R = ~ F + ~ P + ~ f + ~ N.
Questão 1 [valor 2,3] Um bloco de massa m desce acelerado ao longo de uma rampa inclinada de um ângulo em relação à horizontal. Um dispositivo exerce sobre o bloco uma força ~ F constante horizontal, como
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5)
Física I para a Escola Politécnica (4323101) - P1 (10/04/2015) [16A7]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5) ando necessário, use g=10 m/s 2 (1) [1,0 pt] A figura abaixo representa dois blocos 1 e 2,
A) 50 N B) 100 N C) 200 N D) 300 N E) 400 N
Aplicações das Leis de Newton 1) Na tabela seguinte apresentamos as acelerações adquiridas por três automóveis A, B, C quando sobre eles atuam as forças indicadas abaixo. Utilizando o princípio fundamental
Dados: Considere g = 10m/s 2.
FEP195-Física para a Engenharia I - a Prova - Gabarito - 13/05/010 Dados: Considere g = 10m/s. 1) Uma pessoa de 60 kg, correndo inicialmente com uma velocidade de 4 m/s pula em um carrinho de 10 kg que
Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA.
Trabalho e Energia UFPB/98 1. Considere a oscilação de um pêndulo simples no ar e suponha desprezível a resistência do ar. É INCORRETO afirmar que, no ponto m ais baixo da trajetória, a) a energia potencial
DISCURSIVAS. Solução: (a) Com os eixos escolhidos conforme a figura, a altura instantânea da caixa a partir do instante t=0 em que começa a cair é
DISCURSIVAS 1. Um pequeno avião monomotor, à altitude de 500m, deixa cair uma caixa. No instante em que a caixa é largada, o avião voava a 60,0m/s inclinado de 30,0 0 acima da horizontal. (a) A caixa atinge
Solução: F = m. a. 20 = 5. a. Logo. a = 20/5. a = 4 ALUNO (A): Nº MANHÃ TURMA 1 ENSINO MÉDIO 1ª ANO
ª ANO Verifique se esta contém 0 QUESTÕES, numeradas de 0 a 0. Leia atentamente toda a antes de começar a resolver. Não deixe questões em branco. Não converse. Boa Sorte! NOTA DA ] O corpo indicado na
DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.
DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho [email protected] Juiz de Fora - MG Introdução: Objetivo: Estabelecer
Lista 7: Terceira Lei de Newton
Lista 7: Terceira Lei de Newton NOME: Matrícula: Turma: Prof. : Importante: i. As cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Leia os enunciados com atenção. iii. Responder
Leis de Newton da Mecânica. Prof. Marco Simões
Leis de Newton da Mecânica Prof. Marco Simões Leis de Newton Primeira: se a resultante das forças que agem em um corpo for nula, este corpo permanecerá parado ou com velocidade constante. Segunda: se a
Ismael Rodrigues Silva Física-Matemática - UFSC.
Ismael Rodrigues Silva Física-Matemática - UFSC www.ismaelfisica.wordpress.com Máquinas Simples(ver arquivo) Revisão... ForçadeAtrito... AlgunsSistemasMecânicos... SistemasMecânicos... Máquinas Simples:
Calcule a resistência equivalente do circuito a seguir:
Questões para estudo 3º ano Questão 1 Calcule a resistência equivalente do circuito a seguir: Questão 2 Calcule a resistência equivalente do circuito a seguir: Questão 3 (F. E.EDSON DE QUEIROZ - CE) Dispõe-se
Capítulo 5 DINÂMICA θ α
Capítulo 5 DINÂMICA θ α DISCIPLINA DE FÍSICA CAPÍTULO 5 - DINÂMICA 5.1 Considere um pêndulo cónico com uma massa m 1 suspensa por um cabo de comprimento igual a 2,5 metros. 5.1.1 Determine a velocidade
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Parte 2 - P1 de Física I NOME: DRE Teste 1. Assinatura:
Parte 2 - P1 de Física I - 2018-1 NOME: DRE Teste 1 Assinatura: Questão 1 - [2,5 pontos] Considere a situação ilustrada na figura abaixo. Um bloco de massa m está conectado através de fios e polias ideais
Lista 11: Trabalho. Questões
Lista 11: Trabalho Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de problemas
b) a intensidade da força de contato entre A e B.
LISTA DE ATRITO 1. (FGV-SP) O sistema indicado está em repouso devido à força de atrito entre o bloco de massa de 10 kg e o plano horizontal de apoio. Os fios e as polias são ideais e adota-se g = 10 m/s
Física I Prova 1 29/03/2014
Posição na sala Física I Prova 1 9/03/014 NOME MATRÍCULA TURMA PROF. Lembrete: Todas as questões discursivas deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente. BOA PROVA
Física I Lista de Problemas 2.2
Física I - 2017.2 - Lista de Problemas 2.2 1 Física I Lista de Problemas 2.2 Departamento de Física de Ji-Paraná Universidade Federal de Rondônia Prof. Marco Polo Questão 01: Uma pessoa empurra horizontalmente
ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA
Curso: Engenharia Civil Disciplina: Física Geral Experimental I Período: 1 período Data: 04/16/2014 Prof.a: Érica Estanislau Muniz Faustino ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA 1-
Figura 1. Ilustração de um movimento parabólico.
Movimento Parabólico 1. Introdução Nesta experiência, será estudado o Movimento Parabólico que é executado por um projétil quando é lançado com uma velocidade inicial, formando um ângulo com a horizontal.
Exercícios desafiadores de Física I
Exercícios desafiadores de Física I Sears & Zemansy (in memoriam) setembro 2009 5.3 rampa rugosa com gelo - Y & F cap.6-00 Uma rampa está inclinada de um ãngulo α com o plano horizontal. Ela está parcialmente
LISTA DE EXERCÍCIOS Nº 5
LISTA DE EXERCÍCIOS Nº 5 Questões 1) Na Figura 1, forças F 1 e F 2 são aplicadas em um bloco a medida que este desliza sem atrito com velocidade constante sobre uma superfície. O ângulo θ é decrementado
Questão Valor Grau Revisão
PUC-RIO CB-CTC G1 DE FIS 1033 Nome: GABARITO Turma: Matrícula: Questão Valor Grau Revisão 1ª 3,0 2ª 4,0 3ª 3,0 TOTAL Identidades trigonométricas: sen (2 ) = 2 sen ( ) cos ( ) As respostas sem justificativa
m 1 m 2 FIG. 1: Máquina de Atwood m 1 m 2 g (d) Qual a relação entre as massas para que o sistema esteja em equilíbrio?
1 II.5. Corpo rígido (versão: 20 de Maio, com respostas) 1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações : (a) em relação ao eixo que passa
Física I Prova 2 20/02/2016
Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões
LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER)
LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER) 1) Uma máquina consome 4000 J de energia em 100 segundos. Sabendo-se que o rendimento dessa máquina é de 80%, calcule
Colisões. 1. Introdução
Colisões 1. Introdução Uma grandeza muito importante para o estudo de colisões é o momento linear ou quantidade de movimento, representado por e definido por: (1) Onde: é a massa e a velocidade do objeto
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
A B. a força conjunta. (a) Qual é a força que Saulo faz? (b) Se o ângulo mudar para 150, qual será a força aplicada
Universidade Federal de Santa Catarina Centro de Ciencias Físicas e Matemáticas Departamento de Física Física I (FSC 5101) Prof. Emmanuel G. de Oliveira Lista de exercício I Versão de 11 de agosto de 2017
QUESTÕES UFBA ª FASE: DINÂMICA
QUESTÕES UFBA 09-04 ª FASE: DINÂMICA UFBA 009 UFBA 008 UFBA 007 UFBA 006 UFBA 005 UFBA 004 GABARITO UFBA 009 UFBA 008 QUESTÃO 01 (Valor: 15 pontos) Velocidade final do conjunto Como as forças de atrito
Experimento 1: Colisões
Experimento 1: Colisões Objetivo Verificar a Conservação Quantidade de Movimento Linear e a Conservação da Energia Cinética. a) A conservação do momento linear e da energia cinética numa colisão unidimensional.
Energia Potencial e Conservação de Energia. Energia Potencial Gravitacional
Fisica I IO Energia Potencial e Conservação de Energia Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 [email protected] Energia Potencial Gravitacional Energia Potencial : Energia associada com a
XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (DINÂMICA)
XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (DINÂMICA) 1) Uma caixa de 50 kg repousa sobre uma superfície para a qual o coeficiente de atrito cinético é. Se a caixa está sujeita a uma força de tração de 400
EXERCÍCIOS RESOLVIDOS
EXERCÍCIOS RESOLVIDOS 1) Determine a aceleração adquirida por um corpo de massa 3 kg ao escorregar em um plano inclinado de 40 de inclinação. Considere g 10 m/s 2 e μ = 0,3. sen 40 0,64 cos 40 0,76 Devemos
Parte 2 - PF de Física I NOME: DRE Teste 1
Parte 2 - PF de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão discursiva [4,0 pontos] Uma esfera homogênea de massa M e raio R parte do repouso e rola sem deslizar sobre uma rampa que
Física I Prova 1 6/09/2014
Nota Física I Prova 1 6/09/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 3
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental: EXPERIMENTO 3 Determinação da aceleração da gravidade local utilizando o plano inclinado por fuso Disciplina:
Experimento 4 Forças Centrais
Experimento 4 Forças Centrais Neste experimento, mediremos a energia mecânica e o momento angular de um corpo em movimento, no qual age uma força central elástica. O objetivo do experimento é interpretar
3. Mecânica de Newton
3. Mecânica de Newton 3.1. Uma partícula carregada com carga q, quando colocada num campo eléctrico E, fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num campo
Em primeiro lugar devemos converter a massa do corpo dada em gramas (g) para quilogramas (kg) usado no Sistema Internacional (S.I.
Um corpo de massa 100 g é abandonado no ponto sobre uma superfície cilíndrica, com abertura de 150 o, sem atrito, cujo o eixo é horizontal e normal ao plano da figura em O. Os pontos e O estão sobre o
Energia Mecânica Trabalho
Energia Mecânica Trabalho Física_1 EM Profa. Kelly Pascoalino Tópicos da aula: Energia cinética; Teorema da energia cinética (TEC); Energia potencial: gravitacional e elástica; Teorema da energia potencial
Cap.06 Dinâmica I: Movimento em uma Dimensão
Cap.06 Dinâmica I: Movimento em uma Dimensão Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 6.1 Equilíbrio Estudar anotando a
LISTA 2. Cinemática e dinâmica
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA 4323101 - Física I LISTA 2 Cinemática e dinâmica Observe os diferentes graus de dificuldade para as questões: (*), (**), (***) 1. (*) O gráfico da figura abaixo
Parte 2 - P2 de Física I Nota Q Nota Q2 NOME: DRE Teste 1
Parte 2 - P2 de Física I - 2017-2 Nota Q1 88888 Nota Q2 NOME: DRE Teste 1 Assinatura: AS RESPOSTAS DAS QUESTÕES DISCURSIVAS DEVEM SER APRESENTADAS APENAS NAS FOLHAS GRAMPE- ADAS DE FORMA CLARA E ORGANIZADA.
0.1 Forças Horizontais
Dinâmica 0.1 Forças Horizontais 1. (UCS-RS) Uma força de intensidade 20N atua sobre os blocos A e B, de massas ma=3kg e mb=1kg, como mostra a figura 1. A superfície sobre a qual desliza o conjunto é horizontal
a 1,019m/s, S 89,43N ; b)
Problema O bloco de massa m =5kg e o bloco de massa m =30kg são mantidos em equilíbrio na posição mostrada pela força P. mola tem uma constante de rigidez k=kn/m e encontra-se indeformada nesta posição.
