Apresentação: Força de atrito
|
|
|
- Guilherme Nunes Alencar
- 7 Há anos
- Visualizações:
Transcrição
1 DEIS - ICEB - UOP Apresentação: orça de atrito ITRODUÇÃO Quando duas superfícies deslizam ou tendem a deslizar uma sobre a outra, haverá uma força de atrito. O atrito entre superfícies não lubrificadas de sólidos é um tema vasto e nada trivial. De fato, o atrito depende das irregularidades nas superfícies em contato mútuo e da intensidade na qual os materiais envolvidos são pressionados entre si. o entanto, três regras gerais e empíricas são frequentemente usadas para descrever o atrito entre superfícies sólidas. É considerado que a força de atrito 1. é independente da área superficial em contato, 2. é diretamente proporcional à força de contato que pressiona as superfícies e 3. é independente da velocidade de deslizamento. Intuitivamente, pensamos que quanto maior for a área de contato, maior será o atrito devido a sua dependência com a rugosidade (as irregularidades entre as superfícies). Esse tipo de pensamento contraria a regra 1. o entanto, a área de contato real entre as superfícies deve depender da força que pressiona as mesmas. Com o aumento da força que mantém os sólidos pressionados, a quantidade de contato das irregularidades entre as superfícies aumentará. Em consequência, haverá um aumento do atrito. Então a regra 2 parece ser coerente. É aceitável considerar que o atrito entre um objeto deslizante e uma superfície seja independente da velocidade de deslizamento? Parece que a taxa com a qual as irregularidades das superfícies se encontram produz algum efeito em função da velocidade de deslizamento. Com tais considerações em mente, nesta atividade, a validade dessas regras empíricas será investigada. Experimentalmente, você pode achar que estas considerações são muito gerais ou, na melhor das hipóteses, que são aproximações quando aplicadas a diferentes materiais ou a situações diferentes. Veremos! OBJETIVOS DA ATIVIDADE Após realizar o experimento e analisar os dados, você deverá ser capaz de: 1. Comentar sobre a validade das regras empíricas de atrito. 2. Descrever como os coeficientes de atrito são determinados experimentalmente. 3. Explicar porquê a força de reação normal de uma superfície sobre um objeto é usada para determinar a força de atrito ao invés da força peso. Página 1
2 DEIS - ICEB - UOP Experimento: orça de atrito EQUIPAMETOS Plataforma inclinável Bloco com um gancho. Suporte de massa e conjunto de massas Barbante Balança APRESETAÇÃO TEÓRICA Considere o caso em que um bloco repousa sobre um plano horizontal como ilustrado na igura 1. A força que pressiona as superfícies em contato é a força peso para baixo (de intensidade ). A força que o plano exerce sobre o bloco para cima é chamada de força de apoio ou força normal (). a ausência de outras forças perpendiculares às superfícies em contato, a força normal é igual em intensidade ao peso, =. o entanto, em um plano inclinado, apenas a componente perpendicular à superfície da força peso (de intensidade cos θ) contribui para manter o contato. Veja a igura 2. De forma geral, a força de atrito f at, devido ao contato entre superfícies sólidas, é comumente considerada como sendo diretamente proporcional à força normal. A proporcionalidade entre a força de atrito e a força normal é descrita pela equação: f at = µ ou µ = f at, (1) em que letra grega µ (mi) é uma constante de proporcionalidade adimensional chamada coeficiente de atrito. Quando uma força é aplicada sobre o bloco, em direção paralela à superfície de contato, e nenhum movimento ocorre, a força aplicada é balanceada por uma força oposta de atrito estático, e. Com o aumento de intensidade da força aplicada, e aumenta e atinge um valor máximo (enquanto o bloco permanece em repouso) dado por max e = µ e, (2) sendo µ e o coeficiente de atrito estático. Quando a força aplicada for maior do que e max, por menor que seja esta diferença, o bloco entrará em movimento. Com o deslizamento, atua sobre o bloco uma força de atrito cinético c, em sentido oposto ao do movimento, dada por c = µ c, (3) sendo µ c o coeficiente de atrito cinético. Devido ao desbalanço das forças, o bloco será acelerado ( c = ma). Contudo, se a força aplicada é reduzida de modo que o bloco move-se com velocidade constante (a = 0), então = c = µ c. ormalmente, para um dado par de superfícies, µ c < µ e. Ou seja, é preciso mais força para superar o atrito estático (por um objeto em movimento) do que para superar o atrito cinético (mantê-lo em movimento). Os valores dos coeficiente de atrito dependem, entre outros fatores, da natureza e da rugosidade das superfícies. Régua Transferidor Montagem de braçadeira de mesa Polia olha de papel milimetrado para gráficos = 0 ( c = ma) e c max e e max e igura 1: A força aplicada é balanceada pela força de atrito, sempre apostas entre si. Aumentando a intensidade da força aplicada, a força de atrito estático aumenta até atingir um valor máximo. Quando a força aplicada é maior do que este limite, o objeto irá acelerar em um sentido e a força de atrito cinética atuará em sentido oposto. A direita, os respectivos diagramas de corpo-livre. PROCEDIMETOS A. Determinando o valor de µ e 1. Determine a massa do bloco (m b ) utilizando a balança e registre a medida na olha de respostas. 2. Utilize a braçadeira de mesa para prender a polia em uma das bordas da mesa. Amarre uma extremidade de um pedaço de barbante no bloco e a outra extremidade no suporte de massa. O bloco deve ficar sobre a plataforma inclinável (posicionada horizontalmente) e, com o barbante passando pela polia fixada na mesa, o suporte deve ficar suspenso. Certifiquese de que o barbante está paralelo ao plano horizontal, caso contrário, haverá uma componente vertical da força. 3. Com o bloco em repouso, adicione massas ao suporte até o bloco começar a se mover. Registre na Tabela I a força de peso, Mg, necessária para mover o bloco (M é a massa total no suporte). A intensidade dessa força é igual a força de atrito estático e. (o atrito de rolamento da polia é desprezível) c Página 2
3 DEIS - ICEB - UOP 4. Repita mais cinco vezes o procedimento 3 adicionando massas ao bloco (por exemplo, 100 g, 200 g, 300 g, 400 g e 500 g). Registre os resultados na Tabela I: escreva os valores das massas adicionais m a na primeira linha e os valores da força de atrito estático e na terceira linha. 5. Utilizando os dados da Tabela I e uma folha de papel milimetrado, faça um gráfico da força máxima de atrito estático, e, em função da força normal sobre o bloco. Desenhe uma linha reta que melhor se ajusta aos pontos no gráfico. Como e = µ e, a inclinação da reta corresponde ao coeficiente µ e. Determine a inclinação e registre o resultado na olha de respostas. ota: Para um conjunto n de medidas, considerando uma correspondência linear entre os valores medidos x 1, x 2, x 3,, x n e y 1, y 2, y 3,, y n, ou seja y i = ax i + b, o coeficiente de inclinação da reta que melhor ajusta aos pontos (x i, y i ) é dado por n i a = x iy i n, (4) i x2 i para um coeficiente linear b = 0. O respectivo erro obtido com tal ajuste é dado por a = S/ n i x i, em que S 2 é conhecida como variância e descrita pela equação n S 2 i = (y i ax i ) 2. (5) (n 1) B. Determinando o valor de µ c Plano horizontal 6. Use a mesma montagem da Parte A da atividade para determinar o valor de µ c. Adicione massas ao suporte até que um pequeno impulso (dado com a mão) produza o movimento do bloco com velocidade uniforme. A força produzida pelas massas no suporte, necessária para ocorrer movimento, deve ser menor do que os valores obtidos com as correspondentes massas (m b + m a ) na Parte A. Registre os dados na Tabela II. 7. aça o gráfico da força em relação à força normal com estes novos dados usando o mesmo espaço do gráfico desenhado do Parte A. Trace uma linha reta que melhor se ajuste aos dados. Como c = µ c, a inclinação da linha reta é µ c. Determine a inclinação e registre o resultado na olha de respostas. Calcule a redução percentual de µ c comparado com o valor de µ e obtido anteriormente. Plano inclinado a configuração experimental representada na igura 2, quando o bloco se move com uma velocidade uniforme (constante), sua aceleração é zero. A componente da força peso, sin θ, e a força de atrito, c, são então iguais e opostas ( c = ma = 0 e = c ). θ v sin θ L c cos θ igura 2: Representação da montagem experimental para determinar µ c. Veja a descrição no texto. 8. Utilize a plataforma inclinável para reproduzir a situação representada na igura 2. Perceba que a intensidade da força normal (perpendicular ao plano) é igual a uma das componentes da força peso. Com o bloco colocado sobre a plataforma, determine o ângulo de inclinação máximo que o plano pode ter antes que o bloco comece a deslizar. Incline o plano lentamente para obter uma velocidade de deslizamento constante. ota: O ângulo máximo obtido sem que o bloco seja tocado está relacionado com µ e, enquanto o ângulo máximo em que o bloco desliza com velocidade constante ao ser empurrado fornece o valor de µ c. 9. Usando um transferidor, meça o ângulo e registre os dados Tabela III. Além disso, com uma régua, meça o comprimento da base L e a altura h do plano inclinado. Anote os valores de h/l na Tabela III. 10. Repita este procedimento adicionando massas ao bloco, como no procedimento anterior da Parte A, e registre os dados na Tabela III. 11. Usando uma calculadora, calcule as tangentes dos ângulos θ anotando os valores na Tabela III. Calcule a média desses valores e a média das razões h/l. Essas médias devem ser semelhantes. 12. Compare o valor médio da tan θ com o valor de µ c encontrado no procedimento anterior com o plano horizontal. Calcule a diferença percentual entre os dois valores e registre o resultado na olha de respostas. h Página 3
4 DEIS - ICEB - UOP olha de respostas: orça de atrito omes dos integrantes do grupo: Data: A. Determinando o valor de µ e Utilize o espaço abaixo para apresentar todos os cálculos realizados. Atenção com as unidades. Objetivo: Obter o valor de µ e e investigar a relação e = µ e, sendo a força depende das massas m b + m a. Massa do bloco m b : m a 0 = (m b + m a)g e = = Mg Tabela I: Dados coletados na Parte A da atividade. Valor de µ e : Cálculos: (obtido pelo gráfico) Página 4
5 DEIS - ICEB - UOP B. Determinando o valor de µ c Objetivo: Obter o valor de µ c e investigar a relação c = µ c, sendo dependente da massa m b + m a. m a 0 = (m b + m a)g c = = Mg Tabela II: Dados coletados na Parte B do experimento usando um plano horizontal. Valor de µ c : (obtido pelo gráfico) Redução percentual de µ c em relação a µ e : Cálculos: Objetivo: Obter µ c usando um plano inclinado e investigar a relação µ c = tan θ, sendo θ independente de m b + m a. m a 0 θ h/l média tan θ média Tabela III: Dados coletados na Parte B do experimento usando um plano inclinado. Valor de µ c : (valor médio da tan θ) Diferença percentual entre µ c = tan θ e µ c obtido no procedimento anterior: Cálculos: Página 5
6 DEIS - ICEB - UOP QUESTIOÁRIO 1. Explique por que e µ e ; ou seja, por que e é menor ou igual a µ e? 2. Mostre que tan θ é igual a µ c quando o bloco desliza no plano inclinado com velocidade constante. [utilize apenas símbolos (letras), não use números] 3. Sendo z = p/q, em que q e p são valores medidos com incertezas δq e δp respectivamente, o erro propagado ao valor de z é dado por δz = z (δp/p) 2 + (δq/q) 2. Encontre a incerteza do valor de h/l para m a = 0. Com base nesta incerteza, os d(tan θ) valores de h/l e da tan θ possuem baixa ou alta precisão? ota: δ(tan θ) = [ dθ δθ] 2 = (sec θ) 4 δθ 2, com θ e δθ em unidades de radianos. 4. Explique por que a força de reação normal de uma superfície sobre um objeto é usada para determinar a força de atrito ao invés da força peso do objeto. 5. Com base nos seus resultados experimentais, escreva uma conclusão sobre a validade da regras empíricas para o atrito. O que você acha da aplicação de regras gerais a todos os materiais para descrever o atrito? Página 6
7 DEIS - ICEB - UOP Página 7
Apresentação: Trabalho e energia
Apresentação: Trabalho e energia INTRODUÇÃO Como enfatizado na comum definição de energia como a habilidade de realizar trabalho, os conceitos de trabalho e energia estão intimamente relacionados. Dizemos
Apresentação: Movimento unidimensional
Apresentação: Movimento unidimensional INTRODUÇÃO Um objeto em movimento uniformemente acelerado, ou seja, com aceleração constante, é um importante caso da cinemática. O exemplo mais comum desse tipo
Força de atrito e as leis de Newton. Isaac Newton
Força de atrito e as leis de Newton Isaac Newton o Causadas pelo movimento de um corpo em relação a outro ou em relação ao ambiente o Sempre apontam na direção contrária ao movimento (frenagem) o Força
Data: Metodologia utilizada/descrição das atividades (anexar modelos): Em anexo.
CÂMPUS: Rio do Sul LABORATÓRIO DE PRÁTICAS PEDAGÓGICAS RELATÓRIO DE ATIVIDADE Curso: Licenciatura em Física Disciplina: Física 2 Turma: 2013.2 Professor: Bruno Data: Tema da aula: Dinâmica Conteúdos relacionados:
Experimento: Determinação do coeficiente de atrito
Física Mecânica Roteiros de Experiências 50 UNIMONTE, Engenharia Laboratório de Física Mecânica Experimento: Determinação do coeficiente de atrito Turma: Data: : Nota: Participantes Nome RA Introdução
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015 OBS: Quando necessário, considere como dados a aceleração da
Objetivo Gerâl. 1. Metâs Específicâs. 2. Introduçâ o Teo ricâ. 3. Previsâ o AL 1.2- ATRITO ESTÁTICO E ATRITO CINÉTICO.
AL 1.2- ATRITO ESTÁTICO E ATRITO CINÉTICO Autora : Fernanda Neri TI-Nspire Objetivo Gerâl Concluir que as forças de atrito entre sólidos dependem dos materiais das superfícies em contacto, mas não da área
Questões. Exercícios e Problemas
Lista 7: A Terceira Lei de Newton Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução
Prática V MOVIMENTO NO PLANO INCLINADO
Prática V MOVIMENTO NO PLANO INCLINADO OBJETIVOS Determinação dos coeficientes de atrito estático e cinético. INTRODUÇÃO Quando se tenta colocar um objeto sólido em movimento ao longo de uma superfície
Estudo Dirigido de Plano Inclinado
Curso: Engenharia Civil Disciplina: Física Geral e Experimental I Período: 1 período Data: 30/03/2012 Prof.a: Érica Estanislau Muniz Faustino 1ª Etapa Estudo Dirigido de Plano Inclinado 1- O bloco representado
Lucas Friseira Guilherme Amuy Otavio Brietzke Ana Luiza Bovoy Wissam Akl
Lucas Friseira Guilherme Amuy Otavio Brietzke Ana Luiza Bovoy Wissam Akl OBJETIVOS DO PROJETO Esse trabalho tem por objetivo o estudo dos diferentes modos de se calcular o coeficiente de atrito entre o
SEGUNDA LEI DE NEWTON
Experimento 2 SEGUNDA LEI DE NEWTON Objetivo Introdução Verificar a Segunda Lei de Newton a partir da análise do movimento de translação de um corpo sobre um plano horizontal variando-se a força resultante,
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015 1. Uma partícula move-se em linha reta, partindo do repouso
Física I Prova 1 09/01/2016
Nota Física I Prova 1 09/01/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10
28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 26/Fev/2018 Aula 3
26/Fev/2018 Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira lei (inércia) 3.2.1 Referenciais de inércia 3.3 Segunda lei (F=ma) 3.4 Terceira lei (reação) 3.4.1 Peso e peso
Lista de exercícios 2 Mecânica Geral III
Lista de exercícios 2 Mecânica Geral III 13.3 O trem de 160 Mg parte do repouso e começa a subir o aclive, como mostrado na figura. Se o motor exerce uma força de tração F de 1/8 do peso do trem, determine
LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 07 LEIS DE NEWTON E APLICAÇÕES PROF. BETO E PH
LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 07 LEIS DE NEWTON E APLICAÇÕES PROF. BETO E PH 1) Um paraquedista salta de um avião e cai até sua velocidade de queda se tornar constante. Podemos afirmar que
A B. a força conjunta. (a) Qual é a força que Saulo faz? (b) Se o ângulo mudar para 150, qual será a força aplicada
Universidade Federal de Santa Catarina Centro de Ciencias Físicas e Matemáticas Departamento de Física Física I (FSC 5101) Prof. Emmanuel G. de Oliveira Lista de exercício I Versão de 11 de agosto de 2017
Aplicações de Leis de Newton
Aplicações de Leis de Newton Evandro Bastos dos Santos 22 de Maio de 2017 1 Introdução Na aula anterior vimos o conceito de massa inercial e enunciamos as leis de Newton. Nessa aula, nossa tarefa é aplicar
FORÇA DE ATRITO 1
FORÇA DE ATRITO 1 FORÇA DE ATRITO 2 FORÇA DE ATRITO 3 FORÇA DE ATRITO 4 FORÇA DE ATRITO O que é força de atrito? Força de atrito estático e coeficiente de atrito estático µ E Força de atrito cinético e
Lista 9 : Dinâmica Rotacional
Lista 9 : Dinâmica Rotacional NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder
LISTA DE EXERCÍCIOS Nº 9
LISTA DE EXERCÍCIOS Nº 9 Questões 1) A Figura 1 apresenta a vista superior de 3 partículas sobre as quais forças externas agem. A magnitude e a direção das forças sobre 2 partículas são apresentadas. Quais
Lista 5 Leis de Newton
Sigla: Disciplina: Curso: FISAG Física Aplicada a Agronomia Agronomia Lista 5 Leis de Newton 01) Um corpo de massa m sofre ação de duas forças F1 e F2, como mostra a figura. Se m = 5,2 kg, F1 = 3,7 N e
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para
CINEMÁTICA E DINÂMICA
PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)
Roteiro: Experimento 4: Forças de Atrito
Universidade Federal de Santa Catarina - Câmpus Blumenau Física Experimental 1 Roteiro: Experimento 4: Forças de Atrito Prof. Rafael L. Novak 1 Introdução As forças de atrito são forças que aparecem quando
LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO
LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO 1 Um bloco de massa m = 10 kg, inicialmente a uma altura de 2 m do solo, desliza em uma rampa de inclinação 30 o com a horizontal. O bloco é seguro
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 7
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 7 Determinação da constante elástica de uma mola utilizando o plano inclinado por fuso Disciplina:
5 Forças em Dinâmica. 1 Princípio da inércia (primeira lei de Newton) 2 Princípio fundamental da Dinâmica (segunda lei de Newton)
F=m.a 5 Forças em Dinâmica A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam. Significa que a força resultante F produz uma aceleração a com mesma direção
Experimento 3 Rolamento
Experimento 3 Rolamento Determinar os tempos de queda de objetos cilíndricos rolando sem escorregamento em um plano inclinado e relacioná-los com a distribuição de massa dos objetos. Introdução Considere
Sumário. Mecânica. A força de atrito como força de ligação
Sumário Unidade I MECÂNICA 1- da partícula Movimento de corpos sujeitos a ligações. - Movimento de uma partícula material sujeita a forças de atrito. - Atrito estático e atrito cinético entre sólidos.
Como os antigos egípcios levantaram os gigantescos blocos de pedra para construir a grande Pirâmide?
Como os antigos egípcios levantaram os gigantescos blocos de pedra para construir a grande Pirâmide? Força de Atrito A importância do atrito na vida diária: Cerca de 20 % da gasolina usada em um automóvel
Fís. Leonardo Gomes (Arthur Ferreira Vieira)
Semana 10 Leonardo Gomes (Arthur Ferreira Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações.
Lista 10: Energia Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de problemas
Data e horário da realização: 17/07/2018 das 14 às 17 horas
re UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE DEPARTAMENTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA Exame de Seleção para o curso de mestrado em Física - 2018-2 Data e horário da realização: 17/07/2018
Lista 7: Terceira Lei de Newton
Lista 7: Terceira Lei de Newton NOME: Matrícula: Turma: Prof. : Importante: i. As cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Leia os enunciados com atenção. iii. Responder
Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I
Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I Experiência 06 PLANO INCLINADO 1. OBJETIVOS Ao término da experiência o aluno deverá ser capaz
FÍSICA - 3 o ANO MÓDULO 06 PLANO INCLINADO
FÍSICA - 3 o ANO MÓDULO 06 PLANO INCLINADO P T P N θ P Como pode cair no enem? Uma máquina utiliza um carrinho para retirar carvão do interior de uma mina, puxando-o, sobre um plano inclinado, por meio
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 3
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental: EXPERIMENTO 3 Determinação da aceleração da gravidade local utilizando o plano inclinado por fuso Disciplina:
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5)
Física I para a Escola Politécnica (4323101) - P1 (10/04/2015) [16A7]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5) ando necessário, use g=10 m/s 2 (1) [1,0 pt] A figura abaixo representa dois blocos 1 e 2,
Física 1. Rotação e Corpo Rígido Resumo P3
Física 1 Rotação e Corpo Rígido Resumo P3 Fórmulas e Resumo Teórico Momento Angular - Considerando um corpo de massa m a um momento linear p, temos: L = r p = r mv Torque - Considerando uma força F em
ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA
Curso: Engenharia Civil Disciplina: Física Geral Experimental I Período: 1 período Data: 04/16/2014 Prof.a: Érica Estanislau Muniz Faustino ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA 1-
UERJ/DFNAE Física Geral - Lista /2
UERJ/DFNAE Física Geral - Lista 2-2018/2 1. Identifique as forças que atuam sobre os corpos indicados nas figuras. 2. Dois blocos de peso P, são mantidos em equilíbrio em um plano inclinado sem atrito,
LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:
OLIMPÍADA BRASILEIRA DE FÍSICA 2015 3ª FASE 10 DE OUTUBRO DE 2015 PROVA EXPERIMENTAL NÍVEL II Ensino Médio 1ª e 2ª série. LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01 - Esta prova destina-se exclusivamente
Lista 14: Oscilações. Questões
Lista 14: Oscilações NOME: Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para resolução
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para
Lista 10: Dinâmica das Rotações NOME:
Lista 10: Dinâmica das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii. Responder
Questão Valor Grau Revisão
PUC-RIO CB-CTC G1 DE FIS 1033 Nome: GABARITO Turma: Matrícula: Questão Valor Grau Revisão 1ª 3,0 2ª 4,0 3ª 3,0 TOTAL Identidades trigonométricas: sen (2 ) = 2 sen ( ) cos ( ) As respostas sem justificativa
Avaliação: EXERCÍCIO ON LINE 2º Bimestre. Curso: 3ª SÉRIE TURMA: 3101 / 3102 DATA:
Avaliação: EXERCÍCIO ON LINE 2º Bimestre DISCIPLINA: FÍSICA 1 PROFESSOR(A): ANDERSON CUNHA Curso: 3ª SÉRIE TURMA: 3101 / 3102 DATA: NOME: Nº.: 1) (FGV-SP) O sistema indicado está em repouso devido à força
EXERCÍCIOS RESOLVIDOS
EXERCÍCIOS RESOLVIDOS 1) Determine a aceleração adquirida por um corpo de massa 3 kg ao escorregar em um plano inclinado de 40 de inclinação. Considere g 10 m/s 2 e μ = 0,3. sen 40 0,64 cos 40 0,76 Devemos
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Lista de Exercícios 2_2 BIMESTRE Nome: Nº Turma: 1 EM Profa Kelly Data: Conteúdo: Força elástica; Plano inclinado. 1 Uma criança desliza em um tobogã muito longo,
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Dois blocos de massas 4, 00 kg e 8, 00 kg estão ligados por um fio e deslizam para baixo de um plano inclinado de
Importante: Lista 3: Leis de Newton e Dinâmica da Partícula NOME:
Lista 3: Leis de Newton e Dinâmica da Partícula NOME: Matrícula: Turma: Prof. : Importante: i. As cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção.
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS 1 Esta lista trata dos conceitos de cinemática 1D, cinemática 2D, leis de Newton e aplicações. Tais temas são abordados nos capítulos 2, 3, 4 e 5 do livro-texto: Moysés Nussenzveig,
Lista 12: Oscilações NOME:
Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de
Fís. Semana. Leonardo Gomes (Guilherme Brigagão)
Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
Física 1. 1 a prova 22/09/2018. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 1 a prova 22/09/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Movimento Circular Uniforme (MCU)
Movimento Circular Uniforme (MCU) F R = cons tan te; o FR sempre forma 90 com v; A F é chamadade forçacentrípeta R Período: T É o tempo gasto em uma volta. Unidades S.I. : s (segundo). T = t n Frequência
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS MEDIANEIRA Engenharia Elétrica Física 1 - Prof. Fabio Longen
1 UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS MEDIANEIRA Engenharia Elétrica Física 1 - Prof. Fabio Longen Lista 3 Turma E11/14 31/08/17 1) Uma força F aplicada a um corpo de massa m1 produz uma
Leis de Newton: Dinâmica 2- Atrito e Força em Trajetória Curva.
QUESTÕES DO CAPÍTULO 6 DO LIVRO FUNDAMENTOS DE FÍSICA HALLIDAY & RESNICK - JEARL WALKER 9ª EDIÇÃO VOLUME 1 MECÂNICA Leis de Newton: Dinâmica 2- Atrito e Força em Trajetória Curva. Leis de Newton Força
Física I Lista de Problemas 3.2
Física I - 2017.2 - Lista de Problemas 3.2 1 Física I Lista de Problemas 3.2 Departamento de Física de Ji-Paraná Universidade Federal de Rondônia Prof. Marco Polo Questão 01: Você deixa cair um livro de
Lista5: Força e Movimento
Lista 5: Força e Movimento Lista revisada pelo prof. Hisataki Ano: 2_2015 Importante: i. Ler com muita atenção o enunciado duas ou mais vezes. ii. Colocar em um diagrama o enunciado da questão. Essa é
DISCURSIVAS. Solução: (a) Com os eixos escolhidos conforme a figura, a altura instantânea da caixa a partir do instante t=0 em que começa a cair é
DISCURSIVAS 1. Um pequeno avião monomotor, à altitude de 500m, deixa cair uma caixa. No instante em que a caixa é largada, o avião voava a 60,0m/s inclinado de 30,0 0 acima da horizontal. (a) A caixa atinge
Segunda lei de Newton
Segunda lei de Newton Pela 1ª lei de Newton, não precisamos de força para manter a velocidade de um corpo, mas sim para produzir mudanças (variações) dessa velocidade. Newton apresenta a relação existente
Fís. Semana. Leonardo Gomes (Guilherme Brigagão)
Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
FÍSICA - 1 o ANO MÓDULO 07 ESTUDO DO PLANO INCLINADO
FÍSICA - 1 o ANO MÓDULO 07 ESTUDO DO PLANO INCLINADO g m θ g m θ P g m Direção tangente ao plano inclinado θ P θ Direção normal ao plano inclinado g P θ P θ m P n F O b N s m Psen 30 o 1 a Pcos 30 o a
Universidade Federal do Rio de Janeiro Instituto de Física Física 1 - Turmas de 6 horas 2015/2 Oficinas de Física 1 Exercícios E4*
Universidade Federal do Rio de Janeiro Instituto de Física Física 1 - Turmas de 6 horas 2015/2 Oficinas de Física 1 Exercícios E4* 1) Um trabalhador de uma fábrica exerce uma força horizontal para empurrar
(1) O vetor posição de uma partícula que se move no plano XY é dado por:
4320195-Física Geral e Exp. para a Engenharia I - 1 a Prova - 12/04/2012 Nome: N o USP: Professor: Turma: A duração da prova é de 2 horas. Material: lápis, caneta, borracha, régua. O uso de calculadora
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 6
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 6 Condições de equilíbrio estático utilizando o plano inclinado por fuso Disciplina: Física Experimental
Física A Extensivo V. 4
Extensivo V. 4 Exercícios 01) 01. Falso. F r = 0 MRU 0. Verdadeiro. 04. Verdadeiro. Aceleração centrípeta ou radial. 08. Falso. As forças são iguais em módulo. 16. Verdadeiro. 3. Falso. A ação nunca anula
b) a intensidade da força de contato entre A e B.
LISTA DE ATRITO 1. (FGV-SP) O sistema indicado está em repouso devido à força de atrito entre o bloco de massa de 10 kg e o plano horizontal de apoio. Os fios e as polias são ideais e adota-se g = 10 m/s
Ismael Rodrigues Silva Física-Matemática - UFSC.
Ismael Rodrigues Silva Física-Matemática - UFSC www.ismaelfisica.wordpress.com Máquinas Simples(ver arquivo) Revisão... ForçadeAtrito... AlgunsSistemasMecânicos... SistemasMecânicos... Máquinas Simples:
Parte 2 - PF de Física I NOME: DRE Teste 1
Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida
MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO
Lista5: Força e Movimento
Lista 5: Força e Movimento NOME: Matrícula: Turma: Prof. : Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii.
Capítulo 5 DINÂMICA θ α
Capítulo 5 DINÂMICA θ α DISCIPLINA DE FÍSICA CAPÍTULO 5 - DINÂMICA 5.1 Considere um pêndulo cónico com uma massa m 1 suspensa por um cabo de comprimento igual a 2,5 metros. 5.1.1 Determine a velocidade
Primeira Lista de Exercícios.
Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m
Física I. Dinâmica de Corpos Rígidos Lista de Exercícios
Física I Dinâmica de Corpos Rígidos Lista de Exercícios 1. Campo de Velocidades e Centro Instantâneo de Rotação Dados os itens abaixo, responda ao que se pede: a. O disco abaixo está preso a uma articulação
Leis de Newton. Se eu vi mais longe, foi por estar de pé sobre ombros de gigantes. Sir Isaac Newton
Leis de Newton Se eu vi mais longe, foi por estar de pé sobre ombros de gigantes. Sir Isaac Newton O QUE É FORÇA? A ideia de empurrar ou puxar um corpo para colocá-lo em movimento está relacionada ao conceito
A) 50 N B) 100 N C) 200 N D) 300 N E) 400 N
Aplicações das Leis de Newton 1) Na tabela seguinte apresentamos as acelerações adquiridas por três automóveis A, B, C quando sobre eles atuam as forças indicadas abaixo. Utilizando o princípio fundamental
Física I Lista de Problemas 2.2
Física I - 2017.2 - Lista de Problemas 2.2 1 Física I Lista de Problemas 2.2 Departamento de Física de Ji-Paraná Universidade Federal de Rondônia Prof. Marco Polo Questão 01: Uma pessoa empurra horizontalmente
Dados: sen 37 0,60 e cos 37 Considere a aceleração da gravidade igual a a) 125 N b) 200 N c) 225 N d) 300 N e) 400 N. 10 m s.
1. Um bloco A de massa 100 kg sobe, em movimento retilíneo uniforme, um plano inclinado que forma um ângulo de 37 com a superfície horizontal. O bloco é puxado por um sistema de roldanas móveis e cordas,
A.L.1.2 ATRITO ESTÁTICO E CINÉTICO
A.L.1.2 ATRITO ESTÁTICO E CINÉTICO FÍSICA 12.ºANO BREVE INTRODUÇÃO Por que será mais fácil empurrar um caixote depois de ele entrar em movimento do que quando está parado? Esta é uma questão que poderá
Dinâmica aula 02 Atrito e Plano Inclinado
1) figura abaixo ilustra três corpos, e C unidos por fio inextensível e de massa desprezível. s massas dos corpos são, respectivamente, iguais a 10 kg, 15 kg e 25 C kg. intensidade da força F é 100 N e
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P3 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [2,5 pontos] Um bloco de massamestá pendurado por um fio ideal que está enrolado em uma polia fixa, mas que pode girar em torno
Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope.
Q1-1 Dois Problemas de Mecânica Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Parte A. O Disco Escondido (3,5 pontos) Considere um cilindro
Fís. Leonardo Gomes (Arthur Vieira)
Semana 10 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 03/04
MOVIMENTO EM UMA DIMENSÃO
MOVIMENTO EM UMA DIMENSÃO Material Utilizado: - um conjunto para experimentos com trilho de ar composto de: - um trilho de ar (PASCO SF-9214) - um gerador de fluxo de ar (PASCO SF-9216) - um carrinho deslizante
Força de Atrito em Polias Bloqueadas
Força de Atrito em Polias Bloqueadas 1 Objetivo Estudar a transmissão da força de atrito de um elemento linear do tipo correia, corda ou cabo sobre polias bloqueadas. 2 Introdução teórica 2.1 Força de
PROVA G1 FIS /08/2008 MECÂNICA NEWTONIANA
PROVA G1 FIS 1021 28/08/2008 MECÂNICA NEWTONIANA NOME: Gabarito N o : TURMA: QUESTÃO VALOR GRAU REVISÃO 1 2,5 2 0,75 3 2,75 4 4,0 TOTAL 10,0 Dados: g = 10,0 m/s 2 = 1000 cm/s 2 Sistema de coordenadas y
Lista de exercícios 4 Mecânica Geral III
Lista de exercícios 4 Mecânica Geral III F15.3 O motor exerce uma força de = 20 N sobre o cabo, onde t é dado em segundos.determine a velocidade da caixa onde t = 4 s. Os coeficientes de atrito estático
Disponível em: <www.pontedelaguna.com.br> [Adaptado] Acesso em: 17 ago
1. (G1 - ifsc 2015) Um pássaro está em pé sobre uma das mãos de um garoto. É CORRETO afirmar que a reação à força que o pássaro exerce sobre a mão do garoto é a força: a) da Terra sobre a mão do garoto.
Lista Recuperação Paralela I Unidade
Aluno(a) Turma N o Série 2 a Ensino Médio Data / / 06 Matéria Física Professores Abud/Bahiense Lista Recuperação Paralela I Unidade 01. (FEI-SP) Em uma mola foram penduradas diferentes massas e verificou-se
Física I Prova 2 10/05/2014
Posição na sala Física I Prova 2 10/05/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente)
