BC Fenômenos Mecânicos. Experimento 1 - Roteiro
|
|
|
- Fernando Aldeia Lisboa
- 8 Há anos
- Visualizações:
Transcrição
1 BC Fenômenos Mecânicos Experimento 1 - Roteiro Movimento Retilíneo Uniforme (MRU) Professor: Turma: Data: / /2015 Introdução e Objetivos Na disciplina de Fenômenos Mecânicos estamos interessados em estudar o movimento de corpos materiais numa situação idealizada livre de forças de atrito. Para se aproximar dessa situação idealizada utilizamos um equipamento denominado trilho (ou colchão) de ar. Esse equipamento é projetado para minimizar as forças de atrito. O corpo que flutua sobre o colchão de ar é denominado carrinho. Nesse experimento introdutório o objetivo é estudar o movimento livre do carrinho após este adquirir uma determinada velocidade inicial. Iremos medir diretamente intervalos de espaço L e tempo t avaliando as incertezas envolvidas nessas medidas diretas L e t. Para a construção do gráfico de posição x em função do tempo t será necessário utilizarmos as regras de propagação de erros para o cálculo das incertezas x e t. Através do coeficiente angular desse gráfico seremos capazes de obter a taxa de variação da posição com o tempo (a velocidade) no percurso total e comparar esse dado experimental com as velocidades médias em cada intervalo. Materiais Trilho de ar Gerador de fluxo de ar Carrinho deslizante Régua Chave inversora Cronômetro digital Sensores fotoelétricos
2 Advertências Para não produzir arranhões na superfície do trilho de ar nunca movimente os carrinhos sobre o mesmo sem que o gerador de fluxo de ar esteja funcionando. Verifique se a pista e a parte inferior do carrinho se encontram bem limpas; caso contrário limpe-as com um pano úmido. Evite choques mecânicos fortes entre o carrinho e o trilho. Tenha cuidado com o equipamento. Uma queda de alguns centímetros pode inutilizar o carrinho por completo. Procedimento Experimental 1. Identifique todos os componentes do conjunto experimental. 2. Como mostrado na Figura 1 sobre o trilho de ar estão dispostos cinco módulos de detecção que registram o momento da passagem do carrinho e definem quatro intervalos espaciais bem definidos L I L II L III e L IV. 3. Com o auxílio de uma régua determine os intervalos entre os módulos de detecção medindo a distância entre os fotodetectores. Note que estes últimos têm uma dimensão finita a qual deve ser levada em conta ao se medir a distância entre eles. Para tanto efetue três medidas considerando: Medida 1: distância centro a centro de cada módulo; Medida 2: distância entre seus extremos mais distantes e Medida 3: distância entre seus extremos mais próximos. 4. Anote os dados na Tabela 1. LI LII LIII LIV Figura 1. Diagrama esquemático do trilho de ar do carrinho e dos suportes dos detectores de passagem. 5. Posicione o carrinho no centro do trilho e ligue o gerador de fluxo de ar. Ajuste o fluxo para que o carrinho deslize livremente isto é sem atrito sobre o trilho. Não é necessário utilizar a potência máxima do gerador! Isso é até desaconselhável pois a potência máxima pode provocar trepidações. 6. Verifique o nivelamento do trilho de ar. Posicione o carrinho no centro do mesmo procurando mantê-lo parado sem ter que apoiá-lo. Caso ele tenda a deslizar sozinho sempre para o mesmo lado isso indica que o trilho está desnivelado. Se necessário ajuste os pés do trilho.
3 7. Posicione o carrinho na extremidade do trilho onde está localizado o eletroímã travando-o magneticamente na posição inicial. 8. Familiarize-se com os controles do cronômetro digital. Verifique se o mesmo está funcionando. Para isso zere o cronômetro e em seguida obstrua os detectores com a mão em sequência um a um. Efetuados os testes zere o cronômetro novamente. Casa haja algum problema chame o técnico do laboratório. 9. Acione a chave inversora para liberar o carrinho e ao mesmo tempo dar a ele uma determinada velocidade inicial. Sempre que acionar a chave mantenha-a pressionada por pelo menos um segundo. Anote na Tabela 1 os quatro intervalos de tempo t It II t III t IV mostrados no cronômetro essa é a Medida Volte o carrinho para a sua posição inicial zere o cronômetro e repita o passo 9 para fazer a Medida Repita o passo 10 para obter os dados da Medida 3. Tratamento e Análise dos Dados Experimentais Cálculo da velocidade média de cada intervalo Conhecendo-se o intervalo de tempo t i e o intervalo de espaço entre o respectivo par de sensores ou seja a distância entre dois sensores L i pode-se determinar a velocidade média em cada trecho i do percurso pela fórmula experimental L i e t i. v L i i (1) ti com i = I a IV Como a velocidade média é uma grandeza determinada de forma indireta para determinarmos sua incerteza v i é necessário fazermos a propagação de erro considerando as incertezas na determinação direta de Método gráfico para obtenção da velocidade média Quando um objeto efetua um Movimento Retilíneo Uniforme (MRU) podemos descrever a evolução temporal de sua posição pela seguinte equação: x(t) = x 0 + v t (2) Para determinar se o carrinho que flutua sobre o trilho de ar efetua um MRU devemos verificar se os dados experimentais satisfazem a relação linear expressa pela Equação (2). Note que o que medimos de fato são os intervalos espaciais L i (ou x i) e temporais t i e não a posição x e o tempo t que aparecem nessa equação. Assim o próximo passo é conectar esses intervalos com x e t. Vamos considerar a posição do detector 1 como a origem do eixo x (x 0 = 0) e a origem do tempo (t 0 = 0) como o instante em que o carrinho passa por esse detector. Dessa forma as posições x i e os respectivos tempos t i são determinados por:
4 x 1 x 2 + L II x 3 + L II + L III (3) x 4 + L II + L III + L IV e t 1 t 2 + Dt II t 3 + Dt II + Dt III (4) t 4 + Dt II + Dt III + Dt IV Observação: Considerar a média das 3 medidas de Li e de t i conforme calculado na Tabela 1. O gráfico de x versus t pode assim ser traçado utilizando os dados obtidos das relações (3) e (4). Procedimento de análise de dados 1. Faça o tratamento estatístico dos dados de espaço calculando os valores médios L i e as incertezas Li usando a fórmula do desvio padrão da média. 2. Faça o mesmo tratamento estatístico dos dados de tempo. 3. Calcule e anote na Tabela 1 as velocidades médias de cada intervalo e suas respectivas incertezas usando a equação (1) e as regras de propagação de erro apropriadas. 4. Considerando as relações (3) e (4) bem como as regras de propagação de erro apropriadas preencha a Tabela No papel milimetrado trace um gráfico de posição X (eixo vertical) versus tempo t (eixo horizontal) utilizando todos os dados disponíveis na Tabela 2. Utilize escalas otimizadas em ambos os eixos não esquecendo o rótulo/nome de cada eixo e a respectiva unidade de medida. 6. Após esboçar os pontos experimentais com as barras de erro correspondentes trace a reta que melhor se ajusta visualmente a esses pontos. 7. Obtenha então o coeficiente angular dessa reta. 8. Trace as retas mínima e máxima para determinar a incerteza dos coeficientes angular e linear.
5 QUESTÃO 1 QUESTÕES Qual é a fórmula prática utilizada no cálculo da incerteza da velocidade de cada intervalo? QUESTÃO 2 Considerando a Eq.(2) qual a interpretação do coeficiente angular da reta obtida no gráfico de x versus t? QUESTÃO 3 Qual o valor da velocidade média do carrinho determinado pelo método gráfico? Mostre explicitamente os cálculos utilizados para chegar ao resultado (se necessário use o verso). QUESTÃO 4 Compare os valores da velocidade média em cada trecho com o valor da velocidade média encontrada pelo método gráfico. Levando em consideração as incertezas de todas essas medidas o que seu experimento permite concluir?
6 Tabela 1. Dados das medições de intervalos de espaço e tempo do experimento de MRU relativos aos quatro trechos do trilho de ar. Intervalo I II III IV Medida # LI (cm) ti (s) LII (cm) tii (s) LIII (cm) tiii (s) LIV (cm) tiv (s) Média Incerteza v (cm/s) σ v (cm/s) Tabela 2. Posição do carrinho ao passar por um sensor em função do tempo. Sensor # X (cm) σ X (cm) t (s) σ t (s) v
BC Fenômenos Mecânicos. Experimento 4 - Roteiro
BC 0208 - Fenômenos Mecânicos Experimento 4 - Roteiro Colisões Elásticas e Inelásticas Professor: Turma: Data: / /2015 Introdução A lei da conservação do momento linear é tão importante quanto a lei de
Experimento A1: Movimento Retilíneo Uniforme (MRU) E Movimento Retilíneo Uniformemente Variado (MRUV)
Experimento A1: Movimento Retilíneo Uniforme (MRU) E Movimento Retilíneo Uniformemente Variado (MRUV) 1 - INTRODUÇÃO A Mecânica é a área da Física que estuda o movimento dos objetos. Por razões de organização
Experimento A 4 : Colisões
Experimento A : Colisões Objetivos Estudar as colisões elásticas e inelásticas Verificar os princípios de conservação do momento linear. Verificar os princípios de conservação da energia. Apresentação
BC 0208 Fenômenos Mecânicos. Experimento 2 - Roteiro
BC 0208 Fenômenos Mecânicos Experimento 2 - Roteiro Movimento Retilíneo Uniformemente Variado (MRUV) Professor: Turma: Data: / /2015 Introdução e Objetivos No Experimento 1 estudamos o Movimento Retilíneo
Apresentação: Movimento unidimensional
Apresentação: Movimento unidimensional INTRODUÇÃO Um objeto em movimento uniformemente acelerado, ou seja, com aceleração constante, é um importante caso da cinemática. O exemplo mais comum desse tipo
Experimento: Movimento Retilíneo Uniforme
Física Mecânica Roteiros de Experiências 22 UNIMONTE, Engenharia Laboratório de Física Mecânica Experimento: Movimento Retilíneo Uniforme Turma: Data: : Nota: Participantes Nome RA Descrição e objetivo
Movimento Retilíneo Uniforme
Movimento Retilíneo Uniforme 1 Objetivos Estudar o Movimento Unidimensional realizando experimentos com um carrinho, em Movimento Retilíneo Uniforme, sobre um trilho de ar. Construir e análisar grácos
Movimento Retilíneo Uniforme Variado M08
FSC5122 2017/1 Movimento Retilíneo Uniforme Variado M08 Ø Introdução e teoria básica Nesta experiência estudaremos o movimento retilíneo uniformemente variado (vulgo MRUV) observando o movimento de um
MOVIMENTO EM UMA DIMENSÃO
MOVIMENTO EM UMA DIMENSÃO Material Utilizado: - um conjunto para experimentos com trilho de ar composto de: - um trilho de ar (PASCO SF-9214) - um gerador de fluxo de ar (PASCO SF-9216) - um carrinho deslizante
Experimento MRU Construindo Gráficos Propagação de Erros
Universidade Federal de Lavras Departamento de Física Experimento MRU Construindo Gráficos Propagação de Erros Laboratório de Física A e I Objetivos e Materiais Objetivos: Estudar os conceitos básicos
Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.
84 10.3 Experimento 3: Segunda Lei de Newton 10.3.1 Objetivo Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.
LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica
LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica Experimento N 0 03: MOVIMENTO RETILINEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORME VARIADO Objetivos Gerais Ao termino desta atividade o aluno deverá
SEGUNDA LEI DE NEWTON
Experimento 2 SEGUNDA LEI DE NEWTON Objetivo Introdução Verificar a Segunda Lei de Newton a partir da análise do movimento de translação de um corpo sobre um plano horizontal variando-se a força resultante,
Relatório: Experimento 1
Relatório: Experimento 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Nome 4: Assinatura 4: Turma: Procedimento I: Lei de Ohm Q1 (0,5 ponto) Monte o circuito indicado na Figura 1.11
Experimento A5: Colisões
Experimento A5: Colisões 1 - INTRODUÇÃO Uma colisão é uma interação com duração limitada entre dois ou mais corpos. O choque entre bolas de sinuca é um exemplo, onde é possível observar que o movimento
6.1 Relatório 1 74 CAPÍTULO 6. PRÉ-RELATÓRIOS E RELATÓRIOS. Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma:
74 CAPÍTULO 6. PRÉ-RELATÓRIOS E RELATÓRIOS 6.1 Relatório 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma: Procedimento I: Lei de Ohm Q1 (0,5 ponto) Monte o circuito indicado na
2.2 Segunda Lei de Newton
50 CAPÍTULO 2. SÉRIE A 2.2 Segunda Lei de Newton 2.2.1 Material Necessário 01 trilho de ar 120 cm com polia no fim do curso; 01 carrinho para trilho de ar; 01 pino para carrinho para interrupção de sensor;
Experimento A3: Segunda Lei de Newton
Experimento A3: Segunda Lei de Newton 1 - INTRODUÇÃO As formulações dadas por Newton das leis do movimento parecem simples e carregadas de pouca complexidade matemática. Entretanto, envolvem definições,
2.1 Colisões Unidimensionais - Choque Elástico
44 2.1 Colisões Unidimensionais - Choque Elástico 2.1.1 Material Necessário 01 trilho de ar 120 cm com polia no fim do curso; 02 carrinho para trilho de ar; 02 bandeiras para carrinho para interrupção
EXPERIMENTO II MOVIMENTO RETILÍNEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO.
EXPERIMENTO II MOVIMENTO RETILÍNEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO. Este experimento consiste em duas etapas. A primeira é a realização do Movimento Retilíneo Uniforme. A segunda é
Laboratório de Física
Laboratório de Física Experimento 03 - Trilho de Ar Movimento a Força Constante Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/11 03 - Trilho de
Relatório: Experimento 3
Relatório: Experimento 3 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma: Procedimento I Q1 (0,5 ponto) Apresente os valores experimentais encontrados para τ e t 1/2 do circuito
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 6
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 6 Condições de equilíbrio estático utilizando o plano inclinado por fuso Disciplina: Física Experimental
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE FÍSICA
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE FÍSICA Disciplina: Física Experimental I Data: 8/12/2017 Roteiro de experimento Experimento de Lançamento de projéteis Este
1ª Ficha de Laboratório Turma: 11ºA. Física e Química A - 11ºAno
1ª Ficha de Laboratório Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 10 de janeiro 2017 Ano Letivo: 2016/2017 90 min 1. Para investigar se o módulo da aceleração da gravidade
Laboratório de Física
Laboratório de Física Experimento 05: Queda Livre Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/9 05 - Queda Livre 1.1. Objetivos Determinar a
Experimento: Determinação da constante elástica de uma mola
Física Mecânica Roteiros de Experiências 54 UNIMONTE, Engenharia Laboratório de Física Mecânica Experimento: Determinação da constante elástica de uma mola Turma: Data: : Nota: Participantes Nome RA Introdução
Laboratório de Física
Laboratório de Física Experimento 05: Queda Livre Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/8 Experimento 05 - Queda Livre 1.1. Objetivos Determinar
Medidas Físicas e Noções de Estatística Descritiva
Medidas Físicas e Noções de Estatística Descritiva 1 Objetivo Familiarização com o trilho de ar e com todos os seus acessórios periféricos, utilizados no Laboratório de Física. Introdução ao estudo do
BC 0208 - Fenômenos Mecânicos. Experimento 4 - Roteiro
BC 0208 - Fenômenos Mecânicos Experimento 4 - Roteiro Colisões Elásticas e Inelásticas Professor: Turma: Data: / /2015 Introdução A lei da conservação do momento linear é tão importante quanto a lei de
Introdução às medidas físicas ( ) Aulas 6 e 7 Queda livre
Introdução às medidas físicas (43005) Aulas 6 e 7 Queda livre Grupo: Nome: Nome: Nome: Introdução: Qual é o objetivo do experimento? Qual é o método que usará para atingir seu objetivo? Medidas Experimentais:
Movimento Uniforme (MU)
Faculdade de Engenharia de Sorocaba Laboratório de Física Física Experimental I EXPERIÊNCIA 02 Nome Número Turma Data Movimento Uniforme (MU) 2.1 Fundamentos Teóricos A cinemática é a parte da física que
Universidade Federal do Espírito Santo
Universidade Federal do Espírito Santo Prof. Paulo Moscon Cinemática Utilizando um colchão de ar São Mateus, 30 de agosto de 2016 Conteúdo 1 Objetivo 1 2 Equipamentos Utilizados 1 3 Procedimento Experimental
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 7
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno Noturno Data : / / Experiência 7 MAPEAMENTO DE CAMPO MAGNÉTICO
Colisões. 1. Introdução
Colisões 1. Introdução Uma grandeza muito importante para o estudo de colisões é o momento linear ou quantidade de movimento, representado por e definido por: (1) Onde: é a massa e a velocidade do objeto
Experimento 3 Rolamento
Experimento 3 Rolamento Determinar os tempos de queda de objetos cilíndricos rolando sem escorregamento em um plano inclinado e relacioná-los com a distribuição de massa dos objetos. Introdução Considere
Ficha Prática Componente Física 2ºPeríodo Turma: 11ºA. Física e Química A - 11ºAno
Ficha Prática Componente Física 2ºPeríodo Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 11 de março 2016 Ano Letivo: 2015/2016 90 min 1. Para investigar se o módulo da aceleração
11º Ano novembro de Selecione a única alternativa que refere o intervalo de tempo em que terá ocorrido o embate do corpo P com o solo.
AGRUPAMENO DE ESCOLAS JOÃO DA SILVA CORREIA DISCIPLINA Física e Química A Ficha de trabalho da componente Laboratorial de Física: AL 1.1, AL1. e AL1.3 e outras 11º Ano novembro de 015 1. Para investigar
Universidade Federal de Pernambuco CCEN Departamento de Física Física Experimental 1-1 o SEMESTRE 2011
Universidade Federal de Pernambuco CCEN Departamento de Física Física Experimental 1-1 o SEMESTRE 2011 Nome: Turma: Nome: Turma: Nome: Turma: Data: / / Roteiro do Experimento 2 Medidas e Incertezas II
PRÁTICA 6: COLISÕES EM UMA DIMENSÃO
PRÁTICA 6: COLISÕES EM UMA DIMENSÃO Nesta prática, estudaremos o fenômeno da colisão em uma dimensão, fazendo a aproximação de que o sistema é fechado (não há variação de massa) e isolado (não há forças
Introdução às medidas físicas ( ) Aula 6 e 7 Queda livre. Qual é o método que usará para atingir seu objetivo?
Introdução às medidas físicas (430015) Aula 6 e 7 Queda livre Grupo: Nome: Nome: Nome: Introdução: Qual é o objetivo do experimento? Qual é o método que usará para atingir seu objetivo? Medidas Experimentais:
FSC Exercício preparatório para experiências Lei de Hooke e a constante elástica da mola
FSC5122 - Exercício preparatório para experiências Lei de Hooke e a constante elástica da mola Diz a lei de Hooke que uma mola deslocada (esticada ou comprimida) uma distância x de sua posição de equilíbrio
Experimento 5 Colisões Bidimensionais
Experimento 5 Colisões Bidimensionais A dinâmica da colisão entre dois corpos em um plano aplica-se a fenômenos físicos que ocorrem constantemente à nossa volta, como os choques entre as moléculas do ar,
VELOCIDADE DO SOM EM METAIS
VELOCIDADE DO SOM EM METAIS INTRODUÇÃO A propagação de ondas mecânicas em um meio material dá-se pela transmissão de vibrações das partículas constituintes do meio, produzidas pela fonte geradora da onda.
Experimento 17. Leis de Newton. Objetivos. Introdução
Experimento 17 Leis de Newton Introdução São três leis que constituem os três pilares fundamentais do que chamamos Mecânica Clássica. A primeira Lei de Newton, também conhecida como Princípio da Inércia,
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I - 2007/08 1. Objectivo FORÇA GRAVÍTICA Comparar a precisão de diferentes processos de medida; Linearizar
COLISÃO EM UMA DIMENSÃO
COLISÃO EM UMA DIMENSÃO Material Utilizado: - um conjunto para experimentos com trilho de ar composto de: - um trilho de ar (PASCO SF-9214) - um gerador de fluxo de ar (PASCO SF-9216) - dois carrinhos
Construção e Análise de Gráficos. CF Laboratório de Física Básica 1
Construção e Análise de Gráficos Por que fazer gráficos? Facilidade de visualização de conjuntos de dados Facilita a interpretação de dados. Exemplos: Engenharia Física Economia Biologia Estatística Por
Experimento 1: Colisões
Experimento 1: Colisões Objetivo Verificar a Conservação Quantidade de Movimento Linear e a Conservação da Energia Cinética. a) A conservação do momento linear e da energia cinética numa colisão unidimensional.
Roteiro do experimento Colisões bidimensionais Parte 2
Roteiro do experimento Colisões bidimensionais Parte 2 Retomada do Experimento Como visto na primeira parte do experimento, o fluxo de ar injetado pelos furos do tampo formou um colchão de ar que praticamente
Escrita correta de resultados em notação
Notas de Aula Laboratório de Física 1 e A Escrita correta de resultados em notação científica e confecção de gráficos 1 Prof. Alexandre A. C Cotta 1 Departamento de Física, Universidade Federal de Lavras,
Experimento 4 Forças Centrais
Experimento 4 Forças Centrais Neste experimento, mediremos a energia mecânica e o momento angular de um corpo em movimento, no qual age uma força central elástica. O objetivo do experimento é interpretar
MOVIMENTO UNIFORMEMENTE VARIADO
MOVIMENTO UNIFORMEMENTE VARIADO É um movimento em que a velocidade varia uniformemente no decorrer do tempo. Isto é, o móvel apresenta iguais variações de velocidade em intervalos de tempo iguais. No MUV
ESCOLA SECUNDÁRIA DE CASQUILHOS
ESCOLA SECUNDÁRIA DE CASQUILHOS T1 -Teste teórico-prático de FQA 09. dezembro. 2014 11º Ano Turma A Professor: Maria do Anjo Albuquerque Duração da prova: 90 minutos. Este teste é constituído por 8 páginas
Objetivo: Determinar a eficiência de um transformador didático. 1. Procedimento Experimental e Materiais Utilizados
Eficiência de Transformadores Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi Objetivo: Determinar
Objetivo: Determinar experimentalmente a resistividade elétrica do Constantan.
Determinação da resistividade elétrica do Constantan Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 7
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 7 Determinação da constante elástica de uma mola utilizando o plano inclinado por fuso Disciplina:
Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 04. Física Geral e Experimental I (2011/01) Experimento: Queda Livre e Anamorfose
Diretoria de Ciências Exatas Laboratório de Física Roteiro 04 Física Geral e Experimental I (011/01) Experimento: Queda Livre e Anamorfose 1. Cinemática do Movimento de um objeto em Queda Livre. Nesta
BC 0208 Fenômenos Mecânicos. Experimento 3 - Roteiro
BC 008 Fenômenos Mecânicos Experimento - Roteiro Lei de Hooke Professor: Turma: Data: / /05 Introdução e Objetivos Os dois experimentos que realizamos neste curso até o momento nos permitiram observar
EXPERIMENTO IV COLISÕES
EXPERIMENTO IV COLISÕES Introdução Nesta experiência estudaremos colisões unidimensionais entre dois carrinhos sobre o trilho de ar. Com este arranjo experimental, um colchão de ar gerado entre a superfície
Experimento: Determinação do coeficiente de atrito
Física Mecânica Roteiros de Experiências 50 UNIMONTE, Engenharia Laboratório de Física Mecânica Experimento: Determinação do coeficiente de atrito Turma: Data: : Nota: Participantes Nome RA Introdução
Ficheiros âssociâdos:
Ficha do professor AL 1.2. FORÇAS OS MOVIMETOS RETILÍEOS ACELERADO E UIFORME Autora: Fernanda eri TI-spire Palavras-chave: Forças; Inércia; Massa; Velocidade e Aceleração da gravidade Ficheiros âssociâdos:
MECÂNICA I Mecânica Gráfica para alunos do ensino médio utilizando o SAM 4. Movimento circular
FÍSICA 1 MECÂNICA I Mecânica Gráfica para alunos do ensino médio utilizando o SAM 4. Movimento circular NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA QUESTÃO PRÉVIA No ventilador da figura abaixo (fig. 4.1), as
Força de Atrito em Polias Bloqueadas
Força de Atrito em Polias Bloqueadas 1 Objetivo Estudar a transmissão da força de atrito de um elemento linear do tipo correia, corda ou cabo sobre polias bloqueadas. 2 Introdução teórica 2.1 Força de
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 3
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental: EXPERIMENTO 3 Determinação da aceleração da gravidade local utilizando o plano inclinado por fuso Disciplina:
Componente Química 11ºAno Professora Paula Melo Silva Unidade 1 Mecânica 1.1. Tempo, posição e velocidade
Referencial e posição: coordenadas cartesianas em movimentos retilíneos Componente Química 11ºAno Professora Paula Melo Silva Unidade 1 Mecânica 1.1. Tempo, posição e velocidade Distância percorrida sobre
Roteiro do Experimento Força de Atrito Variável Parte II
A) Introdução ao experimento Experimentos Virtuais de Mecânica Roteiro do Experimento Força de Atrito Variável Parte II Na Parte I da análise do experimento, as grandezas cinemáticas relativas ao movimento
Departamento de Física - ICE/UFJF Laboratório de Física II
Movimentos Periódicos 1 Objetivos Gerais: Verificar experimentalmente o comportamento da força exercida por uma mola em função do alongamento da mola; Determinar a constante de rigidez k da mola; Determinar
Tópico 8. Aula Prática: Pêndulo Simples
Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora
Licenciatura em Física MOVIMENTO RETILÍNEO E UNIFORME DE UM CARRINHO EM UM TRILHO SEM ATRITO
Licenciatura em Física MOVIMENTO RETILÍNEO E UNIFORME DE UM CARRINHO EM UM TRILHO SEM ATRITO Foz do Iguaçu, 10 de Outubro de 2016 Instituto Federal do Paraná Licenciatura em Física Acadêmicos: Fernando
Experimento 1: Colisões *
Experimento : Colisões * Objetivo Avaliar a Conservação Quantidade de Movimento Linear e a Conservação da Energia Cinética nos seguintes experimentos: a) Colisão unidimensional. b) Colisão bidimensional.
Apresentação: Trabalho e energia
Apresentação: Trabalho e energia INTRODUÇÃO Como enfatizado na comum definição de energia como a habilidade de realizar trabalho, os conceitos de trabalho e energia estão intimamente relacionados. Dizemos
- Papel milimetrado. Para o coeficiente linear: LEIA A COORDENADA DO PONTO no qual a reta cruza o eixo da função y para x = 0.
Gráficos O método mais eficiente de obter a relação entre dois parâmetros é colocar as medidas experimentais envolvendo essas duas quantidades em um gráfico. Normalmente procura-se obter um gráfico no
EXPERIMENTO I MEDIDAS E ERROS
EXPERIMENTO I MEDIDAS E ERROS Introdução Na leitura de uma medida física deve-se registrar apenas os algarismos significativos, ou seja, todos aqueles que a escala do instrumento permite ler mais um único
Avaliação Prática Seleção Final 2016 Olimpíadas Internacionais de Física 11 de Abril 2016
Caderno de Questões Avaliação Experimental Instruções 1. Este caderno de questões contém DEZ folhas, incluindo esta com as instruções e rascunhos. Confira antes de começar a resolver a prova. 2. A prova
Experimento 1: Determinação do tempo de queda de uma bolinha
Instituto de Física UFRJ Relatório de Física Experimental I 2019/1 Professor: Turma: Horário: Experimento 1: Determinação do tempo de queda de uma bolinha Parte I: preparação para a experiência 1. Escreva
ROTEIRO DE ATIVIDADES
FSSS Alagoinhas - BA ROTEIRO DE ATIVIDADES EXPERIMENTAIS PARA O LABORATÓRIO DE FÍSICA I Prof. Dr. José Carlos Alves Pinheiro Alagoinhas, 2017 SUMÁRIO 1 DECOMPOSIÇÃO DE FORÇAS 2- MOVIMENTO RETILÍNEO UNIFORME
Movimento Retilíneo Uniformemente Acelerado
Movimento Retilíneo Uniformemente Acelerado 1 Objetivo Estudar o movimento retilíneo uniformemente acelerado e o problema de queda livre. Para uma melhor compreensão dos resultados desta experiência, é
Laboratório de Física I - EAD- UESC 2011
Laboratório de Física I - EAD- UESC 2011 Equipe: 1. Nome:... 2. Nome:... 3. Nome:... Pólo:... Data:... Experiência dois: QUEDA LIVRE Relatório Programado: Guia para tomada e análise de dados Prazo: 1 semana
PRÁTICA CONSTRUÇÃO DE GRÁFICOS E DETERMINAÇÃO DOS COEFICIENTES ANGULAR E LINEAR PELO MÉTODO GRÁFICO MMQ 4.
PRÁTICA 4 4.1 - CONSTRUÇÃO DE GRÁFICOS E DETERMINAÇÃO DOS COEFICIENTES ANGULAR E LINEAR PELO MÉTODO GRÁFICO 4.2 - MMQ 4.1 Objetivos: a. Realizar a linearização das funções. b. Construir gráficos em papel
ROTEIRO PARA PROVA DE TÉCNICO DE LABORATÓRIO DE FÍSICA
Atividade 1: (máximo de 100 pontos) A) Montagem do Equipamento (20 pontos): nessa etapa será avaliado a montagem do kit experimental de acordo com os procedimentos experimentais abaixo; B) Execução do
LEI DE AMPÈRE. Introdução
LEI DE AMPÈRE Introdução A lei de Ampère é análoga à lei de Gauss para o campo elétrico. Essa lei foi proposta originalmente por André-Marie Ampère no século XVIII e diz que a circulação do campo magnético
Circuitos resistivos alimentados com onda senoidal
Circuitos resistivos alimentados com onda senoidal 3 3.1 Material resistores de 1 kω e 100 Ω. 3.2 Introdução Nas aulas anteriores estudamos o comportamento de circuitos resistivos com tensão constante.
Energia Mecânica - Matheus Souza Gomes / N USP:
Energia Mecânica - Matheus Souza Gomes / N USP: 7161048 Introdução No trabalho, foi analisado o experimento Energia Cinética encontrado no portal web do Fisfoto, localizado no endereço http://www.fep.if.usp.br/~fisfoto.
Escola Secundária de Casquilhos Teste Sumativo 1- Física e Química A 11º ANO 04/10/ minutos
* Escola Secundária de Casquilhos Teste Sumativo 1- Física e Química A 11º ANO 04/10/2013 90 minutos NOME Nº Turma Informação Professor Enc. de Educação TABELA DE CONSTANTES Velocidade de propagação da
Física I. Aula 02: Movimento Retilíneo. Tópico 02: Velocidade; Movimento Retilíneo Uniforme
Tópico 02: Velocidade; Movimento Retilíneo Uniforme Aula 02: Movimento Retilíneo Observe o movimento da tartaruga acima. Note que a cada segundo, ela anda 10cm e mantém sempre esse movimento. A velocidade
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 4
Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 4 Lançamento Horizontal de Projéteis Disciplina: Física Experimental GRUPO DE TRABALHO: Estudante 1
