CENTRO DE MASSA - CENTRÓIDE.

Tamanho: px
Começar a partir da página:

Download "CENTRO DE MASSA - CENTRÓIDE."

Transcrição

1 Beer e Johnston, 1995 CENTRO DE MASSA - CENTRÓIDE. Consideremos, como na figura abaixo, uma placa horizontal. Podemos dividir essa placa em i pequenos elementos. As coordenadas do primeiro elemento são denominadas x1 e y1, as do segundo elemento x2 e y2 etc. Sobre cada elemento age a ação da gravidade, obtemos assim as forças peso P1, P2 e Pi, respectivamente. Essas forças estão orientadas em direção ao centro da terra; porém, para todas finalidades práticas, elas podem ser consideradas paralelas. Sua resultante é uma única força na mesma direção. O módulo P dessa força é obtido pela adição dos módulos dos pesos elementares. Fz P = P1+ P2+... Pi ou seja: Fz P = dp Momento Axial no eixo Y: My = x.p = xi. Pi Momento Axial no eixo X: Mx = y.p = yi. Pi Para obtermos as coordenadas do ponto G (baricentro), onde a força P deve ser aplicada, temos: My = xg.p = x1. P1 + x2. P2 + xi. Pi Mx = yg.p = y1. P1 + y2. P2 + yi. Pi Logo G, tem as coordenadas xg e yg, que são obtidas da forma: G = (xg ; yg ) xg = xdp/ dp yg = ydp/ dp Página nº 1

2 Baricentro - Centro De Gravidade de Figuras Planas: (Murat, S.D.) Y O Analogamente podemos usar o mesmo raciocínio para superfícies planas. Trocando a força aplicada pela área, temos: xgi ygi A dx dy da=dx.dy X Nomenclatura utilizada: (A.B.N.T.) Baricentro ou centro de gravidade = G. Eixos baricêntricos = XG e YG. Momentos Estáticos = Msx e Msy. Pontos do baricentro = xg e yg. Área da Figura Plana = A Admitindo a figura plana (acima) posicionada em relação a um par de eixos de referência (X e Y), pode-se definir seu baricentro, de coordenadas (x ; y), como sendo o único ponto da figura plana, que obedece simultaneamente a duas condições: xg = M sy /A yg = M sx /A Da definição acima, pode-se concluir, qualquer que seja a figura plana: M sy = xg.a M sx = yg.a Se a figura plana for composta por diversas figuras básicas, o resultado dos momentos estáticos são a soma algébrica dos momentos das figuras componentes, bem como, a área total da figura composta é a soma das áreas das figuras componentes. yg = yg 1.A 1 + yg 2.A 2 + yg i.a i + /A 1 + A 2 + A i xg = xg 1.A 1 + xg 2.A 2 + xg i.a i + /A 1 + A 2 + A i Nessas condições, qualquer que seja a figura plana, o cálculo de G = (xg ; yg), será: yg = M sx (i)/ A(i) xg = M sy (i)/ A(i) Página nº 2

3 Demonstração, pela definição, do Cálculo do Baricentro: Para um Triângulo: Seja o triângulo retângulo, representado na figura ao lado Calcularemos sua área e momento estático, bem como, seu baricentro. Y a dx A variação da figura em relação aos eixos serão: 0 < X < b - b.y/a dy Cálculo da Área: 0 < Y < a b X Área = dx.dy = dx. dy = (b - b.y/a)dy = b. dy - b.y.dy/a = b.y (0 a) - b.y 2 /2.a (0 a) Área = b.a - b.a/2 = Área = b.a/2 Da definição de Momento Estático temos: Msy = ( A) x.d A Msx= ( A) y.d A Logo, os pontos de baricentro serão: G = (xg, yg). xg = Msy/A = (2/b.a) x.dx.dy = (2/b.a) x.dx. dy = (2/b.a) (b-b.y/a) 2 /2.dy xg = (2/b.a) (b 2-2.b 2.y/a +(b.y/2) 2 )/2.dy = (b 2.a - b 2.a + b 2.a/3)/b.a = b 2.a/3.b.a = xg = b/3 yg = Msx/A = (2/b.a) y.dy.dx = (2/b.a) dx. y.dy = (2/b.a) (b.y - b.y 2 /a).dy yg = (2/b.a).[(b.y 2 /2) - (b.y 3 /3.a)]0 a = (2/b.a).[(b.a 2 /2) - (b.a 3 /3.a)] = yg = (2.b.a 2 /2.b.a) - (b.a 2.2/3.b.a) = a - 2.a/3 yg = a/3 Página nº 3

4 BARICENTROS DE ALGUMAS FIGURAS BÁSICAS Retângulo Figuras Áreas Baricentros A = B.H G = (B/2 ; H/2) Triângulo Retângulo A = (B.H)/2 G = (B/3 ; H/3) Quarto de Círculo A = (.R 2 )/4 G = (4.R/3. ; 4.R/3. ) Semi Círculo A = (.R 2 )/2 G = (0 ; 4.R/3. ) Círculo A =.R 2 G = (0 ; 0) (Miranda,2000) Página nº 4

5 Determinar o Baricentro das seguintes Figuras Compostas: (Almeida, 1993). Exemplo 14: (Resolvido) Baricentro: Área da figura composta = 28,27 +(13,5).2 = 55,27 cm 2 ou 55,27 x 10-4 m 2. G da figura composta: xg = 28,27.(-8/ ) + (13,5).(3).2/ 55,27 = 0,16 cm ou 0,16 x 10-2 m yg = 28,27.(8/ ) + 13,5.(4) + 13,5.(2)/ 55,27 = 2,77 x 10-2 m ou 2,77 cm Preliminares: Separar a figura principal (composta) em figuras planas simples. Calcular as áreas e posição dos baricentros de cada figuras em relação aos eixos de referência X e Y da figura principal. Quarto de Círculo: Área =.R 2 /4 = 28,27 x 10-4 m 2 ou 28,27 cm 2 xg = -4.R/3. = -8/ yg = 4.R/3. = 8/ Triângulo Superior: Área = B.H/2 = 9.3/2 = 13,5 cm 2 xg = B/3 = 3 x 10-2 m ou 3 cm yg = (H/3) + 3 = (3/3) + 3 = 4 cm. Triângulo Inferior: Área = 13,5 cm2 ou 13,5 x 10-4 m 2 xg = 3 cm yg = 2.H/3 = 2.3/3 = 2 cm 0u 2 x 10-2 m Exercício 13: (Resolver em Aula) Preliminares: Baricentro: Página nº 5

6 Exercícios Propostos: (Para estudo). Calcular, para as figuras planas compostas abaixo, o baricentro posicionando os eixos nas figuras: Exercício 14: Resposta: G = (-0,69; 1,37) x 10-2 m Exercício 15: Resposta: G = (1,5; -1,91) cm Exercício 16: Resposta: G = (-0,137; -1,137) cm Exercício 17: Resposta: G = (1,53; 1,24) x 10-2 m Exercício 14:: Exercício 15: (Almeida, 1993) Exercício 16: Exercício 17: (Murat, S.D.) Página nº 6

Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE

Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. PUC - Goiás Curso Arquitetura Disciplina Esforço nas Estruturas Corpo Docente Geisa Pires Turma----------- Plano de Aula Data ------/--------/---------- Leitura obrigatória Mecânica Vetorial para Engenheiros,

Leia mais

Propriedades Geométricas de Seções Transversais

Propriedades Geométricas de Seções Transversais D-1 pêndice D Propriedades Geométricas de Seções Transversais D.1 Momento Estático Considere uma superfície plana de área e dois eixos ortogonais x e y de seu plano mostrados na Figura D.1. Seja d um elemento

Leia mais

Momentos de Inércia de Superfícies

Momentos de Inércia de Superfícies PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

TM Estática II

TM Estática II TM 332 - Estática II Emílio Eiji Kavamura, MSc Departamento de Engenaharia Mecânica UFPR TM-332, 2012 [email protected] (UFPR) Estática 2012 1 / 78 Roteiro da aula Centróides e Baricentros Formas

Leia mais

RESISTÊNCIA DOS MATERIAIS AULAS 01

RESISTÊNCIA DOS MATERIAIS AULAS 01 Engenaria da Computação 1 4º / 5 Semestre RESISTÊNCI DOS MTERIIS ULS 01 Prof Daniel Hasse Características Geométricas de Figuras Planas SÃO JOSÉ DOS CMPOS, SP ula 01 Figuras Planas I 1- FIGURS PLNS Nesta

Leia mais

CAPÍTULO IV GEOMETRIA DAS MASSAS

CAPÍTULO IV GEOMETRIA DAS MASSAS CPÍTULO IV GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluída dentro dos objetivos principais de Resistência dos Materiais, vamos estudar algumas grandezas características da geometria das massas

Leia mais

Cálculo Diferencial e Integral 2: Integrais Duplas

Cálculo Diferencial e Integral 2: Integrais Duplas Cálculo Diferencial e Integral 2: Integrais Duplas Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Integrais Duplas sobre Retângulos 2 3 Lembrete:

Leia mais

di x = y 2.da di y = x 2.da I x = (A) y 2.da I y = (A) x 2.da

di x = y 2.da di y = x 2.da I x = (A) y 2.da I y = (A) x 2.da Momento De Inércia De Uma Figura Plana da, e somando-os temos: Definição: (Murat, S.D.) Seja uma figura plana qualquer, posicionada em relação a um par de eixos de referência. Definese: di x = y 2.da di

Leia mais

UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique

UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique 1 Aula 06 Continuação/Revisão Prof: João Henrique Sumário Pilares de Seção Transversal em forma de L e U... 1 Principais propriedades de figuras planas... 2 Área (A)... 2 Momento Estático (Me)... 2 Centro

Leia mais

Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado.

Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado. FLEÃO SIMPLES. Introdução: (Boanerges, 1980-S.D.) Como a força cortante não altera as tensões normais estamos aqui examinando as flexões pura normal e simples normal. Observando a seção transversal em

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê

Leia mais

CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS

CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS Baricentro geométrico: Maneira prática de se determinar o baricentro geométrico: fio de prumo fio de prumo O Centro de Gravidade está na intersecção das

Leia mais

Disciplina : Mecânica dos fluidos I. Aula 5: Estática dos Fluidos

Disciplina : Mecânica dos fluidos I. Aula 5: Estática dos Fluidos Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos I ula 5: Estática dos Fluidos Prof. Evandro Rodrigo Dário, Dr. Eng. Estática dos Fluidos Sistemas Hidráulicos Os sistemas hidráulicos são caracterizados

Leia mais

Assunto: Características Geométricas das Figuras Planas Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] O dimensionamento e a verificação da capacidade resistente de barras, como de

Leia mais

COORDENADAS CARTESIANAS

COORDENADAS CARTESIANAS Aula 32 Geometria Analítica COORDENADAS CARTESIANAS Consideremos o plano determinado por dois eixos perpendiculares em O. Considere um ponto P qualquer do plano, e trace por ele as paralelas aos eixos,

Leia mais

Disciplina: Mecânica Geral - Estática

Disciplina: Mecânica Geral - Estática Disciplina: Mecânica Geral - Estática II. Forças Distribuídas Prof. Dr. Eng. Fernando Porto A barragem Grand Coulee (EUA) suporta 3 tipos diferentes de forças distribuídas: o peso de seus elementos construtivos,

Leia mais

Disciplina: Mecânica Geral - Estática

Disciplina: Mecânica Geral - Estática Disciplina: Mecânica Geral - Estática IV. Propriedades Mecânicas de Figuras Planas Parte 1: Momento de Primeira Ordem ou Estático Prof. Dr. Eng. Fernando Porto Momentos de Primeira Ordem O momento de primeira

Leia mais

Departamento de Engenharia Civil e Arquitectura MECÂNICA I

Departamento de Engenharia Civil e Arquitectura MECÂNICA I Departamento de Engenharia Civil e rquitectura Secção de Mecânica Estrutural e Estruturas Mestrado em Engenharia Civil MECÂNIC I pontamentos sobre centros de gravidade Luís uerreiro 21/211 CENTROS DE RIDDE

Leia mais

PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I

PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Seções Transversais Objetivos

Leia mais

Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau

Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério

Leia mais

Valter B. Dantas. Momento de Inércia

Valter B. Dantas. Momento de Inércia Valter B. Dantas Momento de Inércia Momento de Inércia de um Sistema Contínuo de Partículas Como calcular o momento de inércia de uma barra retilínea de material homogêneo em relação a um eixo perpendicular

Leia mais

PLANO DE ENSINO Mecânica Geral

PLANO DE ENSINO Mecânica Geral PLANO DE ENSINO Mecânica Geral PARA ENGENHARIA AMBIENTAL/ CIVIL DOCENTE - ENG. JÚLIO CÉSAR SWARTELÉ RODRIGUES PLANO DE ENSINO Carga Horária: 40 horas 2 horas semanais (Segunda feira) Docente: Júlio César

Leia mais

CÁLCULO I. 1 Área de Superfície de Revolução

CÁLCULO I. 1 Área de Superfície de Revolução CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

Introdução ao Cálculo Vetorial

Introdução ao Cálculo Vetorial Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Características Geométricas

Características Geométricas Prof. Daniel Dias A: área da seção transversal do perfil (cm²) x g, y g : coordenadas do centro de gravidade I x : momento de inércia em relação ao eixo x (cm²) I y ; momento de inércia em relação ao eixo

Leia mais

Coordenadas e distância na reta e no plano

Coordenadas e distância na reta e no plano Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais

Leia mais

APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de. figuras planas

APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de. figuras planas 245 APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de figuras planas 1. Demonstração da localização do centro de gravidade de um paralelogramo por Arquimedes (287-212 a.c) Arquimedes

Leia mais

ENERGIA CINÉTICA E TRABALHO

ENERGIA CINÉTICA E TRABALHO CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ENERGIA CINÉTICA E TRABALHO Prof. Bruno Farias Introdução Neste módulo concentraremos nossa

Leia mais

RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO

RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2013-1 Objetivos Conhecer o professor e o curso Importância do ENADE Iniciação Científica Importância da RM A influência

Leia mais

RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO

RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o professor e o curso Importância do ENADE Iniciação Científica Importância da RM Perceber a

Leia mais

Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de

Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES

Leia mais

Lista de Exercícios de Cálculo 3 Sétima Semana

Lista de Exercícios de Cálculo 3 Sétima Semana Lista de Exercícios de Cálculo Sétima Semana Parte A. Use os multiplicados de Lagrange para determinar os valores máximos e mínimos da função sujeita as restrições dadas. (a) f(x, y) = x 2 + y 2 s.a. xy

Leia mais

Integrais - Aplicações I. Daniel 26 de novembro de 2016

Integrais - Aplicações I. Daniel 26 de novembro de 2016 Integrais - Aplicações I Daniel 26 de novembro de 2016 1 Sumário Aplicações da Integral Construção de Fórmulas Integrais Aplicação da Estratégia de Integrais Definidas Áreas entre duas Curvas Volume por

Leia mais

FORÇA SOBRE ÁREAS PLANAS

FORÇA SOBRE ÁREAS PLANAS FLUIDOSTÁTICA II FORÇA SOBRE ÁREAS PLANAS Centro de Gravidade (CG) CG constatações Se a figura possui eixo de simetria, o CG está contido neste eixo. Eixo de simetria Eixo de simetria Eixo de simetria

Leia mais

CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão

CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão CÁLCULO I Aula 26: Área de e Pressão Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Área de 2 Uma superfície de revolução é um superfície gerada pela rotação de uma curva

Leia mais

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1 Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.

Leia mais

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo

Leia mais

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o

Leia mais

Aplicações à Física e à Engenharia

Aplicações à Física e à Engenharia UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física

Leia mais

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Flexão Vamos lembrar os diagramas de força cortante e momento fletor Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas

Leia mais

Mecânica Un.1 Forças no Espaço

Mecânica Un.1 Forças no Espaço Mecânica Un.1 Forças no Espaço Forças no Espaço Forças no Espaço Forças no Espaço Forças no Espaço Método da decomposição de uma força em um sistema ortogonal Fx = F.cos q Fy = F.sen q F = F x.i + F y.j

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

Integrais - Aplicações I

Integrais - Aplicações I Integrais - Aplicações I Daniel 17 de novembro de 2015 Daniel Integrais - Aplicações I 17 de novembro de 2015 1 / 45 Áreas entre duas Curvas Sumário 1 Áreas entre duas Curvas 2 Volume por Seções Transversais

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2018-2 Objetivos Conhecer a influência da forma na Resistência dos Materiais Compreender o conceito de Momento Estático Calcular Momento

Leia mais

Cinemática em 2D e 3D

Cinemática em 2D e 3D Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2014-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eixos Principais de Inércia

Leia mais

Volume de um sólido de Revolução

Volume de um sólido de Revolução Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas

Leia mais

Tensões de Cisalhamento em Vigas sob Flexão

Tensões de Cisalhamento em Vigas sob Flexão 31 de outubro de 2016 (a) Peças sem acoplamento. (b) Peças com acoplamento. (a) Peças sem acoplamento. (b) Peças com acoplamento. Na primeira situação, mostrada na Figura (a), as peças trabalham de forma

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

MAT146 - Cálculo I - Cálculo de Áreas

MAT146 - Cálculo I - Cálculo de Áreas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Anteriormente, definimos a área de uma região plana como sendo o limite de uma soma de Riemann e que tal limite é uma integral definida.

Leia mais

Título do Livro. Capítulo 5

Título do Livro. Capítulo 5 Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema

Leia mais

Apresentação da Disciplina MECÂNICA APLICADA. Prof. André Luis Christoforo.

Apresentação da Disciplina MECÂNICA APLICADA. Prof. André Luis Christoforo. Objetivos da Estática: 01 Universidade Federal de São Carlos Departamento de Engenharia Civil - DECiv Apresentação da Disciplina MECÂNICA APICADA Prof. André uis Christoforo [email protected]

Leia mais

Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha. Integrais Triplas

Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha. Integrais Triplas Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo erra Cunha Integrais riplas Nas primeiras aulas discutimos integrais duplas em vária regiões. Seja motivado pelas aplicações, seja apenas pelo

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ. Matemática 3º Ano 3º Bimestre 2014 Plano de Trabalho

FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ. Matemática 3º Ano 3º Bimestre 2014 Plano de Trabalho FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 3º Ano 3º Bimestre 2014 Plano de Trabalho GEOMETRIA ANALÍTICA: DISTÂNCIA ENTRE DOIS PONTOSE EQUAÇÃO DA RETA Tarefa 2 Cursista:

Leia mais

Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA

Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA A Figura abaixo ilustra uma barra reta de seção transversal constante, chamada barra prismática. O lado da barra que contém o comprimento

Leia mais

Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica.

Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica. Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica. Sobre Ontem estava pensando em algumas funções interessantes para implementar em um editor de

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

Estática de fluidos. Paulo R. de Souza Mendes. Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ

Estática de fluidos. Paulo R. de Souza Mendes. Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ Estática de fluidos Paulo R. de Souza Mendes Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ agosto de 2010 Sumário A equação básica da estática de fluidos conceitos

Leia mais

Geometria Analítica I

Geometria Analítica I Geom. Analítica I Respostas do Módulo I - Aula 14 1 Geometria Analítica I 10/03/011 Respostas dos Exercícios do Módulo I - Aula 14 Aula 14 1. a. A equação do círculo de centro h, k) e raio r é x h) + y

Leia mais

x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli

x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli Aula Teórica 3 ATIVIDADE. Represente, no plano cartesiano xy descrito abaixo, os dois pontos (x 0,y 0) = (,) e (x,y ) = (3,5).. Trace a reta r que passa pelos pontos e, no plano cartesiano acima. 3. Determine

Leia mais

Enunciados Exames 2002/2003 Enunciados Exames 2003/2004 Enunciados Trabalhos 2003/2004 Enunciados Exames 2004/2005 Enunciados Mini-testes 2004/2005

Enunciados Exames 2002/2003 Enunciados Exames 2003/2004 Enunciados Trabalhos 2003/2004 Enunciados Exames 2004/2005 Enunciados Mini-testes 2004/2005 INSTITUTO POLITÉCNICO DE BRAANÇA MECÂNICA APLICADA I Escola Superior de Tecnologia e de estão Curso: Engenharia Civil Departamento de Mecânica Aplicada Ano lectivo: 2005/2006 Enunciados Exames 2002/2003

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) Derivadas Direcionais; Vetor Gradiente. (I) Derivadas Direcionais Definição: É a taxa de variação do valor de uma função

Leia mais

Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. Nona E 4 Equilíbrio CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Texas Tech University de Corpos Rígidos 2010 The McGraw-Hill

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

Integral de funções de uma variável

Integral de funções de uma variável Integrais Múltiplas Integral de funções de uma variável x = b a n a b f x dx = lim m m i=1 f(x i ) x Integral Dupla Seja f uma função de duas variáveis definida no retângulo fechado. R = a, b x c, d =

Leia mais

Integrais - Aplicações I

Integrais - Aplicações I Integrais - Aplicações I Daniel 13 de novembro de 2015 Daniel Integrais - Aplicações I 13 de novembro de 2015 1 / 37 Áreas entre duas Curvas Área entre duas curvas Se f e g são funções integráveis em [a,b]

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2018-2 Objetivos Apresentar os conceitos: Momento de inércia: retangular e polar Produto de Inércia Eixos Principais de Inércia

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0:

1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0: 2. NTEGRAL E LNHA CÁLCULO 3-2018.1 2.1. :::: :::::::::::::::::::::::: ARCOS REGULARES Um arco (ou trajetória) : ~r (t) = x (t)~i + y (t)~j + z (t) ~ k; a t b; denomina-se arco regular quando as componentes

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

MECÂNICA 1 RESUMO E EXERCÍCIOS* P1

MECÂNICA 1 RESUMO E EXERCÍCIOS* P1 MECÂNICA 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com RESULTANTE DE FORÇAS R = F i MOMENTO

Leia mais

Professor: Anselmo Montenegro Conteúdo: Aula 2. - Primitivas Geométricas. Instituto de Computação - UFF

Professor: Anselmo Montenegro  Conteúdo: Aula 2. - Primitivas Geométricas. Instituto de Computação - UFF Geometria Computacional Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: Aula - Primitivas Geométricas 1 Roteiro Introdução Operações primitivas Distâncias Ângulos Ângulos orientados Áreas

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

ESTÁTICA DOS SÓLIDOS

ESTÁTICA DOS SÓLIDOS Postulados: (Nóbrega, 1980) ESTÁTICA DOS SÓLIDOS 1. Se nenhuma força for aplicada a um sólido em equilíbrio, ele permanece em equilíbrio. 2. Aplicando uma única força a um sólido isolado em equilíbrio,

Leia mais

Agrupamento de Escolas Eugénio de Castro Escola Básica de Eugénio de Castro Planificação Anual. Ano Letivo 2016/17 Matemática- 3º Ciclo 9º Ano

Agrupamento de Escolas Eugénio de Castro Escola Básica de Eugénio de Castro Planificação Anual. Ano Letivo 2016/17 Matemática- 3º Ciclo 9º Ano Reconhecer propriedades da relação de ordem em IR. Definir intervalos de números reais. Operar com valores aproximados de números reais. Resolver inequações do 1.º grau. CONHECIMENTO DE FACTOS E DE PROCEDIMENTOS.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

Mecânica Geral 17/02/2016. Resultante de Duas Forças

Mecânica Geral 17/02/2016. Resultante de Duas Forças Mecânica Geral Capítulo 2 Estática de Partículas Resultante de Duas Forças Força: ação de um corpo sobre outro; caracterizada por seu ponto de aplicação, sua intensidade, sua direção, e seu sentido. Evidênciaseperimentaismostramque

Leia mais