CENTRO DE MASSA - CENTRÓIDE.
|
|
|
- Thalita Sabala Veiga
- 9 Há anos
- Visualizações:
Transcrição
1 Beer e Johnston, 1995 CENTRO DE MASSA - CENTRÓIDE. Consideremos, como na figura abaixo, uma placa horizontal. Podemos dividir essa placa em i pequenos elementos. As coordenadas do primeiro elemento são denominadas x1 e y1, as do segundo elemento x2 e y2 etc. Sobre cada elemento age a ação da gravidade, obtemos assim as forças peso P1, P2 e Pi, respectivamente. Essas forças estão orientadas em direção ao centro da terra; porém, para todas finalidades práticas, elas podem ser consideradas paralelas. Sua resultante é uma única força na mesma direção. O módulo P dessa força é obtido pela adição dos módulos dos pesos elementares. Fz P = P1+ P2+... Pi ou seja: Fz P = dp Momento Axial no eixo Y: My = x.p = xi. Pi Momento Axial no eixo X: Mx = y.p = yi. Pi Para obtermos as coordenadas do ponto G (baricentro), onde a força P deve ser aplicada, temos: My = xg.p = x1. P1 + x2. P2 + xi. Pi Mx = yg.p = y1. P1 + y2. P2 + yi. Pi Logo G, tem as coordenadas xg e yg, que são obtidas da forma: G = (xg ; yg ) xg = xdp/ dp yg = ydp/ dp Página nº 1
2 Baricentro - Centro De Gravidade de Figuras Planas: (Murat, S.D.) Y O Analogamente podemos usar o mesmo raciocínio para superfícies planas. Trocando a força aplicada pela área, temos: xgi ygi A dx dy da=dx.dy X Nomenclatura utilizada: (A.B.N.T.) Baricentro ou centro de gravidade = G. Eixos baricêntricos = XG e YG. Momentos Estáticos = Msx e Msy. Pontos do baricentro = xg e yg. Área da Figura Plana = A Admitindo a figura plana (acima) posicionada em relação a um par de eixos de referência (X e Y), pode-se definir seu baricentro, de coordenadas (x ; y), como sendo o único ponto da figura plana, que obedece simultaneamente a duas condições: xg = M sy /A yg = M sx /A Da definição acima, pode-se concluir, qualquer que seja a figura plana: M sy = xg.a M sx = yg.a Se a figura plana for composta por diversas figuras básicas, o resultado dos momentos estáticos são a soma algébrica dos momentos das figuras componentes, bem como, a área total da figura composta é a soma das áreas das figuras componentes. yg = yg 1.A 1 + yg 2.A 2 + yg i.a i + /A 1 + A 2 + A i xg = xg 1.A 1 + xg 2.A 2 + xg i.a i + /A 1 + A 2 + A i Nessas condições, qualquer que seja a figura plana, o cálculo de G = (xg ; yg), será: yg = M sx (i)/ A(i) xg = M sy (i)/ A(i) Página nº 2
3 Demonstração, pela definição, do Cálculo do Baricentro: Para um Triângulo: Seja o triângulo retângulo, representado na figura ao lado Calcularemos sua área e momento estático, bem como, seu baricentro. Y a dx A variação da figura em relação aos eixos serão: 0 < X < b - b.y/a dy Cálculo da Área: 0 < Y < a b X Área = dx.dy = dx. dy = (b - b.y/a)dy = b. dy - b.y.dy/a = b.y (0 a) - b.y 2 /2.a (0 a) Área = b.a - b.a/2 = Área = b.a/2 Da definição de Momento Estático temos: Msy = ( A) x.d A Msx= ( A) y.d A Logo, os pontos de baricentro serão: G = (xg, yg). xg = Msy/A = (2/b.a) x.dx.dy = (2/b.a) x.dx. dy = (2/b.a) (b-b.y/a) 2 /2.dy xg = (2/b.a) (b 2-2.b 2.y/a +(b.y/2) 2 )/2.dy = (b 2.a - b 2.a + b 2.a/3)/b.a = b 2.a/3.b.a = xg = b/3 yg = Msx/A = (2/b.a) y.dy.dx = (2/b.a) dx. y.dy = (2/b.a) (b.y - b.y 2 /a).dy yg = (2/b.a).[(b.y 2 /2) - (b.y 3 /3.a)]0 a = (2/b.a).[(b.a 2 /2) - (b.a 3 /3.a)] = yg = (2.b.a 2 /2.b.a) - (b.a 2.2/3.b.a) = a - 2.a/3 yg = a/3 Página nº 3
4 BARICENTROS DE ALGUMAS FIGURAS BÁSICAS Retângulo Figuras Áreas Baricentros A = B.H G = (B/2 ; H/2) Triângulo Retângulo A = (B.H)/2 G = (B/3 ; H/3) Quarto de Círculo A = (.R 2 )/4 G = (4.R/3. ; 4.R/3. ) Semi Círculo A = (.R 2 )/2 G = (0 ; 4.R/3. ) Círculo A =.R 2 G = (0 ; 0) (Miranda,2000) Página nº 4
5 Determinar o Baricentro das seguintes Figuras Compostas: (Almeida, 1993). Exemplo 14: (Resolvido) Baricentro: Área da figura composta = 28,27 +(13,5).2 = 55,27 cm 2 ou 55,27 x 10-4 m 2. G da figura composta: xg = 28,27.(-8/ ) + (13,5).(3).2/ 55,27 = 0,16 cm ou 0,16 x 10-2 m yg = 28,27.(8/ ) + 13,5.(4) + 13,5.(2)/ 55,27 = 2,77 x 10-2 m ou 2,77 cm Preliminares: Separar a figura principal (composta) em figuras planas simples. Calcular as áreas e posição dos baricentros de cada figuras em relação aos eixos de referência X e Y da figura principal. Quarto de Círculo: Área =.R 2 /4 = 28,27 x 10-4 m 2 ou 28,27 cm 2 xg = -4.R/3. = -8/ yg = 4.R/3. = 8/ Triângulo Superior: Área = B.H/2 = 9.3/2 = 13,5 cm 2 xg = B/3 = 3 x 10-2 m ou 3 cm yg = (H/3) + 3 = (3/3) + 3 = 4 cm. Triângulo Inferior: Área = 13,5 cm2 ou 13,5 x 10-4 m 2 xg = 3 cm yg = 2.H/3 = 2.3/3 = 2 cm 0u 2 x 10-2 m Exercício 13: (Resolver em Aula) Preliminares: Baricentro: Página nº 5
6 Exercícios Propostos: (Para estudo). Calcular, para as figuras planas compostas abaixo, o baricentro posicionando os eixos nas figuras: Exercício 14: Resposta: G = (-0,69; 1,37) x 10-2 m Exercício 15: Resposta: G = (1,5; -1,91) cm Exercício 16: Resposta: G = (-0,137; -1,137) cm Exercício 17: Resposta: G = (1,53; 1,24) x 10-2 m Exercício 14:: Exercício 15: (Almeida, 1993) Exercício 16: Exercício 17: (Murat, S.D.) Página nº 6
Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES
Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.
PUC - Goiás Curso Arquitetura Disciplina Esforço nas Estruturas Corpo Docente Geisa Pires Turma----------- Plano de Aula Data ------/--------/---------- Leitura obrigatória Mecânica Vetorial para Engenheiros,
Propriedades Geométricas de Seções Transversais
D-1 pêndice D Propriedades Geométricas de Seções Transversais D.1 Momento Estático Considere uma superfície plana de área e dois eixos ortogonais x e y de seu plano mostrados na Figura D.1. Seja d um elemento
Momentos de Inércia de Superfícies
PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para
TM Estática II
TM 332 - Estática II Emílio Eiji Kavamura, MSc Departamento de Engenaharia Mecânica UFPR TM-332, 2012 [email protected] (UFPR) Estática 2012 1 / 78 Roteiro da aula Centróides e Baricentros Formas
RESISTÊNCIA DOS MATERIAIS AULAS 01
Engenaria da Computação 1 4º / 5 Semestre RESISTÊNCI DOS MTERIIS ULS 01 Prof Daniel Hasse Características Geométricas de Figuras Planas SÃO JOSÉ DOS CMPOS, SP ula 01 Figuras Planas I 1- FIGURS PLNS Nesta
CAPÍTULO IV GEOMETRIA DAS MASSAS
CPÍTULO IV GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluída dentro dos objetivos principais de Resistência dos Materiais, vamos estudar algumas grandezas características da geometria das massas
Cálculo Diferencial e Integral 2: Integrais Duplas
Cálculo Diferencial e Integral 2: Integrais Duplas Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Integrais Duplas sobre Retângulos 2 3 Lembrete:
di x = y 2.da di y = x 2.da I x = (A) y 2.da I y = (A) x 2.da
Momento De Inércia De Uma Figura Plana da, e somando-os temos: Definição: (Murat, S.D.) Seja uma figura plana qualquer, posicionada em relação a um par de eixos de referência. Definese: di x = y 2.da di
UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique
1 Aula 06 Continuação/Revisão Prof: João Henrique Sumário Pilares de Seção Transversal em forma de L e U... 1 Principais propriedades de figuras planas... 2 Área (A)... 2 Momento Estático (Me)... 2 Centro
Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado.
FLEÃO SIMPLES. Introdução: (Boanerges, 1980-S.D.) Como a força cortante não altera as tensões normais estamos aqui examinando as flexões pura normal e simples normal. Observando a seção transversal em
Prof. MSc. David Roza José -
1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê
CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS
CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS Baricentro geométrico: Maneira prática de se determinar o baricentro geométrico: fio de prumo fio de prumo O Centro de Gravidade está na intersecção das
Disciplina : Mecânica dos fluidos I. Aula 5: Estática dos Fluidos
Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos I ula 5: Estática dos Fluidos Prof. Evandro Rodrigo Dário, Dr. Eng. Estática dos Fluidos Sistemas Hidráulicos Os sistemas hidráulicos são caracterizados
Assunto: Características Geométricas das Figuras Planas Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] O dimensionamento e a verificação da capacidade resistente de barras, como de
COORDENADAS CARTESIANAS
Aula 32 Geometria Analítica COORDENADAS CARTESIANAS Consideremos o plano determinado por dois eixos perpendiculares em O. Considere um ponto P qualquer do plano, e trace por ele as paralelas aos eixos,
Disciplina: Mecânica Geral - Estática
Disciplina: Mecânica Geral - Estática II. Forças Distribuídas Prof. Dr. Eng. Fernando Porto A barragem Grand Coulee (EUA) suporta 3 tipos diferentes de forças distribuídas: o peso de seus elementos construtivos,
Disciplina: Mecânica Geral - Estática
Disciplina: Mecânica Geral - Estática IV. Propriedades Mecânicas de Figuras Planas Parte 1: Momento de Primeira Ordem ou Estático Prof. Dr. Eng. Fernando Porto Momentos de Primeira Ordem O momento de primeira
Departamento de Engenharia Civil e Arquitectura MECÂNICA I
Departamento de Engenharia Civil e rquitectura Secção de Mecânica Estrutural e Estruturas Mestrado em Engenharia Civil MECÂNIC I pontamentos sobre centros de gravidade Luís uerreiro 21/211 CENTROS DE RIDDE
PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Seções Transversais Objetivos
Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério
Valter B. Dantas. Momento de Inércia
Valter B. Dantas Momento de Inércia Momento de Inércia de um Sistema Contínuo de Partículas Como calcular o momento de inércia de uma barra retilínea de material homogêneo em relação a um eixo perpendicular
PLANO DE ENSINO Mecânica Geral
PLANO DE ENSINO Mecânica Geral PARA ENGENHARIA AMBIENTAL/ CIVIL DOCENTE - ENG. JÚLIO CÉSAR SWARTELÉ RODRIGUES PLANO DE ENSINO Carga Horária: 40 horas 2 horas semanais (Segunda feira) Docente: Júlio César
CÁLCULO I. 1 Área de Superfície de Revolução
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
Introdução ao Cálculo Vetorial
Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem
UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008
1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos
Características Geométricas
Prof. Daniel Dias A: área da seção transversal do perfil (cm²) x g, y g : coordenadas do centro de gravidade I x : momento de inércia em relação ao eixo x (cm²) I y ; momento de inércia em relação ao eixo
Coordenadas e distância na reta e no plano
Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais
APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de. figuras planas
245 APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de figuras planas 1. Demonstração da localização do centro de gravidade de um paralelogramo por Arquimedes (287-212 a.c) Arquimedes
ENERGIA CINÉTICA E TRABALHO
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ENERGIA CINÉTICA E TRABALHO Prof. Bruno Farias Introdução Neste módulo concentraremos nossa
RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO
RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2013-1 Objetivos Conhecer o professor e o curso Importância do ENADE Iniciação Científica Importância da RM A influência
RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO
RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o professor e o curso Importância do ENADE Iniciação Científica Importância da RM Perceber a
Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES
Lista de Exercícios de Cálculo 3 Sétima Semana
Lista de Exercícios de Cálculo Sétima Semana Parte A. Use os multiplicados de Lagrange para determinar os valores máximos e mínimos da função sujeita as restrições dadas. (a) f(x, y) = x 2 + y 2 s.a. xy
Integrais - Aplicações I. Daniel 26 de novembro de 2016
Integrais - Aplicações I Daniel 26 de novembro de 2016 1 Sumário Aplicações da Integral Construção de Fórmulas Integrais Aplicação da Estratégia de Integrais Definidas Áreas entre duas Curvas Volume por
FORÇA SOBRE ÁREAS PLANAS
FLUIDOSTÁTICA II FORÇA SOBRE ÁREAS PLANAS Centro de Gravidade (CG) CG constatações Se a figura possui eixo de simetria, o CG está contido neste eixo. Eixo de simetria Eixo de simetria Eixo de simetria
CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão
CÁLCULO I Aula 26: Área de e Pressão Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Área de 2 Uma superfície de revolução é um superfície gerada pela rotação de uma curva
Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1
Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.
Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria
Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo
Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil
Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o
Aplicações à Física e à Engenharia
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
Mecânica Un.1 Forças no Espaço
Mecânica Un.1 Forças no Espaço Forças no Espaço Forças no Espaço Forças no Espaço Forças no Espaço Método da decomposição de uma força em um sistema ortogonal Fx = F.cos q Fy = F.sen q F = F x.i + F y.j
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)
1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +
Integrais - Aplicações I
Integrais - Aplicações I Daniel 17 de novembro de 2015 Daniel Integrais - Aplicações I 17 de novembro de 2015 1 / 45 Áreas entre duas Curvas Sumário 1 Áreas entre duas Curvas 2 Volume por Seções Transversais
RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO
RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2018-2 Objetivos Conhecer a influência da forma na Resistência dos Materiais Compreender o conceito de Momento Estático Calcular Momento
Cinemática em 2D e 3D
Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2014-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eixos Principais de Inércia
Volume de um sólido de Revolução
Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas
Tensões de Cisalhamento em Vigas sob Flexão
31 de outubro de 2016 (a) Peças sem acoplamento. (b) Peças com acoplamento. (a) Peças sem acoplamento. (b) Peças com acoplamento. Na primeira situação, mostrada na Figura (a), as peças trabalham de forma
Área de uma Superfície de Revolução
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície
MAT146 - Cálculo I - Cálculo de Áreas
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Anteriormente, definimos a área de uma região plana como sendo o limite de uma soma de Riemann e que tal limite é uma integral definida.
Título do Livro. Capítulo 5
Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema
Apresentação da Disciplina MECÂNICA APLICADA. Prof. André Luis Christoforo.
Objetivos da Estática: 01 Universidade Federal de São Carlos Departamento de Engenharia Civil - DECiv Apresentação da Disciplina MECÂNICA APICADA Prof. André uis Christoforo [email protected]
Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha. Integrais Triplas
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo erra Cunha Integrais riplas Nas primeiras aulas discutimos integrais duplas em vária regiões. Seja motivado pelas aplicações, seja apenas pelo
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ. Matemática 3º Ano 3º Bimestre 2014 Plano de Trabalho
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 3º Ano 3º Bimestre 2014 Plano de Trabalho GEOMETRIA ANALÍTICA: DISTÂNCIA ENTRE DOIS PONTOSE EQUAÇÃO DA RETA Tarefa 2 Cursista:
Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA
Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA A Figura abaixo ilustra uma barra reta de seção transversal constante, chamada barra prismática. O lado da barra que contém o comprimento
Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica.
Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica. Sobre Ontem estava pensando em algumas funções interessantes para implementar em um editor de
Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo
CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa
Estática de fluidos. Paulo R. de Souza Mendes. Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ
Estática de fluidos Paulo R. de Souza Mendes Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ agosto de 2010 Sumário A equação básica da estática de fluidos conceitos
Geometria Analítica I
Geom. Analítica I Respostas do Módulo I - Aula 14 1 Geometria Analítica I 10/03/011 Respostas dos Exercícios do Módulo I - Aula 14 Aula 14 1. a. A equação do círculo de centro h, k) e raio r é x h) + y
x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli
Aula Teórica 3 ATIVIDADE. Represente, no plano cartesiano xy descrito abaixo, os dois pontos (x 0,y 0) = (,) e (x,y ) = (3,5).. Trace a reta r que passa pelos pontos e, no plano cartesiano acima. 3. Determine
Enunciados Exames 2002/2003 Enunciados Exames 2003/2004 Enunciados Trabalhos 2003/2004 Enunciados Exames 2004/2005 Enunciados Mini-testes 2004/2005
INSTITUTO POLITÉCNICO DE BRAANÇA MECÂNICA APLICADA I Escola Superior de Tecnologia e de estão Curso: Engenharia Civil Departamento de Mecânica Aplicada Ano lectivo: 2005/2006 Enunciados Exames 2002/2003
Coordenadas Cartesianas
1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos
3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta
1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada
Resumo com exercícios resolvidos do assunto:
www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) Derivadas Direcionais; Vetor Gradiente. (I) Derivadas Direcionais Definição: É a taxa de variação do valor de uma função
Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.
Nona E 4 Equilíbrio CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Texas Tech University de Corpos Rígidos 2010 The McGraw-Hill
Lista 1 - Cálculo III
Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],
Integral de funções de uma variável
Integrais Múltiplas Integral de funções de uma variável x = b a n a b f x dx = lim m m i=1 f(x i ) x Integral Dupla Seja f uma função de duas variáveis definida no retângulo fechado. R = a, b x c, d =
Integrais - Aplicações I
Integrais - Aplicações I Daniel 13 de novembro de 2015 Daniel Integrais - Aplicações I 13 de novembro de 2015 1 / 37 Áreas entre duas Curvas Área entre duas curvas Se f e g são funções integráveis em [a,b]
Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO
1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2018-2 Objetivos Apresentar os conceitos: Momento de inércia: retangular e polar Produto de Inércia Eixos Principais de Inércia
Plano cartesiano, Retas e. Alex Oliveira. Circunferência
Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é
1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0:
2. NTEGRAL E LNHA CÁLCULO 3-2018.1 2.1. :::: :::::::::::::::::::::::: ARCOS REGULARES Um arco (ou trajetória) : ~r (t) = x (t)~i + y (t)~j + z (t) ~ k; a t b; denomina-se arco regular quando as componentes
x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3
Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar
MECÂNICA 1 RESUMO E EXERCÍCIOS* P1
MECÂNICA 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com RESULTANTE DE FORÇAS R = F i MOMENTO
Professor: Anselmo Montenegro Conteúdo: Aula 2. - Primitivas Geométricas. Instituto de Computação - UFF
Geometria Computacional Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: Aula - Primitivas Geométricas 1 Roteiro Introdução Operações primitivas Distâncias Ângulos Ângulos orientados Áreas
APLICAÇÕES NA GEOMETRIA ANALÍTICA
4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas
ESTÁTICA DOS SÓLIDOS
Postulados: (Nóbrega, 1980) ESTÁTICA DOS SÓLIDOS 1. Se nenhuma força for aplicada a um sólido em equilíbrio, ele permanece em equilíbrio. 2. Aplicando uma única força a um sólido isolado em equilíbrio,
Agrupamento de Escolas Eugénio de Castro Escola Básica de Eugénio de Castro Planificação Anual. Ano Letivo 2016/17 Matemática- 3º Ciclo 9º Ano
Reconhecer propriedades da relação de ordem em IR. Definir intervalos de números reais. Operar com valores aproximados de números reais. Resolver inequações do 1.º grau. CONHECIMENTO DE FACTOS E DE PROCEDIMENTOS.
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.
Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site
Mecânica Geral 17/02/2016. Resultante de Duas Forças
Mecânica Geral Capítulo 2 Estática de Partículas Resultante de Duas Forças Força: ação de um corpo sobre outro; caracterizada por seu ponto de aplicação, sua intensidade, sua direção, e seu sentido. Evidênciaseperimentaismostramque
