Resistência dos. Materiais. Capítulo 3. - Flexão
|
|
|
- Eliza Coimbra Rocha
- 8 Há anos
- Visualizações:
Transcrição
1 Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva
2 Índice Flexão Pura Flexão Simples Flexão Composta Deformações por flexão Extensão devido a flexão Propriedades das secções de viga Deformações numa secção transversa Concentração de Tensões Flexão desviada Equação da Línea Elástica 2
3 Flexão Pura e Flexão Simples y M x Flexão Pura Quando os elementos prismáticos estão sujeitos apenas a momentos fletores iguais e opostos no mesmo plano. M = Constante ; V = 0; N = 0; T = 0 dm dx = V V y M x Flexão Simples ou Flexão Transversal Cargas transversais concentradas ou distribuídas produzem forças internas equivalentes a uma força de corte (esforço transverso) e a momentos fletores. M 0; V 0; N = 0; T = 0 3
4 Flexão Composta Flexão Composta tensão normal provocada por flexão pura pode ser composta com a tensão normal devido à carga axial e com a tensão devida ao carregamento de corte e/ou pelo momento fletor. y y M N x M N x V M 0; V = 0; N 0; T = 0 M 0; V 0; N 0; T = 0 4
5 Flexão Pura Da estática, um binário M define-se como duas forças de igual intensidade e sentidos opostos. soma das componentes das forças em qualquer direção é nula. O momento é o mesmo em torno de qualquer eixo perpendicular ao plano e nulo em torno de qualquer eixo contido no plano. Estes requisitos podem ser aplicados aos somatórios das componentes e momentos das forças internas estaticamente indeterminadas: F x = σ x d = 0 M y = zσ x d = 0 M z = yσ x d = M 5
6 Flexão Pura - considerações 6 Viga com um plano de simetria em flexão pura: O elemento permanece simétrico; Flete uniformemente, formando um arco circular; curvatura em todos os pontos da barra é a mesma; O plano transversal passa pelo centro do arco, mantendo-se plano; O comprimento B diminui, enquanto o de B aumenta; Existe uma superfície neutra (fibra neutra), paralela às superfícies superior e inferior e para a qual não se verifica alteração do comprimento; s tensões e extensões são negativas (compressão) acima da fibra neutra e positivas (tração) abaixo;
7 Flexão Pura - Deslocamentos e Extensão Considerar um segmento de viga de comprimento L. pós deformação, o comprimento da superfície neutra permanece inalterável. Nas restantes secções temos: Deslocamento L = ρθ L = ρ y θ δ x = L L = ρ y θ ρθ = yθ Extensões ε x = δ x L = yθ ε max = c ρ ρ = ρθ = y ρ c ε max ε x = y c ε max c distância entre a fibra neutra e a fibra mais afastada ε x = y ρ extensão varia linearmente com a coordenada y 7
8 Flexão Pura - Tensão Tensão Num material linear-elástico, temos σ x = Eε x = y c Eε max σ x = y c σ max tensão varia linearmente com a coordenada y 8 Por equilíbrio estático, F x = 0 F x = F x = σ x d F x = σ max c = 0 y c σ maxd = 0 yd = 0 O 1º momento relativo ao plano neutro é zero. Portanto a superfície neutra tem de passar pelo centroide da secção. Por equilíbrio estático, M = σ max c y 2 d M z = M = y y c σ max d = σ max c σ x = y c σ max σ x = y c σ x = My I z yσ x d I z Mc I z = M σ max = Mc I z I z momento de inercia
9 Vigas - Módulo de elasticidade da secção tensão normal máxima provocada por flexão é dada por: σ max = Mc I z = M S S módulo de elasticidade da secção Uma viga com maior S terá, logicamente, menor valor de tensão máxima. Considerando uma viga retangular, S = I z c = bh 3 12 h 2 = 1 6 bh2 = 1 6 h Entre 2 vigas retangulares com igual área transversal, a que possuir maior h terá maior capacidade de resistência à flexão. 9 Os perfis normalizados (I, H, U, etc.) são projetados para possuir elevados valores de S.
10 Vigas - Propriedades de perfis normalizados Norma DIN S x S y 10
11 Flexão Simples ou Flexão Transversal esforço transverso Esforço Transverso s estruturas sujeitas ao esforço de corte sofrem internamente tensões de corte que variam ao longo da sua seção. Quando o esforço transverso é significativo as secções já não se mantêm planas. 11 tensão de corte é geralmente ignorada quando a razão entre comprimento e a altura da viga for igual ou superior a 10.
12 Flexão Simples ou Flexão Transversal esforço transverso Determinação das tensões de corte. 12
13 Flexão Simples ou Flexão Transversal esforço transverso Fazendo o equilíbrio das forças, F x = 0 σd σ d + τ tdx = 0 M I z yd + M + dm I z yd = τ tdx dm yd = τ tdx τ = 1 I z t I z dm dx yd dm dx = V Q = yd = y Momento estático da figura plana em relação a linha neutra τ = VQ t I z 13
14 Flexão Simples ou Flexão Transversal esforço transverso Vigas de secção retangular Momento estático Q = y = y h 2 y h y b 2 Q = 1 2 h 2 4 y2 b I z = bh3 12 τ = VQ t I z = V 1 2 h 2 4 y2 b bh 3 = 12 b 6V h 2 bh 3 4 y2 distribuição da tensão de corte é parabólica. tensão de corte é máxima em y = 0. τ max = 3 2 V τ med = V 14
15 Flexão Simples ou Flexão Transversal esforço transverso Vigas de secção circular Momento estático Q = y = 2 3 R2 r I z = πr4 4 τ = VQ t I z = 4 3 V πr 2 1 r2 R distribuição da tensão de corte é parabólica. tensão de corte é máxima em y = 0. τ max = 4 3 V 15
16 Flexão Pura desviada té agora, a análise de flexão pura esteve limitada a elementos sujeitos a momentos fletores que atuam num plano de simetria do elemento (Fig. e B). Fig. Fig. B Os elementos permanecem simétricos e fletem no plano de simetria. O eixo neutro da secção coincide com o eixo do momento. Consideramos agora situações em que os momentos não atuam num plano de simetria do elemento (Fig. C e D ). Fig. C Fig. D Não se pode assumir que o elemento irá fletir segundo o plano do momento. 16 Nestas situações, geralmente, a fibra neutra da secção não coincide com o eixo do momento.
17 Flexão Pura desviada = O princípio da sobreposição é aplicado para determinar a distribuição de tensões na situação mais geral de Flexão Pura desviada. Decompor o momento nas respetivas componentes segundo cada uma das direções: M z = Mcos θ M y = Msen θ ssociar as tensões existentes em cada direção: σ x = M zy I z + M yz I y No linha neutro temos, σ x = 0 + Mcos θ y I z I zsen θ I y cos θ + = y z Msen θ z I y = 0 = tg φ 17 y = I z I y tg θ z
18 Flexão Composta distribuição de tensão devida a cargas excêntricas é determinada por sobreposição de: - distribuição uniforme devida à carga centrada; - distribuição linear devida ao momento fletor; Carregamento Excêntrico: F = P M z = Pd M 0; V = 0; N 0; T = 0 σ x = σ x axial + σ x flexão = P M zy I z 18 validade deste resultado requer que: - as tensões fiquem abaixo do limite proporcionalidade; - as deformações tenham efeito desprezável na geometria; - as tensões não sejam determinadas na vizinhança dos pontos de aplicação da força;
19 Flexão Composta desviada Considerar um elemento reto solicitado por forças excêntricas iguais e opostas. Por equilíbrio estático, a força excêntrica é equivalente a uma força centrada e a dois momentos: P Carga concentrada M y = Pa M z = Pb Pelo princípio da sobreposição, a distribuição de tensões é dada por: σ x = P M zy I z + M yz I y Como a linha neutra σ x = 0 pode ser determinada segundo: M z y I z = P + M yz I y y = I zm y I y M z z + PI z M z 19
20 Concentração de Tensões concentração de tensões pode ocorrer: Na vizinhança dos pontos onde os esforços são aplicados; σ max = K Mc I Na vizinhança de variações bruscas de secção; 20
21 Equação da Linha Elástica Retomando o equilíbrio estático na secção e a extensão segundo o eixo x, temos; ε x = y ρ σ x = Eε x σ x = Ey ρ M z = yσ x d M z = E ρ y2 d = EI z ρ 1 ρ = M z EI z 1 ρ - Curvatura ρ - Raio de curvatura 21
22 Equação da Linha Elástica Considerando um ponto Q da linha elástica, temos: y x - deslocamento vertical θ x - rotação da secção Pelo calculo matemático temos : θ x = dy dx 1 ρ = d 2 y dx dy dx d2 y dx 2 s rotações são pequenas logo dy dx é muito pequeno 1 ρ = M z EI z d 2 y dx 2 = M z x EI z Equação diferencial da linha elástica 22
23 Equação da Linha Elástica d 2 y dx 2 = M z x EI z 1º Integração dy dx = M z x EI z dx + C 1 2º Integração y x = M z x EI z dx + C 1 dx + C 2 s constantes C 1 e C 2 são calculadas com as chamadas condições de fronteira 23
24 Equação da Linha Elástica - Exemplo Exemplo 1 - Reações 3 - Condições de fronteira 2 Momento fletor 4 - Deslocamentos dv x dx = ω x dm x dx = V x 24
Resistência dos Materiais
- Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão
mecânica e estruturas geodésicas II DR. CARLOS AURÉLIO NADAL Professor Titular
mecânica e estruturas geodésicas II DR. CARLOS AURÉLIO NADAL Professor Titular UNIDADES DE MEDIDAS UTILIZADAS N = Newton é uma unidade de medida de força, denominada em homenagem a Isaac Newton. Corresponde
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão
Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares
Problema resolvido 4.2
Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)
Equações diferenciais
Equações diferenciais Equações diferenciais Equação diferencial de 2ª ordem 2 d 2 Mz x q x dx d Mz x Vy x q x C dx Mz x q x C x C 1 2 1 Equações diferenciais Equação do carregamento q0 q x 2 d 2 Mz x q
Resistência dos Materiais, MA, IST,
11ª Aula Flexão Flexão elástica recta Define-se barra ou peça linear como todo o corpo cujo material se confina à vizinhança de uma linha do espaço a que se chama eixo. Segundo o Vocabulário de Teoria
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
Departamento de Engenharia Mecânica ENG Mecânica dos Sólidos II. Teoria de Vigas. Prof. Arthur Braga
Departamento de Engenharia Mecânica ENG 174 - Teoria de Vigas Prof. rthur Braga Tensões de Fleão em Barras (vigas Deformação do segmento IJ M N ρ Δφ I J ( ρ y Δφ Compresão ρ ρ y I J y M N Eio Neutro (deformação
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. eer E. Russell Johnston, Jr. Deflexão de Vigas por Integração Capítulo 7 Deflexão de Vigas por Integração 7.1 Introdução 7. Deformação de
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da
MAC-015 Resistência dos Materiais Unidade 03
MAC-015 Resistência dos Materiais Unidade 03 Engenharia Elétrica Engenharia de Produção Engenharia Sanitária e Ambiental Leonardo Goliatt, Michèle Farage, Alexandre Cury Departamento de Mecânica Aplicada
Resistência dos Materiais
- Forças Internas em vigas (diagramas de esforços) Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e V. Dias da Silva Índice Revisões da estática Tipos de apoio Diagrama
Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar cisalhamento transversal Compreender quando ocorre o cisalhamento transversal Determinar
Capítulo 7 Cisalhamento
Capítulo 7 Cisalhamento 7.1 Cisalhamento em elementos retos O cisalhamento V é o resultado de uma distribução de tensões de cisalhamento transversal que age na seção da viga. Devido à propriedade complementar
Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RETÊNCA DO MATERA Ferdinand P. Beer E. Russell Johnston, Jr. Carregamento Transversal Capítulo 5 Carregamento Transversal 5.1 ntrodução 5.2 Carregamento Transversal 5.3 Distribuição
Deflexão em vigas de eixo reto
10 de novembro de 2016 Linha elástica da flexão é a curva formada pelo eixo de uma viga inicialmente retilíneo, devido à aplicação de momentos de flexão. Figura : Exemplo de viga em flexão Antes da aplicação
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
Programa. Centroide Momentos de Inércia Teorema dos Eixos Paralelos. 2 Propriedades Geométricas de Áreas Planas
Propriedades Geométricas de Áreas Planas Programa 2 Propriedades Geométricas de Áreas Planas Centroide Momentos de Inércia Teorema dos Eixos Paralelos L Goliatt, M Farage, A Cury (MAC/UFJF) MAC-015 Resistência
São as vigas que são fabricadas com mais de um material.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões em Vigas Tópicos
23.(UNIFESPA/UFPA/2016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros.
.(UNIFESPA/UFPA/016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros. Figura 5 Viga de madeira de seção composta pregada. Dimensões em centímetros.
Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 3: FLEXÃO
Curso de Engenharia Civil Universidade Estadual de aringá Centro de Tecnologia Departamento de Engenharia Civil CÍTULO 3: FLEXÃO 3. Revisão de Esforços nternos étodo das Seção: 3. Revisão de Esforços nternos
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
Tensões de Flexão nas Vigas
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões de Flexão nas Vigas
5 CISALHAMENTO SIMPLES
5 CISALHAMENTO SIMPLES Conforme visto anteriormente, sabe-se que um carregamento transversal aplicado em uma viga resulta em tensões normais e de cisalhamento em qualquer seção transversal dessa viga.
Sergio Persival Baroncini Proença
ula n.4 : ESTUDO D FLEXÃO São Carlos, outubro de 001 Sergio Persival Baroncini Proença 3-) ESTUDO D FLEXÃO 3.1 -) Introdução No caso de barras de eixo reto e com um plano longitudinal de simetria, quando
DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:
PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;
TORÇÃO. Prof. Dr. Carlos A. Nadal
TORÇÃO Prof. Dr. Carlos A. Nadal Tipo de esforços a) Tração b) Compressão c) Flexão d) Torção e) Compressão f) flambagem Esforços axiais existe uma torção quando uma seção transversal de uma peça está
Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng.
Disciplina: Resistência dos Materiais Unidade V - Flexão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar a flexão assimétrica Conceituar a flexão oblíqua Determinar a posição da linha neutra em barras sob flexão
Deflexão em vigas e eixos
Capítulo 12: Deflexão em vigas e eixos Adaptado pela prof. Dra. Danielle Bond Deflexão em Vigas e Eixos Muitas vezes é preciso limitar o grau de deflexão que uma viga ou eixo pode sofrer quando submetido
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
Mecânica dos Sólidos I Parte 5 Tensões de Flexão
Departamento de Engenharia ecânica Parte 5 Tensões de Fleão Prof. Arthur. B. Braga 8.1 ecânica dos Sólidos Problema F 1 Corpo sujeito a ação de esforços eternos forças, momentos, etc. F 7 F 8 F F 3 Determinar
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.
Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações
Resistência dos Materiais
- Torção Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e V. Dias da Silva Índice Tensões de corte nas secções circulares Rotação das secções Torção em veios circulares
Sumário: Equação da Deformada. Obtenção da Deformada por Integração directa da equação da Deformada.
Sumário e Objectivos Sumário: Equação da Deformada. Obtenção da Deformada por Integração directa da equação da Deformada. Objectivos da Aula: Apreensão da forma de cálculo dos deslocamentos transversais
Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor
Capítulo 6: Flexão Adaptado pela prof. Dra. Danielle Bond Diagramas de força cortante e momento fletor Elementos delgados que suportam carregamentos aplicados perpendicularmente a seu eixo longitudinal
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos
FLEXÃO COMPOSTA RETA E OBLÍQUA
Universidade Federal de Ouro Preto - Escola de Minas Departamento de Engenharia Civil CIV620-Construções de Concreto Armado FLEXÃO COMPOSTA RETA E OBLÍQUA Profa. Rovadávia Aline Jesus Ribas Ouro Preto,
Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2
Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:
Mecânica dos Sólidos I Parte 2
Departamento de Engenharia Mecânica arte 2 rof. Arthur M. B. Braga 2006.1 arte II Barras carregadas axialmente (Cap. 1 e 2) Cisalhamento (Cap. 1) Torção de eixos cilíndricos (Cap. 3) Mecânica dos Sólidos
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 2 Tensão e deformação: Carregamento axial Conteúdo Tensão e Deformação: Carregamento Axial Deformação Normal
Capítulo 5 Carga Axial
Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Determinar a tensão normal e as deformações em elementos
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN)
PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015 Resolução 1ª Questão (4,0 pontos) barra prismática da figura tem comprimento L=2m. Ela está L/2 L/2 engastada em e livre em C. seção transversal
Tensões de Cisalhamento em Vigas sob Flexão
31 de outubro de 2016 (a) Peças sem acoplamento. (b) Peças com acoplamento. (a) Peças sem acoplamento. (b) Peças com acoplamento. Na primeira situação, mostrada na Figura (a), as peças trabalham de forma
7 FLEXÃO COMPOSTA 7.1 FLEXÃO COMPOSTA NORMAL
7 FLEXÃO COMPOSTA Ocorre o esforço de flexão composta quando a resultante das tensões normais pode ser decomposta em uma força normal e momentos fletores. Quando o plano do momento fletor intercepta a
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender a deformação por torção Compreender os esforços de torção Determinar distribuição de tensões de cisalhamento
Fundamentos de Mecânica dos Materiais
Fundamentos de Mecânica dos Materiais - Estabilidade de estruturas Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e V. Dias da Silva -, R.C. Hibbeler Índice
Cisalhamento transversal
Capítulo 7: Cisalhamento transversal Adaptado pela prof. Dra. Danielle Bond Cisalhamento em elementos retos Vimos que por conta dos carregamentos aplicados, as vigas desenvolvem uma força de cisalhamento
Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial.
Sumário e Objectivos Sumário: Flexão segundo os dois Eixos Principais de Inércia ou Flexão Desviada. Flexão Combinada com Esforço Axial. Objectivos da Aula: Apreensão da forma de Cálculo das Tensões Axiais
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
Várias formas da seção transversal
Várias formas da seção transversal Seções simétricas ou assimétricas em relação à LN Com o objetivo de obter maior eficiência (na avaliação) ou maior economia (no dimensionamento) devemos projetar com
4 ENSAIO DE FLEXÃO. Ensaios Mecânicos Prof. Carlos Baptista EEL
4 ENSAIO DE FLEXÃO Ensaio de Flexão: Bastante aplicado em materiais frágeis ou de alta dureza - Exemplos: cerâmicas estruturais, aços-ferramenta - Dificuldade de realizar outros ensaios, como o de tração
Teoria Clássica das Placas
Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Fleão de Placas ANÁLISE DE ESTRUTURAS I PROF. EVANDRO PARENTE JUNIOR (UFC) PROF. ANTÔNIO MACÁRIO
6 TORÇÃO SIMPLES. Equação 6.1. Ou, uma vez que df = da, com sendo a tensão de cisalhamento do elementos de área da, Equação 6.2
6 TORÇÃO SIMPLES Torção simples ocorre quando a resultante na seção for um binário cujo plano de ação é o da própria seção. Considerando a barra de seção circular AB submetida em A e B a toques iguais
Prof. José Wallace B. do Nascimento. Capítulo 4
Resistências dos Materiais Fleão Pura Fleão pura: Barras prisáticos subetido à ação de dois conjugados iguais e de sentido contrário, que atua e u eso plano longitudinal. Universidade Federal de Capina
Seção 7 (Flexão) - Exemplos dados em aula
UFPR - MECÂNICA DOS SÓLIDOS I Seção 7 (Flexão) - Exemplos dados em aula Prof. Marcos S. Lenzi May 24, 2016 Exemplo 7.1 - Considere uma barra de aço com seção tranversal retangular conforme mostrado abaixo
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Engenharia Aeroespacial Universidade Federal do ABC 07 de março, 2016 Conteúdo 1 Introdução 2 Tensão 3 Deformação 4 Lei de Hooke
4 ESFORÇO DE FLEXÃO SIMPLES
4 ESFORÇO DE FLEXÃO SIMPLES O esforço de flexão simples é normalmente resultante da ação de carregamentos transversais que tendem a curvar o corpo e que geram uma distribuição de tensões aproximadamente
Módulo de elasticidade ou módulo de Young
CAPÍTULO FLEXÃO DE VIGA Antecedendo a apresentação da formulação de diversos tipos de elementos de viga, efectua-se em seguida uma revisão dos fundamentos da flexão de vigas. Apenas são consideradas as
Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme
Carga axial. Princípio de Saint-Venant
Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente
, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE
3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE
Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2
Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 3 Flexão
Capítulo 3 Flexão 3.1 Revisão Flexão provoca uma tensão de tração de um lado da viga e uma tensão de compressão do outro lado. 3.2 A fórmula da flexão O momento resultante na seção transversal é igual
TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS
DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de
RESISTÊNCIA DOS MATERIAIS AULAS 02
Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria
MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais
MECÂNICA DO CONTÍNUO Tópico 3 Método dos Trabalhos Virtuais PROF. ISAAC NL SILVA Aspecto físico do equilíbrio Instável Estável P y1 y2 P Indiferente P Aspecto matemático: Eq. Instável d 2 V/dx 2
Carregamentos Combinados Mecânica Dos Materiais II
Carregamentos Combinados Mecânica Dos Materiais II Universidade de Brasília UnB Departamento de Engenharia Mecânica ENM Grupo de Mecânica dos Materiais GMM ÍNDICE Revisão sobre vigas Revisão de ropriedades
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,
A B. P/l. l l l. a a a B 2P. Articulação ideal A B. a/2 a/2
ESOL OLITÉNI D UNIVERSIDDE DE SÃO ULO Departamento de Engenharia Mecânica ME-3210 MEÂNI DOS SÓLIDOS I rofs.: lóvis. Martins e R. Ramos Jr. 3 a rova 21/06/2016 Duração: 100 minutos 1 a Questão (4,0 pontos):
ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.
ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para
6. Esforço normal, tensão normal e extensão
6. Esforço normal, tensão normal e etensão 1. Mecânica dos materiais Restrição dos conceitos da Mecânica dos sólidos para peças lineares Peça linear (ou elemento unidimensional): elemento estrutural que
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2018-2 Objetivos Apresentar os conceitos: Momento de inércia: retangular e polar Produto de Inércia Eixos Principais de Inércia
Resistência dos Materiais Teoria 2ª Parte
Condições de Equilíbrio Estático Interno Equilíbrio Estático Interno Analogamente ao estudado anteriormente para o Equilíbrio Estático Externo, o Interno tem um objetivo geral e comum de cada peça estrutural:
3. IDEALIZAÇÃO DO COMPORTAMENTO DE BARRAS
3. IDEALIZAÇÃO DO COMPORTAMENTO DE BARRAS Como discutido no Capítulo 1, a análise estrutural de estruturas reticuladas está fundamentada na concepção de um modelo matemático, aqui chamado de modelo estrutural,
(atualizado em 12/07/2014)
ENG285 4ª Unidade 1 (atualizado em 12/07/2014) Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para
Momentos de Inércia de Superfícies
PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para
