MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA
|
|
|
- Francisco Manuel Salgado Sabrosa
- 9 Há anos
- Visualizações:
Transcrição
1 MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas coordenadas polares: (r, ). Quando uma partícula sobre um corpo movimenta-se ao longo do círculo de raio r até o ponto P, ela se desloca por um arco de comprimento s, que está relacionado com pela relação Apesar de ser adimensional, é comum chamar esta unidade de radiano (rad). *Observe se sua calculadora está programada em radianos antes de fazer os cálculos. Velocidade angular média: razão do deslocamento angular para o intervalo de tempo Δt: A velocidade angular instantânea é definida como o limite da razão da equação acima quando Δt tende a zero: Unidade das velocidades angulares: rad/s ou s -1. Por analogia, temos as acelerações angulares médias e instantâneas: Unidades das acelerações angulares: rad/s² ou s -2. Modelo de corpo rígido: qualquer sistema de partículas no qual elas permanecem em posições fixas entre si. Para rotação ao redor de um eixo fixo, toda partícula de um corpo rígido tem a mesma velocidade angular e a mesma aceleração angular.
2 2.0 Cinemática Rotacional Integrando a expressão da aceleração angular instantânea, temos: Integrando a expressão da velocidade angular instantânea, temos: Eliminando o tempo das equações, temos: Eliminando a aceleração das equações, temos: ( ) Diferente do movimento translacional, o corpo fica retornando à sua orientação original.
3 3.0 Relações entre grandezas rotacionais e translacionais Velocidade: Aceleração: Aceleração centrípeta: 4.0 Momento de Inércia A segunda lei de Newton estabelece que a velocidade do corpo varia tanto mais rapidamente por efeito de uma força resultante não nula quanto menor for a sua massa. É nesse sentido que dizemos que a massa é a medida da inércia do corpo. Mas, quando consideramos os movimentos de rotação, a medida mais apropriada da inércia de um corpo é o seu momento de inércia. Vamos considerar que m1, m2,... mk,... mn são as massas das N partículas que compõem um corpo extenso e que r1, r2,... rk,... rn são as respectivas distâncias a um eixo qualquer. Definimos o momento de inércia I desse corpo, em relação ao eixo considerado, pela expressão: Para um corpo contínuo, extenso, podemos calcular o momento de inércia dividindo o corpo em muitos elementos pequenos com massa Δmi, tão pequenos que essas massas tendem a zero:
4 4.1 Teorema de Steiner O teorema de Steiner ou teorema dos eixos paralelos diz o seguinte: O momento de inércia de um corpo em relação a um eixo qualquer é igual ao momento de inércia em relação ao eixo paralelo, que passa pelo centro de massa, somado ao produto da massa do corpo pela distância entre os eixos ao quadrado. Vamos ver então o cálculo do momento de inércia localizado em (x,y ) tendo como referencial o centróide que dista da origem A. A localização do elemento dm é, portanto, Para o momento de inércia em relação a x, temos que, o elemento de momento de inércia é, Sendo o momento de primeira ordem (estático). Como o momento estático é nulo quando passa pelo centróide, temos que: A primeira integral é o momento de inércia em relação ao centróide: Sendo a distância do eixo até o centro de massa. Analogicamente:
5 4.2 Teorema dos Eixos Perpendiculares Dada uma placa plana de formato e distribuição de massa arbitrários, a soma de seus momentos de inércia em relação a quaisquer 2 eixos perpendiculares contidos no plano da placa é igual ao momento de inércia relativamente a um eixo que passa do seu ponto de interseção e é perpendicular à placa. Considere uma lâmina fina e uniforme. Sendo e os momentos de inércia em relação ao eixo OX e OY respectivamente, o momento de inércia em relação ao eixo OZ é dado por: Sendo r² = x² + y², temos:
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
Cap.12: Rotação de um Corpo Rígido
Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
Física I 2010/2011. Aula 13 Rotação I
Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e
Rotação de Corpos Rígidos
Fisica I IO Rotação de Corpos Rígidos Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 [email protected] Rotação de Corpos Rígidos Movimentos de corpos contínuos podiam em muitos casos ser descritos
As variáveis de rotação
Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento
Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.
Capítulo 10 Rotação Copyright 10-1 Variáveis Rotacionais Agora estudaremos o movimento de rotação Aplicam-se as mesmas leis Mas precisamos de novas variáveis para expressá-las o o Torque Inércia rotacional
Capítulo 9 - Rotação de Corpos Rígidos
Aquino Lauri Espíndola 1 1 Departmento de Física Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense Volta Redonda, RJ 27.213-250 1 de dezembro de 2010 Conteúdo 1 e Aceleração Angular
Física para Zootecnia
Física para Zootecnia Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação cuja posição
Aula do cap. 10 Rotação
Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:
Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo
Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Lembrete 11.1 Em equações rotacionais, deve usar ângulos expressos em radianos. Lembrete 11.2 Na resolução de problemas de rotação, deve especificar um
Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*
ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular
Profº Carlos Alberto
Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,
Capítulo 11 Rotações e Momento Angular
Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar
Cap. 9 - Rotação do Corpo Rígido. 1 Posição, Velocidade e Aceleração Angulares
Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 9 - Rotação do Corpo Rígido Prof. Elvis Soares Para nós, um corpo rígido é um objeto indeformável, ou seja, nesse corpo
Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA
RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.
CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR
O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que
Lista 8 : Cinemática das Rotações NOME:
Lista 8 : Cinemática das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder
Cinemática em 2D e 3D
Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar
Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado
Dinâmica Prof.ª Betty Carvalho Rocha Gonçalves do Prado [email protected] [email protected] CORPO RÍGIDO São corpos cuja dimensões não são desprezáveis Corpo rígido É um conceito limite ideal,
Rotações de corpos rígidos
Rotações de corpos rígidos Alexandre Furlan Fundamentos de Mecânica - FIS065 Turmas E1 E2 E3 29 de outubro de 2018 Alexandre Furlan (Aula 18) Fundamentos de Mecânica 29 de outubro de 2018 1 / 10 Objetivos
MECÂNICA DOS FLUIDOS Capítulo 02 REVISÃO - INÉRCIA
30/03/011 UNIVERSIDADE FEDERAL DE GOIÁS ENGENHARIA CIVIL E DE MINAS MECÂNICA DOS FLUIDOS Capítulo 0 REVISÃO - INÉRCIA Profa. Eliane Justino INÉRCIA É uma propriedade física da matéria, e segundo a relatividade
MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido. Professor Renan
MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido Professor Renan 1 Centro de massa Um corpo extenso pode ser considerado um sistema de partículas, cada uma com sua massa. A resultante total das massas
Agrupamento de Escolas da Senhora da Hora
Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Multimédia Informação Prova da Disciplina de Física - Módulo: 1 Forças e Movimentos; Estática Modalidade da Prova: Escrita Ano
FEP Física Geral e Experimental para Engenharia I
FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado
Disciplina de Mecânica Geral II. CINEMÁTICA e DINÂMICA de CORPOS RÍGIDOS
isciplina de Mecânica Geral II CINEMÁTIC e INÂMIC de CORPOS RÍGIOS CINEMÁTIC é o estudo da geometria em movimento, utilizada para relacionar as grandezas de deslocamento, velocidade, aceleração e tempo.
Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA
Mecânica Clássica Curso - Licenciatura em Física EAD Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Aula 1 : Cinemática da partícula Aula 1 : Cinemática da partícula Exemplos Um tubo metálico, retilíneo
Apresentação Outras Coordenadas... 39
Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar
Mecânica Geral Aula 03- Momento de Inércia Bibliografia e Figuras: Halliday, Resnick e Walker, vol 1, 8a Ed. LTC Tipler e Mosca, vol 1, 6a Ed.
Mecânica Geral Aula 03- Momento de Inércia Bibliografia e Figuras: Halliday, Resnick e Walker, vol 1, 8a Ed. LTC Tipler e Mosca, vol 1, 6a Ed. Prof. Ettore Baldini-Neto [email protected] Nas aulas anteriores
Notação Científica. n é um expoente inteiro; N é tal que:
Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática
Cinemática rotacional e momento de inércia
Cinemática rotacional e momento de inércia 1 Cinemática rotacional Consideremos uma partícula girando no sentido anti-horário em torno de um eixo fixo perpendicular ao plano da página passando através
UFRPE: Física 11 Márcio Cabral de Moura 1. 2 aulas, 5 horas Capítulos 1 e 3 do Fundamentos de Física 1, de D. Halliday e R. Resnick, 3ª edição.
UFRPE: Física 11 Márcio Cabral de Moura 1 1. Introdução 1 e 3 do Fundamentos de Física 1, de D. Halliday e R. Resnick, 3ª edição. 1.1 O objeto da Física O objeto da física é a natureza 1.2 O método físico.
Física I. Cinemática de Rotações Lista de Exercícios
Física I Cinemática de Rotações Lista de Exercícios 1. Velocidade Angular Média Elaboração própria Calcule a velocidade angular média das partículas de cada caso especificado: a. 6 voltas em 1 minuto.
Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva
Vibrações e Dinâmica das Máquinas Aula - Cinemática Professor: Gustavo Silva 1 Cinemática do Movimento Plano de um Corpo Rígido 1 Movimento de um corpo rígido; 2 Translação; 3 Rotação em torno de um eixo
Física I. Lista de Exercícios LIVE: Exercícios P3
Física I Lista de Exercícios LIVE: Exercícios P3 Lista de Exercícios 1. Centro de Massa P2 2016.1 Diurno Exercício 9 Uma chapa metálica de densidade superficial uniforme (I) pode ser cortada das formas
Espaço x Espaço inicial x o
MOVIMENTO CIRCULAR Prof. Patricia Caldana O movimento circular é o movimento no qual o corpo descreve trajetória circular, podendo ser uma circunferência ou um arco de circunferência. Grandezas Angulares
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
FIS 26. Mecânica II *****
* ** FIS 26 Mecânica II *** * https://def.fe.up.pt/dinamica/movimento_curvilineo.html ** http://www.met.reading.ac.uk/pplato2/h-flap/phys5_3.html *** http://www.esquerda.net/artigo/como-explicar-ondas-gravitacionais-tua-avo/41226
Equipe de Física. Física. Movimento Circular
Aluno (a): Série: 3ª Turma: TUTORIAL 3B Ensino Médio Equipe de Física Data: Física Movimento Circular Grandezas Angulares As grandezas até agora utilizadas de deslocamento/espaço (s, h, x, y), de velocidade
3 Relações. 4 Velocidade Escalar. 5 Velocidade Angular. 6 Período. 7 Frequência. 8 Função Horária. 9 Aceleração Centrípeta
1 Movimento Circular Uniforme Introdução 2 Ângulos no Movimento Circular 3 Relações 4 Velocidade Escalar 5 Velocidade Angular 6 Período 7 Frequência 8 Função Horária 9 Aceleração Centrípeta 10 Polias e
Movimento Circular I
Moimento Circular I Restrições ao moimento: Rotação de corpo rígido; Rotação em torno de um eixo fixo. Estudo: Posição, elocidade e aceleração angular; Grandezas angulares e lineares; Inércia de Rotação
O pêndulo simples é constituído por uma partícula de massa
AULA 42 APLICAÇÕES DO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: APLICAR A TEORIA DO MOVIMENTO HARMÔNICO SIMPLES A PÊNDULOS 42.1 PÊNDULO SIMPLES: O pêndulo simples é constituído por uma partícula de massa
Volume de um sólido de Revolução
Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas
LISTA DE EXERCÍCIOS Nº 10. 2) O que ocorre com o ioiô inicialmente estacionário da Figura 2 se este é excitado por uma força (a) F 2, (b)
LISTA DE EXERCÍCIOS Nº 10 Questões 1) Na Figura 1, 3 forças de mesma magnitude são aplicadas em uma partícula que encontra-se na origem do sistema de referência. Ordene as forças de acordo com as magnitudes
Mecânica 1. Resumo e Exercícios P3
Mecânica 1 Resumo e Exercícios P3 Conceitos 1. Dinâmica do Ponto 2. Dinâmica do Corpo Rígido 1. Dinâmica do Ponto a. Quantidade de Movimento Linear Vetorial Instantânea Q = m v b. Quantidade de Movimento
MOVIMENTO CIRCULAR PROFESSORA DANIELE SANTOS FÍSICA 2 ANO FÍSICA INSTITUTO GAY-LUSSAC
MOVIMENTO CIRCULAR PROFESSORA DANIELE SANTOS FÍSICA 2 ANO FÍSICA INSTITUTO GAY-LUSSAC MOVIMENTO CIRCULAR CONCEITOS INICIAIS UM CORPO EXECUTA MOVIMENTO CIRCULAR QUANDO SUA TRAJETÓRIA É UMA CIRCUNFERÊNCIA
Física 1 Mecânica. Instituto de Física - UFRJ
Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Rotação de uma partícula 1/ 30 (Rotação de uma partícula) Física 1 1/28 Outline 1 Produto Vetorial 2 Rotação em Torno de um Eixo Fixo 2/ 30 (Rotação
Física I 2009/2010. Aula02 Movimento Unidimensional
Física I 2009/2010 Aula02 Movimento Unidimensional Sumário 2-1 Movimento 2-2 Posição e Deslocamento. 2-3 Velocidade Média 2-4 Velocidade Instantânea 2-5 Aceleração 2-6 Caso especial: aceleração constante
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
Cap.04 Cinemática em duas Dimensões
Cap.04 Cinemática em duas Dimensões Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 4.1 Aceleração Entender a Eq. 4.1: o vetor
Aplicações à Física e à Engenharia
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física
MOVIMENTO EM DUAS E TRÊS DIMENSÕES
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: MECÂNICA E TERMODINÂMICA MOVIMENTO EM DUAS E TRÊS DIMENSÕES Prof. Bruno Farias Introdução Neste módulo
Deslocamento, velocidade e aceleração angular. s r
Rotação Deslocamento, velocidade e aceleração angular s r s r O comprimento de uma circunferência é πr que corresponde um ângulo de π rad (uma revolução) ( rad) (deg ou graus) 180 Exemplo 0 60 3 rad Porque
Física 1. Rotação e Corpo Rígido Resumo P3
Física 1 Rotação e Corpo Rígido Resumo P3 Fórmulas e Resumo Teórico Momento Angular - Considerando um corpo de massa m a um momento linear p, temos: L = r p = r mv Torque - Considerando uma força F em
Figura Na figura nós podemos ver que não há aceleração tangencial, somente a aceleração em azul que aponta para o centro da curva.
Movimento Circular INTRODUÇÃO Para um movimento ser curvo, é necessária a existência de pelo menos uma componente da aceleração perpendicular à trajetória, ou seja, a aceleração não deve estar na mesma
AULA 43 RELAÇÃO ENTRE O MOVIMENTO HARMÔNICO E O MOVIMENTO CIRCULAR
AULA 43 RELAÇÃO ENTRE O MOVIMENTO HARMÔNICO E O MOVIMENTO CIRCULAR OBJETIVOS: ESTUDAR A RELAÇÃO DO MOVIMENTO HARMÔNICO COM O CIRCULAR, MOSTRANDO QUE ESTE É UMA COMPOSIÇÃO DE DOIS MOVIMENTOS HARMÔNICOS
Dinâmica do Movimento de Rotação
www.engenhariafacil.net Resumo com exercícios resolvidos do assunto: Dinâmica do Movimento de Rotação (1)- TORQUE, CONSIDERAÇÕES INICIAIS: Já estudamos que a atuação de forças em um corpo altera o movimento
Física I Prova 2 20/02/2016
Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões
MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo
Física I P3 Exercícios
Fuja do Nabo Rogério Motisuki Física I P3 Exercícios P3 011) a) Como são corpos pontuais, basta somar o produto, onde é a distância até o eixo de rotação: b) 4 3 4 5 8 A única força agindo sobre o haltere
DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.
DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho [email protected] Juiz de Fora MG Introdução: Objetivo: Desenvolver
INDUÇÃO ELETROMAGNÉTICA
INDUÇÃO ELETROMAGNÉTICA 1. (ITA 2009) Uma haste metálica com 5,0 kg de massa e resistência de 2,0 Ω desliza sem atrito sobre duas barras paralelas separadas de 1,0 m, interligadas por um condutor de resistência
Curso Física 1. Aula Dinâmica de Rotação de um Corpo Rígido
Curso Física Aula - 8 Dinâmica de Rotação de um Corpo Rígido Torque, Definição: Torque,, é a tendência de uma força causar rotação num objeto ao redor de um determinado eixo. Seja F uma força agindo
VETOR POSIÇÃO 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘
VETOR POSIÇÃO r = xi + yj + zk VETOR DESLOCAMENTO Se uma partícula se move de uma posição r 1 para outra r 2 : r = r 2 r 1 r = x 2 x 1 i + y 2 y 1 j + z 2 z 1 k VETORES VELOCIDADE MÉDIA E VELOCIDADE INSTANTÂNEA
FIS 26. Mecânica II. Aula 3: Corpo rígido. Momento angular.
FIS 26 Mecânica II Aula 3:. Momento angular. - Roteiro Resumo das últimas aulas Momento de Inércia - Momento angular no movimento planar - Momento de inércia em relação a um eixo - Raio de giração - Teorema
Coordenadas e distância na reta e no plano
Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais
Prof. MSc. David Roza José -
1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê
28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos.
28/Fev/2018 Aula 4 4. Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos 5/Mar/2018 Aula 5 5.1 Movimento circular 5.1.1 Movimento circular uniforme 5.1.2
2º Exame de Mecânica Aplicada II
2º Exame de Mecânica Aplicada II Este exame é constituído por 4 perguntas e tem a duração de três horas. Justifique convenientemente todas as respostas apresentando cálculos intermédios. Responda a cada
Movimento Circular AULA 7. Profª Andreia Andrade CINEMÁTICA VETORIAL
CINEMÁTICA VETORIAL Movimento Circular Profª Andreia Andrade AULA 7 CINEMÁTICA VETORIAL GRANDEZAS ANGULARES As grandezas até agora utilizadas de deslocamento/espaço (s, h, x, y), de velocidade (v) e de
CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18
Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de
10- Momentos de Inércia
1 10- Momentos de Inércia Momento de inércia de área: medida da resistência à flexão de uma viga. Momento de inércia de massa: medida da inércia (resistência) ao movimento de rotação de um corpo sólido.
Série IV - Momento Angular (Resoluções Sucintas)
Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme
PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Seções Transversais Objetivos
Lista 7. Campo magnético, força de Lorentz, aplicações
Lista 7 Campo magnético, força de Lorentz, aplicações Q28.1) Considere a equação da força magnética aplicada sobre uma partícula carregada se movendo numa região com campo magnético: F = q v B. R: Sim,
POTENCIAL ELÉTRICO. Prof. Bruno Farias
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar
Movimento Circular Uniforme MCU Conceitos Iniciais
Movimento Circular Uniforme MCU Conceitos Iniciais O movimento circular uniforme é semelhante ao movimento retilíneo uniforme, seja, a partícula percorre distancias iguais em tempos iguais, com a única
Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff
1. Entre os pontos A = (4, 0), B = ( 3, 1), C = (0, 7), D = ( 1 2, 0), E = (0, 3) e F = (0, 0), (a) quais estão sobre o eixo OX? (b) quais estão sobre o eixo OY? 2. Descubra qual quadrante está localizado
Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA
Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação
