CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA
|
|
|
- Jorge Jardim Lencastre
- 9 Há anos
- Visualizações:
Transcrição
1 CAPÍLO 3 DINÂMICA DA PARÍCLA: RABALHO E ENERGIA Neste capítulo será analisada a lei de Newton numa de suas formas integrais, aplicada ao movimento de partículas. Define-se o conceito de trabalho e energia cinética e através da integração da lei de Newton ao longo da trajetória do movimento podemos relacionar as forças aplicadas num intervalo de tempo com a variação da velocidade. 3. RABALHO REALIZADO POR MA FORÇA O conceito de trabalho como definido na Mecânica da partícula está relacionado à ação de forças aplicadas na direção do movimento. Numa forma diferencial, o trabalho de uma força F é dado por d F (3.) A Figura 3. ilustra as grandezas envolvidas nesta definição. Logo d F cos ds (3.) Podemos observar que d F cos ds 0 quando 0 90 d F cos ds 0 quando 90 d F cos ds 0 quando 90 80
2 F r ds P r S Figura 3. - Elementos da definição de trabalho de uma força. Logo, a partir de (3.) e (3.), o trabalho de uma força F durante o movimento que vai da posição r até a posição r é uma grandeza escala dada por r s F cos ds r s F (3.3) Observe que o trabalho de uma força constante F C, ao longo de uma trajetória retilínea, é dado por r s s r s F C FC cos ds FC cos ( s ) (3.4) F C s s s s Figura 3. - rabalho de uma força constante. O trabalho da força peso W, sendo y a direção vertical, é dado por ou seja r r r r F ( W j) ( dx i dy j dz k) (3.5)
3 y Wdy W ( y y) W y (3.6) y 3 y P r r W x z Figura rabalho da força-peso W. O trabalho da força de uma mola linear aplicada a uma partícula P que se desloca ao longo do eixo x pode ser obtido a partir de: x m d x F r (3.7) O modelo linear de força de mola estabelece que sua intensidade é proporcional ao seu deslocamento x, quando x = 0 corresponde à posição de mola livre. Assim a força sobre uma mola de constante elástica k possui a forma kx. Aplicada sobre a partícula P esta força tem sinal contrário ao deslocamento x. Portanto, a força de mola sobre a partícula P é dada por F m k x (3.8) Logo x k x dx k ( x x x ) (3.9) 3. PRINCÍPIO DO RABALHO E ENERGIA Considere agora a lei de Newton dada pela equação do movimento, aplicada a uma partícula P de massa m:
4 F m a (3.0) 4 Vamos calcular o trabalho da força resultante, num movimento desta partícula entre duas posições r e r, com t > t : r r r F ma (3.) r Nesta equação, como o processo de integração é linear, então: ou seja r r r F ma (3.) r r r ma (3.3) Aplicando a relação cinemática diferencial a d r v dv em (3.3) obtemos v v mv dv (3.4) Realizando a integração do lado direito da igualdade (3.4) obtemos v mv dv mv mv v Definindo a energia cinética de uma partícula de massa m como (3.5) mv (3.6) e aplicando em (3.5), obtemos o princípio do trabalho e energia para uma partícula P, da seguinte forma ou (3.7) (3.8)
5 5 3.3 PRINCÍPIO DO RABALHO E ENERGIA: SISEMAS DE PARÍCLAS Vamos estender o princípio do trabalho e energia para um sistema de partículas. Seja um sistema formado por n partículas, cada uma de massa m i. Aplicando (3.8) para a i-ésima partícula i ) i i ( (3.9) Somando para todas a i partículas do sistema resulta: i ) i i ( (3.0) ou, de forma compacta (3.) onde mivi é a energia cinética do sistema no instante mivi é a energia cinética do sistema no instante ri ri i i Fi i ri ri f é o trabalho do sistema. Para a definição do trabalho do sistema entre as posições iniciais e finais, foi usada a notação f para forças internas e F para forças externas ao sistema. Deve-se notar que em determinadas condições, o trabalho total das forças internas é nulo: isto ocorre quando todas as partículas têm igual deslocamento (translação) e as conexões entre elas são rígidas. Estas condições são satisfeitas, por exemplo, para o caso de corpos rígidos em translação. Observamos que a equação (3.) é igual a (3.8), mas cada um de seus termos tem definição diferente, como visto nesta seção.
6 6 3.4 POÊNCIA E EFICIÊNCIA A potência é definida com a taxa de variação do trabalho por unidade de tempo, ou seja d P (3.) dt Aplicando (3.) em (3.), resulta F P F v (3.3) dt m conceito prático utilizado em engenharia é o da eficiência, às vezes denominado rendimento. Define-se, num sistema mecânico, a eficiência mecânica como o quociente entre a potência de saída e a potência de entrada. PS P E (3.4) A potência de entrada, em geral, é aquela fornecida pelos motores que acionam o sistema. Podem ter várias fontes de energia, sendo a energia elétrica muito utilizada. A potência de saída é a responsável pelo trabalho que se deseja realizar com o sistema. Se o sistema for considerado ideal, este quociente é igual a, pois não há perda de energia. Entretanto, nos sistemas reais a eficiência é sempre menor que, pois sempre há perda de energia mecânica ao se realizar um trabalho. 3.5 FORÇAS CONSERVAIVAS E ENERGIA POENCIAL Chamamos forças conservativas aquelas cujo trabalho realizado entre duas posições não depende da trajetória do movimento. Para a aplicação neste curso vamos destacar duas forças conservativas: a força peso e a força de mola. Como visto anteriormente em (3.6), o trabalho da força peso é dado por ) W( y y W y (3.5)
7 7 Definimos a energia potencial gravitacional como V g W y (3.6) onde y é a posição vertical da partícula em relação a um plano referencial escolhido arbitrariamente como plano de potencial nulo. Neste caso, podemos calcular o trabalho realizado pela força peso, qualquer que seja a trajetória entre as posições e, através de (3.7) Vg Vg De forma semelhante, como visto em (3.9), o trabalho da força de mola é dado por k ( x x ) (3.8) Definimos a energia potencial elástica como V e k x (3.9) onde x é a deformação mola em relação à posição de força nula. Neste caso, podemos calcular o trabalho realizado pela força de mola, qualquer que seja a trajetória entre as posições e, através de (3.30) Ve Ve Podemos definir a energia potencial como V V g V e (3.3) Há outras forças conservativas, geradas por campos elétricos, energia química, etc. Entretanto para os estudos que faremos neste texto, a definição dada
8 em (3.3) é suficiente. Portanto o trabalho total realizado por forças conservativas pode ser calculado por 8 (3.3) V V 3.6 PRINCÍPIO DO RABALHO E ENERGIA: SISEMAS CONSERVAIVOS O princípio do trabalho e energia, dado em (3.8), pode ser modificado quando todas as forças atuantes numa partícula são forças conservativas. Neste caso, combinando (3.8) e (3.3), obtemos ou (3.33) V V (3.34) V V Esta igualdade é conhecida como a conservação da energia mecânica. È uma forma particular do princípio do trabalho e energia para sistemas conservativos. Nestes casos a soma das energias cinética e potencial é constante ao longo do tempo, ou V C d( V ) ou 0 (3.35) dt onde C é uma constante. Observe-se que, para casos gerais onde há forças conservativas e forças não conservativas, o princípio geral dado por (3.8) pode ser escrito como onde nc (3.36) V V nc é a soma de todos os trabalhos das forças não conservativas. Para um sistema de partículas sujeito apenas à atuação de forças conservativas, uma extensão de (3.34) pode ser escrita como (3.37) V V
Física Geral. Trabalho, Energia e Momentum Linear.
Física Geral Trabalho, Energia e Momentum Linear. l Energia e Momentum Há muitas formas de energia como por exemplo, energia nuclear, energia elétrica, energia sonora, energia luminosa. Quando você levanta
Dinâmica das Máquinas Princípio do trabalho virtual
Dinâmica das Máquinas Princípio do trabalho virtual Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula
Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado
Dinâmica Prof.ª Betty Carvalho Rocha Gonçalves do Prado [email protected] [email protected] CORPO RÍGIDO São corpos cuja dimensões não são desprezáveis Corpo rígido É um conceito limite ideal,
Trabalho Menu Introdução Energia Unidades no SI Trabalho de uma força constante Classificação Unidades de trabalho Casos particulares de trabalho
Trabalho Menu 1 Introdução 2 Energia 3 Unidades no SI 4 Trabalho de uma força constante 5 Classificação 6 Unidades de trabalho 7 Casos particulares de trabalho 8 Trabalho de uma força variável 9 Trabalho
CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P
63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos
1 CONCEITOS: ENERGIA, TRABALHO E POTÊNCIA. Fazendo algumas álgebras com as duas equações acima, obtemos:
1 CONCEITOS: ENERGIA, TRABALHO E POTÊNCIA A definição de energia é um pouco complicada, mas podemos dizer que ela está associada à capacidade de produção de ação e movimento em um corpo. Isto é, a existência
ENERGIA POTENCIAL E CONSERVAÇÃO DA ENERGIA
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ENERGIA POTENCIAL E CONSERVAÇÃO DA ENERGIA Prof. Bruno Farias Introdução Neste módulo vamos
Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA
RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.
Apresentação Outras Coordenadas... 39
Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar
1. Movimento Harmônico Simples
Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto
energia extraída do objeto é trabalho negativo. O trabalho possui a mesma unidade que energia e é uma grandeza escalar.
!!"#$#!"%&' OBS: Esta nota de aula foi elaborada com intuito de auxiliar os alunos com o conteúdo da disciplina. Entretanto, sua utilização não substitui o livro 1 texto adotado. ( ) A energia cinética
Capítulo 6 Trabalho e Energia Cinética
Capítulo 6 Trabalho e Energia Cinética Muitos problemas de Mecânica não têm solução simples usando as Leis de Newton Eemplo: velocidade de um carrinho de montanha-russa durante seu percurso (mesmo desprezando
Deslocamento: Desse modo, o deslocamento entre as posições 1 e 2 seria dado por: m
Deslocamento: x = xf - x i Desse modo, o deslocamento entre as posições 1 e 2 seria dado por: x = x - x = 72-30 = 42 1 2 2 1 m Se a execução do deslocamento ou espaço percorrido por um objeto ou partícula
Mecânica Analítica. Dinâmica Hamiltoniana. Licenciatura em Física. Prof. Nelson Luiz Reyes Marques MECÂNICA ANALÍTICA PARTE 2
Mecânica Analítica Dinâmica Hamiltoniana Licenciatura em Física Prof. Nelson Luiz Reyes Marques Princípio de Hamilton O caminho real que uma partícula percorre entre dois pontos 1 e 2 em um dado intervalo
FÍSICA MÓDULO 10 TRABALHO ENERGIA POTÊNCIA. Professor Ricardo Fagundes
FÍSICA Professor Ricardo Fagundes MÓDULO 10 TRABALHO ENERGIA POTÊNCIA Quando um agente externo realiza uma força sobre um sistema fazendo com que a velocidade do sistema sofra variações, dizemos que esse
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Neste capítulo, veremos: Dinâmica de uma partícula: trabalho e energia O
Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas
Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples
Retardado: quando o módulo da velocidade diminui no decorrer. do tempo. Nesse caso teremos: v. e a têm sinais contrários. Movimento Uniforme (M.U.
Cinemática Escalar Conceitos Básicos Espaço (S) O espaço de um móvel num dado instante t é dado pelo valor da medida algébrica da sua distância até a origem dos espaços O. Retardado: quando o módulo da
Pelos poderes de Greiscow...
Energia Mecânica e Cap.1,2 e 3. Pelos poderes de Greiscow... Energia Não tem peso nem cor......tampouco cheiro! Mas pagamos por ela! Não podemos vê-la diretamente... O que o move?... Mas podemos percebê-la
Física. Física Módulo 1 Energia Potencial e Conservação da Energia
Física Módulo 1 Energia Potencial e Conservação da Energia No capitulo anterior: Trabalho, Energia Cinética, Potência O trabalho das forças resultantes que agem sobre um corpo é dado por: W res = F x ou
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Dinâmica de uma partícula: trabalho
POTENCIAL ELÉTRICO. Prof. Bruno Farias
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes
A T E N Ç Ã O. FERA, esse material é provisório para que você não fique sem material para estudar hoje, 06 de abril.
A T E N Ç Ã O FERA, esse material é provisório para que você não fique sem material para estudar hoje, 06 de abril. Por motivos vários, os vídeos postados hoje Apresentam o conteúdo, mas não apresentam
Halliday Fundamentos de Física Volume 1
Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,
Teorema da energia cinética
TIPOS DE ENERGIA Podemos definir energia como sendo a propriedade que determinado corpo ou sistema possui que lhe permite realizar trabalho. Assim, um corpo ou sistema qualquer que realiza ou é capaz de
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
CINEMÁTICA E DINÂMICA
PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)
Dados: Considere g = 10m/s 2.
FEP195-Física para a Engenharia I - a Prova - Gabarito - 13/05/010 Dados: Considere g = 10m/s. 1) Uma pessoa de 60 kg, correndo inicialmente com uma velocidade de 4 m/s pula em um carrinho de 10 kg que
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
Exemplos de aplicação das leis de Newton e Conservação da Energia
Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo
Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*
ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
Solução Comentada da Prova de Física
Solução Comentada da Prova de Física 01. Uma partícula parte do repouso, no instante t = 0, na direção positiva do eixo x. O gráfico da aceleração da partícula ao longo eixo x, em função do tempo, é mostrado
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)
Física I para a Escola Politécnica 4323101) - P2 26/05/2017) [0000]-p1/?? QUESTÕES DE ÚLTIPLA-ESCOLHA 1-4) ando necessário, use π = 3, 14, g=10 m/s 2. 1) [1,0] Um bloco de massa encontra-se em repouso
MOVIMENTO EM DUAS E TRÊS DIMENSÕES
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: MECÂNICA E TERMODINÂMICA MOVIMENTO EM DUAS E TRÊS DIMENSÕES Prof. Bruno Farias Introdução Neste módulo
Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h =
UNIVERSIDADE FEDERAL DE ITAJUBÁ FÍSICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/06/206 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 0 Prova sem consulta. 02 Duração:
Energia Mecânica. A Energia Mecânica de um corpo é a soma de sua energia cinética com sua energia potencial. E m = E c + E P
Energia Mecânica A Energia Mecânica de um corpo é a soma de sua energia cinética com sua energia potencial. E m = E c + E P Unidade no S.I.: J (joule) 1 Energia Cinética (Ec) Todo corpo que se encontra
Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.
591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola
ENERGIA CINÉTICA E TRABALHO
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ENERGIA CINÉTICA E TRABALHO Prof. Bruno Farias Introdução Neste módulo concentraremos nossa
Ismael Rodrigues Silva Física-Matemática - UFSC.
Ismael Rodrigues Silva Física-Matemática - UFSC www.ismaelfisica.wordpress.com Trabalho... Potência... DefiniçãodeEnergia... EnergiaCinética... TrabalhoeEnergiaCinética... EnergiaPotencial... Gravitacional...
2 Energia em movimentos
2 Energia em movimentos Lei da conservação de energia Se se considerar todas as contribuições energéticas, macroscópicas e microscópicas, total p macroscópica c macroscópica Sistema isolado 2 Sistemas
Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.
Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa
Rotações de corpos rígidos
Rotações de corpos rígidos Alexandre Furlan Fundamentos de Mecânica - FIS065 Turmas E1 E2 E3 29 de outubro de 2018 Alexandre Furlan (Aula 18) Fundamentos de Mecânica 29 de outubro de 2018 1 / 10 Objetivos
Energia, potência e trabalho. Camyla Moreno
Energia, potência e trabalho. Camyla Moreno Energia Encontramos na natureza diversos tipo de energias, como a energia térmica, energia elétrica, a energia nuclear entre outras. UNIVERSIDADE FEDERAL DE
DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.
DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho [email protected] Juiz de Fora MG Introdução: Objetivo: Desenvolver
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
Disciplina de Mecânica Geral II. CINEMÁTICA e DINÂMICA de CORPOS RÍGIDOS
isciplina de Mecânica Geral II CINEMÁTIC e INÂMIC de CORPOS RÍGIOS CINEMÁTIC é o estudo da geometria em movimento, utilizada para relacionar as grandezas de deslocamento, velocidade, aceleração e tempo.
Ondas. Lucy V. C. Assali. Física II IO
Ondas Física II 2016 - IO O que é uma onda? Qualquer sinal que é transmitido de um ponto a outro de um meio, com velocidade definida, sem que haja transporte direto de matéria. distúrbio se propaga leva
PROPOSTA DE RESOLUÇÃO
Divisão de Educação PROPOSTA DE RESOLUÇÃO PROVA DE FÍSICA E QUÍMICA A COMPONENTE DE FÍSICA 2.ª FASE 2019 Versão 1 20/7/2019 Grupo III 1. 1.1. (D) Numa resistência elétrica, RR, percorrida por uma corrente
IMPULSO E QUANTIDADE DE MOVIMENTO. Professora Daniele Santos Instituto Gay-Lussac 2º ano
IMPULSO E QUANTIDADE DE MOVIMENTO Professora Daniele Santos Instituto Gay-Lussac 2º ano IMPULSO IMPULSO Considere um corpo de massa m deslocando-se com velocidade vetorial constante. Em um determinado
Trabalho e Energia (Física I)
Tec. Processos Metalúrgicos 2013/1 O que vimos até agora: F = m a (segunda lei de Newton) dw = F d r (definição de trabalho infinitesimal) W = B A F d r (definição de trabalho total) Se o movimento é unidimensional
Parte 2 - P2 de Física I NOME: DRE Teste 0. Assinatura:
Parte 2 - P2 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [3,0 pontos] Um sistema formado por dois blocos de mesma massa m, presos por uma mola de constante elástica k e massa desprezível,
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
A apresentação foi elaborada com base na bibliografia básica do curso.
Informações A apresentação foi elaborada com base na bibliografia básica do curso. BEER, F. P; JOHNSTON JR, E. R. Mecânica Vetorial para Engenheiros: Dinâmica. São Paulo: TECMED. 010 HIBBELER, R. C.. Mecânica
Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.
Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com
UFRPE: Física 11 Márcio Cabral de Moura 1. 2 aulas, 5 horas Capítulos 1 e 3 do Fundamentos de Física 1, de D. Halliday e R. Resnick, 3ª edição.
UFRPE: Física 11 Márcio Cabral de Moura 1 1. Introdução 1 e 3 do Fundamentos de Física 1, de D. Halliday e R. Resnick, 3ª edição. 1.1 O objeto da Física O objeto da física é a natureza 1.2 O método físico.
Física 1 Capítulo 7. Conservação de Energia.
Física Capítulo 7 Conservação de Energia http://fisica.ufjf.br/~sjfsato/fisica Trabalho (W) e a Variação da Energia Cinética f mv mv s = K =K f K i = W = F d i Força Conservativa Quando uma força é conservativa?
11 Cinemática de partículas 605
SUMÁRIO 11 Cinemática de partículas 605 11.1 Introdução à dinâmica 606 Movimento retilíneo de partículas 607 11.2 Posição, velocidade e aceleração 607 11.3 Determinação do movimento de uma partícula 611
Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho.
Eletricidade e Magnetismo - IME Potencial Elétrico Oliveira Ed. Basilio Jafet sala 202 [email protected] Energia Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Equipamentos
Física I Prova 2 20/02/2016
Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Energia 2 Energia Conceito de Energia Energia é um conceito fundamental da termodinâmica e um dos aspectos mais significantes de
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de
QUESTÕES UFBA ª FASE: DINÂMICA
QUESTÕES UFBA 09-04 ª FASE: DINÂMICA UFBA 009 UFBA 008 UFBA 007 UFBA 006 UFBA 005 UFBA 004 GABARITO UFBA 009 UFBA 008 QUESTÃO 01 (Valor: 15 pontos) Velocidade final do conjunto Como as forças de atrito
Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção
Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção / GRUPO I (Exame 2013-2ª Fase) 1. (B) 2. 3. 3.1. Para que a intensidade média da radiação solar seja 1,3 x 10 3 Wm -2 é necessário que
LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS
DINÂMICA É a parte da Mecânica que estuda as causas e os movimentos. LEIS DE NEWTON 1ª Lei de Newton 2ª Lei de Newton 3ª Lei de Newton 1ª LEI LEI DA INÉRCIA Quando a resultante das forças que agem sobre
Cap. 3 - Cinemática Tridimensional
Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 3 - Cinemática Tridimensional Prof. Elvis Soares 1 Cinemática Vetorial Para determinar a posição de uma partícula no
Halliday Fundamentos de Física Volume 1
Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,
Trabalho de uma Força
Trabalho de uma Força Física_1 EM Profa. Kelly Pascoalino Tópicos da aula: Introdução; Trabalho de uma força constante; Trabalho de uma força variável; Trabalho resultante; Potência. Introdução Antes de
Grupo I. 4. Determine a distância percorrida pela bola desde o instante em que foi lançada até chegar ao solo. Apresente todas as etapas de resolução.
Ficha 3 Forças e movimentos Considere g = 10 m s -2 Grupo I De uma janela a 6,0 m de altura do solo, uma bola, de massa 100 g, é lançada verticalmente para cima, com velocidade de módulo A força de resistência
Modelos Matematicos de Sistemas
Modelos Matematicos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;
MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA
MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas
Potencial Elétrico. 3.1 Energia Potencial e Forças Conservativas
Capítulo 3 Potencial Elétrico 3.1 Energia Potencial e Forças Conservativas O trabalho W realizado por uma força F ao longo de um caminho C orientado de um ponto a um ponto P é dado por W C P P F d l (3.1)
Dinâmica. Parte 7 Trabalho e Potência. Profa. Kelly Pascoalino
Dinâmica Parte 7 Trabalho e Potência Profa. Kelly Pascoalino Energia é até hoje um dos conceitos mais abstratos e sem definição única existente na Física, embora, tenha sido incorporado em caráter definitivo
CAPÍTULO 4 ENERGIA. Onde: E c = energia cinética, em joules (J); m = massa do corpo, em Kg; v = velocidade do corpo, em m/s.
Física CAPÍTULO 4 ENERGIA Em física, o conceito de energia pode ser analisada de diversas formas. De um modo geral, a energia pode ser definida como a capacidade de realizar determinada atividade ou como
Parte 2 - P2 de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1
Parte - P de Física I - 017- Nota Q1 88888 Nota Q Nota Q3 NOME: DRE Teste 1 Assinatura: AS RESPOSTAS DAS QUESTÕES DISCURSIVAS DEVEM SER APRESENTADAS APENAS NAS FOLHAS GRAMPEA- DAS DE FORMA CLARA E ORGANIZADA.
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
ENERGIA CONTEXTUALIZAÇÃO
ENERGIA CONTEXTUALIZAÇÃO Infelizmente, como se costuma dizer, acidentes sempre acontecem. Se um veículo está percorrendo uma estrada a, digamos, 80 km/h e colide diretamente com a traseira de outro veículo
Disciplina: Sistemas Térmicos
Disciplina: Sistemas Térmicos Apresentação da Primeira Lei da Termodinâmica Primeira Lei para um Sistema que Percorre um Ciclo Primeira Lei para Mudança de Estado do Sistema Descrição da Propriedade Termodinâmica
RESUMO MECÂNICA II P2
RESUMO MECÂNICA II P Autoria: Yan Ichihara de Paula IMPULSO, TEOREMA DA RESULTANTE DOS IMPULSOS E TEOREMA DO MOMENTO DOS IMPULSOS Impulso possui grandeza vetorial, e é definido como: t I = F dt t 1 Assim,
MÓDULO 5 ENERGIA. Energia é a capacidade de realizar trabalho.
MÓDULO 5 ENERGIA Sempre que ocorre o deslocamento do ponto de aplicação de uma força, dizemos que foi realizado um trabalho. Assim, o garoto da ilustração realizou um trabalho ao erguer a pedra. Para poder
Essa vídeo aula tem por objetivo tratar dos conceitos de trabalho, potência e energia.
Essa vídeo aula tem por objetivo tratar dos conceitos de trabalho, potência e energia. A definição de energia é bastante difícil de ser dada. Uma boa compreensão dessa vem com o conceito de transformação,
Sessão 1: Generalidades
Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar
