MECÂNICA DOS SÓLIDOS DEFORMAÇÕES
|
|
|
- Nathalia Barreto
- 6 Há anos
- Visualizações:
Transcrição
1 MECÂNICA DOS SÓLIDOS DEFORMAÇÕES Prof. Dr. Daniel Caetano
2 Objetivos Conhecer os tipos de deformação e deslocamentos Saber estimar valor da deformação nas formas normal/axial e por cisalhamento Calcular o efeito da variação térmica como deformação das estruturas Atividade Aula 9 SAVA! Pós-Aula 09 SAVA Pré-Aula 10 SAVA
3 Material de Estudo Material Apresentação Material Didático - Acesso ao Material (Mecânica dos Sólidos Aula 9) Minha Biblioteca - Biblioteca Virtual Resistência dos Materiais (Hibbeler, 7ª, cap. 2)
4 RETOMANDO: TENSÕES NORMAIS
5 Força Axial Esforço Solicitante Corpo Sólido: ligações atômicas mantém os átomos unidos
6 Força Axial x Tensão Normal Corpo Sólido: ligações atômicas mantém os átomos unidos
7 Força Axial x Tensão Normal Corpo Sólido: ligações atômicas mantém os átomos unidos
8 Força Axial x Tensão Normal Corpo Sólido: ligações atômicas mantém os átomos unidos Esforço sofrido pelo material
9 Força Axial x Tensão Normal Corpo Sólido: ligações atômicas mantém os átomos unidos Como medir?
10 DEFORMAÇÕES NORMAIS (OU LONGITUDINAIS)
11 Deformação Normal Média Deformação da reta por unidade de comprimento ΔS ΔS ΔS ΔS ε méd = S S S [ε méd ] = m/m
12 Deformação Normal Deformação da reta por unidade de comprimento Se aplica a corpos no geral ε = lim B A ao longo de n S S S
13 Exemplo Uma barra de 10 metros, ao ser tracionada uniformemente por uma força de 1kN, fica com comprimento 11 metros. Qual a deformação normal desse corpo? 10m 11m ε méd = S S S = ε méd = 0, 1 m/m
14 Exercício Uma barra de 25 metros, ao ser tracionada uniformemente por uma força de 2kN, fica com comprimento 30 metros. Qual a deformação normal desse corpo?
15 Exercício Uma barra de 25 metros, ao ser tracionada uniformemente por uma força de 2kN, fica com comprimento 30 metros. Qual a deformação normal desse corpo? 25m 30m ε méd = S S S = ε méd = 0, 2 m/m
16 Exercício Uma barra de 20 metros, ao ser comprimida uniformemente por uma força de 2kN, fica com comprimento 16 metros. Qual a deformação normal desse corpo?
17 Exercício Uma barra de 20 metros, ao ser comprimida uniformemente por uma força de 2kN, fica com comprimento 16 metros. Qual a deformação normal desse corpo? 20m 16m ε méd = S S S = ε méd = 0, 2 m/m Encurtamento
18 Exercício Uma tração de 5kN aplicada em uma barra causa uma deformação ε = 0,05m/m. Se a barra livre de esforços tiver um comprimento de 19m, quantos metros ela terá durante a aplicação de uma tração de 5kN?
19 Exercício Uma tração de 5kN aplicada em uma barra causa uma deformação ε = 0,05m/m. Se a barra livre de esforços tiver um comprimento de 19m, quantos metros ela terá durante a aplicação de uma tração de 5kN? 19m L =? 19 L ε méd = S S S = L 19 = 0,05 L = 19.0, L = 19, 95 m 19
20 RETOMANDO: TENSÕES CISALHANTES
21 Força Cortante x Tensão de Cisalhamento Corpo Sólido: ligações atômicas mantém os átomos unidos
22 Força Cortante x Tensão de Cisalhamento Corpo Sólido: ligações atômicas mantém os átomos unidos τ = F A Esforço sofrido pelo material
23 Força Cortante x Tensão de Cisalhamento Corpo Sólido: ligações atômicas mantém os átomos unidos τ = F A Como medir?
24 DEFORMAÇÕES POR CISALHAMENTO
25 Deformação por Cisalhamento Em geral, mudam a forma do corpo γ nt = π 2 lim θ B A ao longo de n C A ao longo de t [γ nt ] = rad
26 DEFORMAÇÕES NA PRÁTICA
27 Deformações no Espaço Deformações em todos os graus de liberdade Translações em x, y e z ε x, ε y, ε z Mudanças no Volume Rotações nos planos xy, yz e xz γ xy, γ yz, γ xz Mudanças na Forma
28 Deformações Práticas Em problemas de estruturas... Pequenas deformações ε << 1 γ 0 Podemos usar aproximações: sen γ = γ cos γ = 1 tg γ = γ
29 DEFORMAÇÃO TÉRMICA
30 Deformação Térmica Aumento de Temperatura
31 Deformação Térmica Aumento de Temperatura L δ T Dilatação térmica Podemos calcular δ T, se ΔT for constante δ T = α T L α: coeficiente linear de expansão térmica
32 Deformação Térmica Aumento de Temperatura L δ T Se ΔT é variável, ΔT = ΔT(x) δ T = δ T = α T L L α T(x) dx 0
33 Exemplo Calcule o tamanho final da barra De 20 o C para 30 o C 5m α = 0,001 o C -1 δ T = α T L = 0,001 (30 20) 5 δ T = 0,05m L final = L + δ T L final = 5, 05m
34 Exercício Uma barra de 8 metros, construída de um material com coeficiente linear de dilatação térmica α = 0,005 o C -1, foi aquecida de 5 o C. Qual o tamanho final da barra?
35 Exercício Uma barra de 8 metros, construída de um material com coeficiente linear de dilatação térmica α = 0,005 o C -1, foi aquecida de 5 o C. Qual o tamanho final da barra? 8m δ T = α T L = 0, δ T = 0,2m L final = L + δ T L final = 8, 2m
36 Exercício Uma barra de 10 metros, construída de um material com coeficiente linear de dilatação térmica α = 0,002 o C -1, foi resfriada de 20 o C. Qual o tamanho final da barra?
37 Exercício Uma barra de 10 metros, construída de um material com coeficiente linear de dilatação térmica α = 0,002 o C -1, foi resfriada de 20 o C. Qual o tamanho final da barra? 10m Encurtamento δ T = α T L = 0, δ T = 0,4m L final = L + δ T L final = 9, 6m
38 Exercício Uma barra de 10 metros, após aquecida, ficou com 12,5 metros. Sabendo que seu coeficiente linear de dilatação térmica α = 0,002 o C -1, qual foi a variação de temperatura?
39 Exercício Uma barra de 10 metros, após aquecida, ficou com 12,5 metros. Sabendo que seu coeficiente linear de dilatação térmica α = 0,002 o C -1, qual foi a variação de temperatura? δ T = α T L (12,5 10) = 0,002 T 10 2,5 = 0,02 T T = 125
40 CONCLUSÕES
41 Resumo Deformações Normais e por Cisalhamento Deformam: volume e forma Permitem calcular configuração final do corpo Temperatura: também deforma o corpo TAREFA: Exercícios Aula 9 Aula online e leitura do livro Propriedade mecânica dos materiais Relação entre tensões e deformações
42 PERGUNTAS?
43 Exercício para casa Leia os exemplos 2.1 a 2.4 do Hibbeler, 7ª ed. Considerando que a força P deslocou o ponto C 10mm para baixo, determine a deformação normal nos cabos CE e BD:
MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano
MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer o comportamento dos materiais na tração e compressão Compreender o gráfico de tensão x deformação
MECÂNICA GERAL EQUILÍBRIO TRIDIMENSIONAL DE PONTO MATERIAL. Prof. Dr. Daniel Caetano EXERCÍCIOS:
MECÂNICA GERAL EXERCÍCIOS: EQUILÍBRIO TRIDIMENSIONAL DE PONTO MATERIAL Prof. Dr. Daniel Caetano 2019-1 Objetivos Exercitar os conceitos de problemas de equilíbrio de ponto material em três dimensões Material
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II Prof. Dr. Daniel Caetano 2013-1 Objetivos Compreender o surgimento de tensões por dilatação/contração térmica Compreender o que são concentrações
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II Prof. Dr. Daniel Caetano 2018-2 Objetivos Compreender o conceito de flambagem Compreender o surgimento de tensões por dilatação/contração térmica
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender o conceito de flambagem Compreender o surgimento de tensões por dilatação/contração térmica
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II Prof. Dr. Daniel Caetano 2018-2 Objetivos Calcular deformações por torção Capacitar para o traçado de diagramas de momento torsor em barras Material de Estudo
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2013-1 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender a deformação por torção Compreender os esforços de torção Determinar distribuição de tensões de cisalhamento
Aula 06 - Estudo de Deformações, Normal e por Cisalhamento.
Aula 06 - Estudo de Deformações, Normal e por Cisalhamento. Prof. Wanderson S. Paris, M.Eng. [email protected] Deformação Quando uma força é aplicada a um corpo, tende a mudar a forma e o tamanho
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos
Deformação. Deformação. Sempre que uma força é aplicada a um corpo, esta tende a mudar a forma e o tamanho dele.
Capítulo 2: Adaptado pela prof. Dra. Danielle Bond Sempre que uma força é aplicada a um corpo, esta tende a mudar a forma e o tamanho dele. Essas mudanças são denominadas deformações. Note as posições
1. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em termos de deformação.
Mecânica dos Sólidos I Lista de xercícios III Tensões, Deformações e Relações Constitutivas.. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em
Teoria das Estruturas I - Aula 08
Teoria das Estruturas I - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN)
PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015 Resolução 1ª Questão (4,0 pontos) barra prismática da figura tem comprimento L=2m. Ela está L/2 L/2 engastada em e livre em C. seção transversal
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Calcular deformações (rotações) por torção Capacitar para o traçado de diagramas de momento torçor em barras Material
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos
Resistência dos Materiais Teoria 2ª Parte
Condições de Equilíbrio Estático Interno Equilíbrio Estático Interno Analogamente ao estudado anteriormente para o Equilíbrio Estático Externo, o Interno tem um objetivo geral e comum de cada peça estrutural:
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2018-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III Prof. Dr. Daniel Caetano 2018-2 Objetivos Conceituar a flexo-compressão Conceituar e determinar o núcleo central de inércia Conceituar a flexão assimétrica
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da
Mecânica dos Sólidos I Parte 2
Departamento de Engenharia Mecânica arte 2 rof. Arthur M. B. Braga 2006.1 arte II Barras carregadas axialmente (Cap. 1 e 2) Cisalhamento (Cap. 1) Torção de eixos cilíndricos (Cap. 3) Mecânica dos Sólidos
MECÂNICA GERAL EQUILÍBRIO DE MOMENTOS E MOMENTO DE UM BINÁRIO
MECÂNICA GERAL EQUILÍBRIO DE MOMENTOS E MOMENTO DE UM BINÁRIO Prof. Dr. Daniel Caetano 2019-1 Objetivos Compreender o equilíbrio de momentos Compreender a noção de binário de forças Treinar o cálculo de
Relações entre tensões e deformações
9 de agosto de 06 As relações entre tensões e deformações são estabelecidas a partir de ensaios experimentais simples que envolvem apenas uma componente do tensor de tensões. Ensaios complexos com tensões
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 04 Teoria das deformações Eng. Civil Augusto Romanini
1) Qual propriedade de um material reproduz a lei de Hooke? Escrever a expressão que traduz a lei. 2) Um cilindro de 90,0 cm de comprimento (figura) está submetido a uma força de tração de 120 kn. Uma
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I
RESISTÊNCIA DOS MATERIAIS II CISALHAMENTO TRANSVERSAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar cisalhamento transversal Compreender quando ocorre o cisalhamento transversal Determinar
Capítulo 2 Deformação
Capítulo 2 Deformação 2.1 O conceito de deformação Sob a ação de cargas externas, um corpo sofre mudanças de forma e de volume que são chamadas de deformação. Note as posições antes e depois de três segmentos
Capítulo 4 Propriedades Mecânicas dos Materiais
Capítulo 4 Propriedades Mecânicas dos Materiais Resistência dos Materiais I SLIDES 04 Prof. MSc. Douglas M. A. Bittencourt [email protected] Propriedades Mecânicas dos Materiais 2 3 Propriedades
UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem.
UFABC - Universidade Federal do ABC ESTO008-13 Mecânica dos Sólidos I Sétima Lista de Exercícios Prof. Dr. Wesley Góis CECS Prof. Dr. Cesar Freire - CECS Estudo das Deformações 1. Segundo as direções a,b
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Engenharia Aeroespacial Universidade Federal do ABC 07 de março, 2016 Conteúdo 1 Introdução 2 Tensão 3 Deformação 4 Lei de Hooke
Transformação da deformação
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Transformação da deformação
DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:
PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;
Capítulo 5 Carga Axial
Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Determinar a tensão normal e as deformações em elementos
Departamento de Engenharia Mecânica ENG Mecânica dos Sólidos II. Teoria de Vigas. Prof. Arthur Braga
Departamento de Engenharia Mecânica ENG 174 - Teoria de Vigas Prof. rthur Braga Tensões de Fleão em Barras (vigas Deformação do segmento IJ M N ρ Δφ I J ( ρ y Δφ Compresão ρ ρ y I J y M N Eio Neutro (deformação
Professor: José Junio Lopes
A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV Prof. Dr. Daniel Caetano 2018-1 Objetivos Conceituar fluxo de cisalhamento Determinar distribuição de tensões de cisalhamento em tubos de paredes finas sob
MECÂNICA GERAL EQUILÍBRIO DE CORPO RÍGIDO
MECÂNICA GERAL EQUILÍBRIO DE CORPO RÍGIDO Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer os graus de liberdade de um corpo Compreender as condições de equilíbrio de corpo rígido Atividade Aula 11
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar e capacitar paa a resolução de problemas estaticamente indeterminados na torção Compreender as limitações
Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama
Deformação. - comportamento de um material quando carregado
Deformação - comportamento de um material quando carregado : tipos de deformação Deformação - deformação normal variação do comprimento de uma fibra em relação a uma direção. : tipos de deformação Deformação
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
MECÂNICA DOS SÓLIDOS DIAGRAMAS DE CORPO LIVRE E REAÇÕES DE APOIO
MECÂNICA DOS SÓLIDOS DIAGRAMAS DE CORPO LIVRE E REAÇÕES DE APOIO Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer os tipos de vínculo de estruturas bidimensionais Determinar o Grau de Hiperestaticidade
MECÂNICA GERAL EQUILÍBRIO DE PONTO MATERIAL
MECÂNICA GERAL EQUILÍBRIO DE PONTO MATERIAL Prof. Dr. Daniel Caetano 2019-1 Objetivos Compreender a noção de equilíbrio Identificar as forças atuando em um ponto Verificar o equilíbrio de um ponto Atividade
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2014-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eixos Principais de Inércia
DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO
DEFORMAÇÃO NORMAL e DEFORMAÇÃO POR CISALHAMENTO 1) A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento de 10 mm para baixo na extremidade
AULA 03 - TENSÃO E DEFORMAÇÃO
AULA 03 - TENSÃO E DEFORMAÇÃO Observação: Esse texto não deverá ser considerado como apostila, somente como notas de aula. A - DEFORMAÇÃO Em engenharia, a deformação de um corpo é especificada pelo conceito
MECÂNICA DOS SÓLIDOS
MECÂNICA DOS SÓLIDOS MOMENTOS E O EQUILÍBRIO DOS CORPOS RÍGIDOS Prof. Dr. Daniel Caetano 2019-1 Objetivos Conceituar Momento de uma Força Habilitar para o cálculo de momentos Conhecer os graus de liberdade
Capítulo 3: Propriedades mecânicas dos materiais
Capítulo 3: Propriedades mecânicas dos materiais O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade
CAPÍTULO 6 TRAÇÃO E COMPRESSÃO SIMPLES
PÍTUO 6 TRÇÃO E OMPRESSÃO SIMPES 6.1 Um arame de alumínio, de 30 metros de comprimento, é submetido à uma tensão de tração de 700 Kgf/cm 2 ; determinar o alongamento do arame. De quantos graus seria necessário
Física do Calor. Dilatação (Expansão) Térmica II. Vídeo com demonstrações (utilizado na aula): https://www.youtube.com/watch?
4300159 Física do Calor Dilatação (Expansão) Térmica II Vídeo com demonstrações (utilizado na aula): https://www.youtube.com/watch?v=ekq2886sxpg x distância entre átomos vizinhos valor médio de x Em escala
Propriedades mecânicas dos materiais
Propriedades mecânicas dos materiais Ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade é inerente
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2018-2 Objetivos Apresentar os conceitos: Momento de inércia: retangular e polar Produto de Inércia Eixos Principais de Inércia
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2014-2 Objetivos Conceituar e capacitar para a resolução de problemas estaticamente indeterminados na torção Compreender as limitações
MECÂNICA GERAL VETORES POSIÇÃO E FORÇA
MECÂNICA GERAL VETORES POSIÇÃO E FORÇA Prof. Dr. Daniel Caetano 2019-1 Objetivos Recordar o conceito de vetor posição Recordar o conceito de vetor força Recordar as operações vetoriais no plano Atividade
Exercício 2. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados
Universidade de São Paulo Faculdade de Arquitetura e Urbanismo Exercício 2 PEF 2602 - Estruturas na Arquitetura Sistemas Reticulados Equipe 09 Felipe Tinel 5914801 Gabriela Haddad 5914714 Lais de Oliveira
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões
RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO
RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2018-1 Objetivos Conhecer a influência da forma na Resistência dos Materiais Compreender o conceito de Momento Estático Calcular Momento
Estabilidade. Marcio Varela
Estabilidade Marcio Varela Esforços internos O objetivo principal deste módulo é estudar os esforços ou efeitos internos de forças que agem sobre um corpo. Os corpos considerados não são supostos perfeitamente
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2012-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 06 TORÇÃO Augusto Romanini Sinop - MT 2017/1 AULAS
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2018/2019 2º Semestre
Exercício 6 - Método dos Deslocamentos ANÁLISE DE ESTRUTURAS I Ano lectivo de 018/019 º Semestre Problema 1 (1 de Janeiro de 000) Considere o pórtico e a acção representados na figura 1. 1.a) Indique o
CAPÍTULO 3 ESFORÇO CORTANTE
CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento
ANÁLISE DE ESTRUTURAS I Ano lectivo de 2014/2015 2º Semestre
Exercício - Método das Forças NÁLISE DE ESTRUTURS I no lectivo de 20/205 2º Semestre Problema (28 de Janeiro de 999) onsidere a estrutura representada na figura. a) Indique qual o grau de indeterminação
Muitos materiais, quando em serviço, são submetidos a forças ou cargas É necessário conhecer as características do material e projetar o elemento
Muitos materiais, quando em serviço, são submetidos a forças ou cargas É necessário conhecer as características do material e projetar o elemento estrutural a partir do qual ele é feito Materiais são frequentemente
Exercício 4. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados
Universidade de São Paulo Faculdade de Arquitetura e Urbanismo Exercício 4 PEF 2602 - Estruturas na Arquitetura Sistemas Reticulados Grupo 09 Felipe Tinel 5914801 Gabriela Haddad 5914714 Lais de Oliveira
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar fluxo de cisalhamento Determinar distribuição de tensões de cisalhamento em tubos de paredes finas sob
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-1 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
Resistência dos Materiais
Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade
3ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO DIAGRAMA DE ESFORÇO NORMAL
Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 3ª LISTA
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar a flexão assimétrica Conceituar a flexão oblíqua Determinar a posição da linha neutra em barras sob flexão
LOM Introdução à Mecânica dos Sólidos
LOM 3081 - CAP. ANÁLISE DE TENSÃO E DEFORMAÇÃO PARTE 1 ANÁLISE DE TENSÃO VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE Seja por exemplo uma barra sujeita a um carregamento axial. Ao aplicar o MÉTODO DAS SEÇÕES,
RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO
RESISTÊNCIA DOS MATERIAIS II INTRODUÇÃO: MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2013-1 Objetivos Conhecer o professor e o curso Importância do ENADE Iniciação Científica Importância da RM A influência
RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO
CONTROLE DE QUALIDADE INDUSTRIAL Tensão Tensão é ao resultado da ação de cargas externas sobre uma unidade de área da seção analisada na peça, componente mecânico ou estrutural submetido à solicitações
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini
COMPORTAMENTO MECÂNICO DOS MATERIAIS PARTE I
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais COMPORTAMENTO MECÂNICO DOS MATERIAIS PARTE I PMT 2100 - Introdução à Ciência dos Materiais para Engenharia
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 2 Tensão e deformação: Carregamento axial Conteúdo Tensão e Deformação: Carregamento Axial Deformação Normal
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
AULA 03 - TENSÃO E DEFORMAÇÃO
AULA 03 - TENSÃO E DEFORMAÇÃO Observação: Esse texto não deverá ser considerado como apostila, somente como notas de aula. DEFORMAÇÃO Em engenharia, a deformação de um corpo é especificada pelo conceito
Resistência dos Materiais AULA 1-2: TENSÃO
Resistência dos Materiais AULA 1-2: TENSÃO PROF.: KAIO DUTRA Bibliografia Resistência dos Materiais HIBBELER, R.C. Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre
A9 Rigidez e peso: densidade e módulo de elasticidade. Projecto limitado pela rigidez dos materiais
A9 Rigidez e peso: densidade e módulo de elasticidade Projecto limitado pela rigidez dos materiais Tensão causa extensão Rigidez (Stiffness) é a resistência à alteração de forma que é elástica o material
LOM Introdução à Mecânica dos Sólidos
LOM 3081 - CAP. 2 ANÁLISE DE TENSÃO E DEFORMAÇÃO PARTE 2 ANÁLISE DE DEFORMAÇÃO COEFICIENTE DE POISSON Para uma barra delgada submetida a uma carga aial: 0 E A deformação produida na direção da força é
Quarta Lista de Exercícios
Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Quarta Lista de Exercícios 1. O tubo de aço (E s = 210 GPa) tem núcleo de alumínio (E a = 69 GPa)
