Teoria das Estruturas - Aula 07
|
|
|
- Marta Capistrano Leveck
- 8 Há anos
- Visualizações:
Transcrição
1 Teoria das Estruturas - Aula 07 Arcos Isostáticos Definição e Tipos Casos Particulares de Arcos Equação do Arco Parabólico de 2º. Grau, Equação da Linha de Pressões e Arcos com Apoios Desnivelados Prof. Juliano J. Scremin 1
2 Aula 07 - Seção 1: Definição e Tipos 2
3 Arcos (1) Definição: Arco é uma estrutura linear de eixo curvo, situada em um plano vertical, vinculada em suas extremidades de modo a que estas não sofram translações, solicitada por cargas contidas no plano referido, provocando esforços de compressão, flexão e cisalhamento. Arco Triarticulado : arco isostático, com apoios fixos e descontinuidade interna do tipo rótula. Objetivo dos arcos: vencer grandes vãos com a redução dos esforços de flexão. 3
4 Arcos (2) 4
5 Arcos (3) 5
6 Tipos de Arcos Biengastado Triarticulado Biarticulado Viga Curva 6
7 Exemplos de Utilização 7
8 Nomenclatura 8
9 Aula 07 - Seção 2: Arcos Circulares 9
10 Viga Curva Biapoiada Carregada Verticalmente (1) Quando um arco é solicitado somente por cargas verticais, um recurso interessante é a utilização de uma viga análoga para auxílio no cálculo dos esforços: VV SS = VV AA ssssssθθ = PP ssssssss/2 NN SS = VV AA ccccccθθ = PP cccccccc/2 MM SS = VV AA (RR RRRRRRRRθθ) = PPPP(1 cccccccc)/2 Diagrama de Momentos Fletores de uma Viga Análoga 10
11 Viga Curva Biapoiada Carregada Verticalmente (2) 11
12 Revisão do Círculo Trigonométrico 12
13 Mapeamento de Arcos Circulares (1) 13
14 Mapeamento de Arcos Circulares (2) 14
15 Arco Semicircular Tri-Articulado Carregado Verticalmente (1) Cálculo das Reações de Apoio: MM AA = VV BB. 2RR PPPP = 0 VV BB = PP/2 FFVV = VV AA PP + VV BB = 0 VV AA = PP/2 MM CC = HH BB. RR + PP/2. RR = 0 HH BB = PP/2 FFHH = HH AA HH BB = 0 HH AA = PP/2 15
16 Arco Semicircular Tri-Articulado Carregado Verticalmente (2) Equacionamento dos Momentos Fletores: Trecho I : β entre 0 e 90 MM II ββ = PP 2 RR RRRRRRRRββ PP RR ssssssββ 2 MM II ββ = PPPP 2 1 ccccccββ ssssssss 16
17 Arco Semicircular Tri-Articulado Carregado Verticalmente (3) Equacionamento dos Momentos Fletores: Trecho II : β entre 90 e 180 MM II ββ = PP 2 RR RRRRRRRRββ PP RR ssssssββ 2 MM IIII ββ = MM II ββ + PPRR ccccccββ MM IIII ββ = PPPP ccccccββ ssssssss * O braço de alavanca da reação vertical P/2 é R + R cos β, porém, como β esta entre 90 e 180 seu cosseno é negativo sendo a distância calculada como R R cos β 17
18 Ideia Geral do Equacionamento de Cortantes e Axiais em Arcos 1. Fazer o somatório de todas as forçar verticais à esquerda da seção de análise (ΣVER); 2. Fazer o somatório de todas as forçar horizontais à esquerda da seção de análise (ΣHOR); 3. Decompor ΣVER e ΣHOR nos eixos Secante e Tangencial obedecendo a convenção de sinais para diagramas. OBS: a decomposição pode ser feita em relação tanto ao ângulo β quanto ao ângulo α indicados. 18
19 Arco Semicircular Tri-Articulado Carregado Verticalmente (4) Equacionamento dos Cortantes e Axiais: Trecho I : β entre 0 e 90 Em função de α: VV II α = ΣVVVVVV. ccccccα - ΣHHHHHH. ssssssα NN II α = ΣVVVVVV. ssssssα- ΣHHHHHH. ccccccα ΣΣVVVVVV = PP/22 ΣΣHHHHHH = PP/22 Em função de β: VV II ββ = ΣVVVVVV. ssssssβ - ΣHHHHHH. ccccccβ NN II ββ = ΣVVVVVV. ccccccβ - ΣHHHHHH. ssssssβ 19
20 Arco Semicircular Tri-Articulado Carregado Verticalmente (5) Equacionamento dos Cortantes e Axiais: Trecho II : β entre 90 e 180 Em função de α negativo : VV IIII α = ΣVVVVVV. cos ( α) + ΣHHHHHH. ssssss( α) NN IIII α = ΣVVVVVV. ssssss( α)- ΣHHHHHH. cos ( α) Processando as substibuições -sen(α) = sen(-α) e cos(α) = cos(-α) ΣΣVVVVVV = PP/22 PP = PP/22 ΣΣHHHHHH = PP/22 VV IIII α = ΣΣVVVVVV. cccccc (αα) - ΣΣHHHHHH. ssssss(αα) NN IIII α = ΣΣVVVVVV. ssssss(αα)- ΣΣHHHHHH. cccccc (αα) 20
21 Arco Semicircular Tri-Articulado Carregado Verticalmente (6) Equacionamento dos Cortantes e Axiais: Trecho II : β entre 90 e 180 Em função de β : VV IIII ββ = ΣVVVVVV. cos (β 90 ) + ΣHHHHHH. ssssss(β 90 ) NN IIII ββ = ΣVVVVVV. ssssss β 90 - ΣHHHHHH. cos (β 90 ) ΣΣVVVVVV = PP/22 PP = PP/22 ΣΣHHHHHH = PP/22 21
22 Resumo do Equacionamento de Cortantes e Axiais (1) β entre 0 e 90 / α entre 90 e 0 VV II α = ΣVVVVVV. ccccccα - ΣHHHHHH. ssssssα NN II α = ΣVVVVVV. ssssssα- ΣHHHHHH. ccccccα β entre 90 e 180 / α entre 0 e -90 VV IIII α = ΣΣVVVVVV. cccccc αα- ΣΣHHHHHH. ssssssαα NN IIII α = ΣΣVVVVVV. ssssssαα- ΣΣHHHHHH. cccccc αα O ângulo α ser negativo NÃO INTERFERE na convenção de sinais e a mesma expressão válida para o intervalo de 0 a 90 também se aplica para 90 a 180. VV II ββ = ΣVVVVVV. ssssssβ - ΣHHHHHH. ccccccβ NN II ββ = ΣVVVVVV. ccccccβ - ΣHHHHHH. ssssssβ VV IIII ββ = ΣVVVVVV. cos (β 90 ) + ΣHHHHHH. ssssss(β 90 ) NN IIII ββ = ΣVVVVVV. ssssss β 90 - ΣHHHHHH. cos (β 90 ) O ângulo β ser maior do que 90 INTERFERE na convenção de sinais e fazem-se necessárias duas expressões: uma para intervalo de 0 a 90 e outra para 90 a
23 Resumo do Equacionamento de Cortantes e Axiais (2) Como equacionar cortantes e axiais no arco circular com equações válidas para todo o domínio de 0 a 180 no ângulo β? RESPOSTA: Dado que ângulo alfa não afeta a convenção de sinais de diagramas basta substituir a relação: α + β = 90 ou α = 90 β no equacionamento feito com alfa. VV α = ΣVVVVVV. ccccccα - ΣHHHHHH. ssssssα NN α = ΣVVVVVV. ssssssα- ΣHHHHHH. ccccccα VV ββ = ΣVVVVVV. cccccc(90 -β) - ΣHHHHHH. ssssss (90 -β) NN ββ = ΣVVVVVV. ssssss(90 β) - ΣHHHHHH. cccccc(90 -β) 23
24 Aula 07 - Seção 3: Arcos Parabólicos de 2 Graus e Uso da Viga Análoga 24
25 Arcos Triarticulados Parabólicos Um dos formatos mais comuns de arco triarticulado é o parabólico, sendo as posições y do arco definidas por uma equação do tipo: y(x) = a + b*x + c*x^2 Conhecidos 3 pontos da parábola é possível montar um sistema linear para definição da equação do arco. Ex., dados os pontos: (X1,Y1), (X2,Y2) e (X3,Y3): YYYY = aa + bbbbbb + cccc11 22 YY22 = aa + bbbb22 + ccxx22 22 YY33 = aa + bbbb33 + cccc33 22 YY11 YYYY YYYY = 11 XXXX XX XXXX XX XXXX XX aa bb cc 25
26 Arcos Triarticulados Carregados Verticalmente (1) Arcos triarticulados possuem reações horizontais em seus apoios denominadas Empuxo que podem ser quantificadas (também) fazendo uso da viga análoga antes mencionada. Arco Viga Análoga 26
27 Arcos Triarticulados Carregados Verticalmente (2) HH = HH AA HH BB = 0 HH AA = HH BB = HH MM BB = VV AA. LL + PPPP(LL xx ii ) = 0 VV AA = + PPPP(LL xx ii ) / L = VV AAAA MM AA = 0 VV BB = VV BBBB Arco: MM GG = 00 VV AA. aa PPPP(aa xx ii ) - H.f = 0 Viga Análoga: MM GGGG = 00 VV AAAA. aa PPPP aa xx ii = 0 HH = MM GGGG ff M27
28 Arcos Triarticulados Carregados Verticalmente (3) HH AA = HH BB = HH MM SS (xx) = M S0 (xx) H.y(xx) V S (xx) = +V S0 (xx) cosα (x) - H senα (x) Ns(xx) = -V S0 (xx) senα(x) - H cosα (x) Sendo o ângulo α também uma função da posição x, ou seja α(x) 28
29 Ângulo α(x) Conhecida a equação do arco y(x) é possível determinar o ângulo das tangentes do arco com a horizontal, em qualquer um dos infinitos pontos que compõe o arco contínuo por meio de: α(x) = arctg ( dy(x) / dx ) 29
30 Aula 07 - Seção 4: Equação da Linha de Pressões e Arcos com Apoios Desnivelados 30
31 Linha de Pressões A linha de pressões para um determinado carregamento permanente é a linha que define a geometria do arco de modo que este trabalhe somente com esforços normais. Um arco com estas característica é denominado arco funicular. Equação da Linha de Pressões: como a equação dos momentos fletores de um arco é função da equação do arco, fazendo M S (x) = 0 tem-se: y(x) = M S0 (x) / H Assim sendo, y(x) (equação da linha de pressões) pode ser escrita em função da equação de momentos fletores da viga análoga dividida pelo empuxo nas laterais do arco. 31
32 Arcos Triarticulados com Apoios Desnivelados HHH = MM gg ff. ccccccαα Fonte: 32
33 FIM 33
34 Exercício 7.1 Para o arco triarticulado abaixo, obter as reações de apoio e os esforços Ms, Ns, e Qs: y = x² + 1.5x 34
35 Exercício 7.2 Traçar o diagrama de momentos fletores para o arco parabólico de 2º grau abaixo: 35
36 Exercício 7.3 Obter as equações da linha de pressões da estrutura triarticulada com os apoios A e B e articulação interna em C. Calcular a força normal na seção onde a tangente é nula: ( Viga Análoga ) 36
37 Exercício 7.4 Para o arco parabólico de 2º grau triarticulado da figura abaixo determine: a) A equação do arco (considerar a origem do sistema cartesiano indicada na figura); b) As reações de apoio (V A, H A, V B, H B ); c) O momento fletor, o esforço cortante e o esforço normal na seção S indicada; 37
38 Exercício 7.5 Traçar o diagrama de esforços axiais para o arco parabólico de 2º grau abaixo: 5,0 m 5,0 m 38
39 Exercício 7.6 Obtenha as reações de apoio para o arco parabólico de 2º grau abaixo: 39
40 Exercício 7.7 Determinar os momentos fletores, os esforços cortantes e os esforços axiais para o arco circular abaixo no ponto A e no ponto B bem como no ângulos β = 30, 60, 90, 120 e 150 (sentido horário): 40
41 Exercício 7.8 Traçar os diagramas de momento fletor, esforço cortante e esforço axial para o arco parabólico de segundo grau abaixo, determinando os valores destes esforços internos a cada 1 metro do eixo horizontal (x). 41
Teoria das Estruturas - Aula 07
Teoria das Estruturas - Aula 07 Arcos Isostáticos Definição e Tipos Casos Particulares de Arcos Equação do Arco Parabólico de 2º. Grau, Equação da Linha de Pressões e Arcos com Apoios Desnivelados Prof.
Teoria das Estruturas - Aula 10
Teoria das Estruturas - Aula 10 Linhas de Influência de Estruturas Isostáticas (1) Introdução às Linhas de Influência; L.I. de Vigas Biapoiadas; L.I. de Vigas Engastadas em Balanço; Prof. Juliano J. Scremin
Teoria das Estruturas - Aula 06
Teoria das Estruturas - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Pórticos Compostos Exemplo de Modelagem Estrutural Prof. Juliano J. Scremin 1
Teoria das Estruturas - Aula 09
Teoria das Estruturas - Aula 09 Cálculo de Deslocamentos em Estruturas Isostáticas (2) Princípio dos Trabalhos Virtuais aplicado a Treliças; Princípio dos Trabalhos Virtuais aplicado a Vigas e Pórticos;
EXERCÍCIOS RESOLVIDOS
IBMEC Graduação em Engenharia Civil Teoria das Estruturas I EXERCÍCIOS RESOLVIDOS 1. Classifique as estruturas abaixo quanto à estaticidade: (a) : estrutura isostática (4 variáveis, 4 equações) (b) : estrutura
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
Capítulo 4 Diagramas de esforços em pórticos planos
Diagramas de esforços em pórticos planos Professora Elaine Toscano Capítulo 4 Diagramas de esforços em pórticos planos 4.1 Pórticos planos Este capítulo será dedicado ao estudo dos quadros ou pórticos
P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.
Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha
RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica
Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. [email protected] Conteúdo
Teoria das Estruturas - Aula 11
Teoria das Estruturas - Aula 11 Linhas de Influência de Estruturas Isostáticas (2) Processo de Muller-Breslau; Trem-Tipo; L.I. s de Vigas Gerber; Prof. Juliano J. Scremin 1 Aula 11 - Seção 1: Processo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini
Mecânica Geral II Notas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori
Mecânica Geral II otas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori Forças em vigas e em cabos Introdução Analisaremos dois tipos de forças internas em dois tipos de estruturas em engenharia:. Vigas.
Teoria das Estruturas - Aula 02
Teoria das Estruturas - Aula 02 Modelagem Estrutural Introdução à Modelagem Estrutural Reações de Apoio em Estruturas Isostáticas Planas (Revisão) Modelos Estruturais Planos Usuais Determinação Estática
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.
ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para
(atualizado em 12/07/2014)
ENG285 4ª Unidade 1 (atualizado em 12/07/2014) Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões
INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA DEPARTAMENTO DE ENGENHARIA CIVIL - MECÂNICA APLICADA CAPÍTULO V. Fios e Cabos SEMESTRE VERÃO 2004/2005
CAPÍTULO V Fios e Cabos SEMESTRE VERÃO 2004/2005 Maria Idália Gomes 1/9 Capitulo V Fios e Cabos 5.1 Considerações Gerais A diferença fundamental entre fio e cabo é sobretudo na área da sua secção, que
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões
Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra1)
Exercício 2 Determinar os diagramas de esforços solicitantes para a viga abaixo pelo Equação dos Três Momentos. Determinar todos os pontos de momentos máximos. Calcular também as reações de apoio.. Solução:
Professora: Engª Civil Silvia Romfim
Professora: Engª Civil Silvia Romfim CRITÉRIOS DE DIMENSIONAMENTO Flexão simples reta Flexão oblíqua Flexão composta Flexo-tração Flexo-compressão Estabilidade lateral de vigas de seção retangular Flexão
Registro de descartes de lixo
s de Lixo: A B C D E Plásticos; Restos de comida; Lixo doméstico (produtos de papel, trapos, vidro, metais, garrafas, louça, etc.); Óleo de cozinha; Cinzas de incinerador; F G H I Lixo operacional; Resíduos
MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais
MECÂNICA DO CONTÍNUO Tópico 3 Método dos Trabalhos Virtuais PROF. ISAAC NL SILVA Aspecto físico do equilíbrio Instável Estável P y1 y2 P Indiferente P Aspecto matemático: Eq. Instável d 2 V/dx 2
Matriz de Avaliação de Matemática
Matriz de Avaliação de Matemática A prova de matemática do TRLQ (Teste de Raciocínio Lógico Quantitativo) tem por objetivo avaliar o preparo das pessoas que a realizam para cursar programas de ensino que
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
Resistência dos Materiais I
Resistência dos Materiais I Luciano Pessanha Moreira, D.Sc. Professor Associado Departamento de Engenharia Mecânica Escola de Engenharia Metalúrgica Industrial de Volta Redonda Universidade Federal Fluminense
Estruturas de Aço e Madeira Aula 10 Ligações com Solda
Estruturas de Aço e Madeira Aula 10 Ligações com Solda - Tipos de Solda; - Definições para Soldas de Filete; - Simbologia e Dimensionamento de Soldas de Filete; Prof. Juliano J. Scremin 1 Aula 10 - Seção
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
Profª.. Deli Garcia Ollé Barreto
CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro
Para mais exemplos veja o vídeo:
Resumo de matemática: Frente 1: Critério 01: Função: Função é uma relação do conjunto A para o conjunto B, em que os elementos do conjunto A sempre serão x e os elementos do conjunto B sempre serão y (ou
CURVAS HORIZONTAIS CIRCULARES
CURVAS HORIZONTAIS CIRCULARES Introdução β1, β2, β3 são azimutes dos alinhamentos θ1, θ2 são ângulos de deflexão AA, DD, GG são tangentes (trechos retos entre curvas de concordância) Curvas horizontais
Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
Nota: Engenharia Civil. Disciplina: Teoria das Estruturas. Turma:
Engenharia Civil Exame Final: 2014 Disciplina: Teoria das Estruturas TE14-EFb Nota: Turma: Aluno: Matrícula: Orientações: Leia atentamente todas as instruções da prova. Não é permitida a comunicação entre
Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra 3)
Exercício 1 Determinar os diagramas de esforços solicitantes para a viga abaixo pelo Equação dos Três Momentos. Determinar todos os pontos de momentos máximos. Calcular também as reações de apoio. Solução:
Quarta lista de exercícios.
MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro
Cálculo 1 Lista 03 Limites
Cálculo Lista 0 Limites Professor: Daniel Pinguim Definições intuitivas iniciais ) Considere a função f: A R, f() = 4 a) Dê o domínio máimo possível para essa função. b) G Faça um esboço do gráfico da
Estado duplo ou, Estado plano de tensões.
Estado duplo ou, Estado plano de tensões. tensão que atua em um ponto é função do plano pelo qual se faz o estudo. Esta afirmação pode ficar mais clara quando analisa, por exemplo, um ponto de uma barra
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1
CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine
Assunto: Estruturas Isostáticas Momento Fletor e Cortante Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] 6.1 Generalidades As forças são classificadas em: externas e internas. Todos
Exercícios de esforços solicitantes - prof. Valério SA Universidade de São Paulo - USP
São Paulo, deembro de 2015. Eercícios complementares de apoio aos alunos que cursam as disciplinas de Introdução a ecânica das Estruturas para os cursos da Engenharia Civil ou de Resistência dos ateriais
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas
plano da figura seguinte. A rótula r expressa que não háh
Método das Forças Sistema Principal Consideremos o pórtico p plano da figura seguinte. A rótula r em D expressa que não háh transmissão de momento fletor da barra CD para a extremidade D das barras BD
Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,
Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números
8 FLAMBAGEM 8.1 ESTABILIDADE DE ESTRUTURAS
8 FLAMBAGEM É o fenômeno que ocorre quando uma carga axial de compressão, atuando em uma barra, ocasiona uma flexão lateral, na direção do menor raio de giração de sua seção transversal, rompendo a peça
Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura.
52 CAPÍTULO V CÁLCULO DAS REAÇÕES EXTERNAS I. GENERALIDADES Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura. Os vínculos
Teoria das Estruturas - Aula 15
Teoria das Estruturas - Aula 15 Estruturas Hiperestáticas: Método dos Deslocamentos (1) Conceitos Básicos; Descrição do Método; Prof. Juliano J. Scremin 1 Aula 15 - Seção 1: Conceitos Básicos 2 Analogia
ESTÁTICA DAS CONSTRUÇÕES I
STÁTI S OSTRUÇÕS I 7. struturas planas aporticadas: Pórticos são estruturas reticuladas, formadas por barras em direção qualquer e conexões rígidas. struturas reticulada - é aquela formada por barras que
Equações paramétricas das cônicas
Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:
CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES
CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES ESTABILIDADE ESFORÇOS SIMPLES Apostila Organizada pelo professor: Edilberto Vitorino de Borja 2016.1 1. CARGAS ATUANTES NAS ESTRUTURAS 1.1 CARGAS EXTERNAS Uma estrutura
Análise de Circuitos II. Sumário
Sumário Laboratório de Eletrônica Transformador... 3 Laboratório de Eletrônica Retificador de meia onda... 6 Laboratório de Eletrônica Retificador de onda completa... 8 Laboratório de Eletrônica Retificador
TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS
DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de
Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL
ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL O que é e por que estudar? Onde ocorre? Que fatores influenciam? Como evitar? or que, normalmente, é desejável que a diagonal das treliças
FORMULAÇÃO TRELIÇA PLANA
CE ESTABILIDADE DAS CONSTRUÇÕES II FORMULAÇÃO TRELIÇA PLANA MODELO 1 Para a treliça hiperestática, indicada na Figura 1a, determinar por Análise Matricial de Estruturas: a) o deslocamento vertical do ponto
Figura 1: Corte e planta da estrutura, seção transversal da viga e da laje da marquise
Exemplo 4: Viga de apoio de marquise 1. Geometria e resistências ELU: Torção Combinada, Dimensionamento 1,50 m h=0,50 m 0,10 m 0,20 m Espessura mínima da laje em balanço cf. item 13.2.4.1 e = 1, cf. Tabela
FLEXIBILIDADE E SUPORTAÇÃO AULA DEFLEXÕES
FLEXIBILIDADE E SUPORTAÇÃO AULA 10-11 DEFLEXÕES PROF.: KAIO DUTRA Diagramas de Deflexão e a Curva Elástica Deflexões de estruturas podem ocorrer de várias fontes, como cargas, temperatura, erros de fabricação,
Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,
Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,
1. As funções tangente e secante As expressões para as funções tangente e secante são
CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II
CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II PROFESSOR: Eng. CLÁUDIO MÁRCIO RIBEIRO ESPECIALISTA EM ESTRUTURAS Estrutura Definição: Estrutura é um sistema destinado a proporcionar o equilíbrio
Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9
Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta
MAC de outubro de 2009
MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em
, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE
3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE
Texto de apoio às aulas presenciais compilação de exercícios resolvidos
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO PEF2308 Fundamentos de Mecânica das Estruturas Prof. Osvaldo Nakao Texto de apoio às aulas presenciais compilação de exercícios resolvidos Elaborado pelos acadêmicos
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
ANÁLISE ESTRUTURAL I NOTAS DE AULA
ÁLIE ETRUTURL I OT DE UL ssunto: Linhas de Influência de Estruturas Isostáticas Prof. Roberto Márcio da ilva 1-) ITRODUÇÃO s linhas de influência tem uma importante aplicação no projeto de estruturas submetidas
Geometria Analítica. Cônicas. Prof. Vilma Karsburg
Geometria Analítica Cônicas Prof. Vilma Karsburg Cônicas Sejam duas retas e e g concorrentes em O e não perpendiculares. Considere e fixa e g girar 360 em torno de e, mantendo constante o ângulo entre
FACULDADE SUDOESTE PAULISTA Teoria das Estruturas
A estrutura é a parte da construção responsável pela resistência às ações externas (cargas). Uma estrutura pode estar sujeita à ação de diferentes tipos de carga, tais como pressão do vento, reação de
FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica
FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma
Deflexão em vigas e eixos
Capítulo 12: Deflexão em vigas e eixos Adaptado pela prof. Dra. Danielle Bond Deflexão em Vigas e Eixos Muitas vezes é preciso limitar o grau de deflexão que uma viga ou eixo pode sofrer quando submetido
Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2
Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²
Caso zero de carregamento: No caso zero de carregamento, aplicamos à isostática o carregamento da hiperestática.
Módulo 4 - Resolução de estruturas uma vez hiperestáticas externamente e com todas as suas barras solicitadas por momento fletor, sem a presença de torção, através do Processo dos Esforços. O Processo
CAPÍTULO 3 ESFORÇO CORTANTE
CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento
Engenharia Civil Hiperestática Lista 1 Método da Carga Unitária
, m Engenharia ivil Hiperestática Lista étodo da arga Unitária ) alcule o deslocamento vertical do nó da treliça vista na figura abaio. onsidere os nós como rótulas perfeitas e as barras com inércia E
Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.
Inteiros Inteiros. Congruência. Referência: Capítulo: 4 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 Números reais A relação binária em R é uma ordem parcial
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I
EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de
f, da, onde R é uma das regiões mostradas na
Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região
Capítulo 5 Carga Axial
Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Determinar a tensão normal e as deformações em elementos
3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.
Matemática 3 Módulo 3
Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =
ESTÁTICA DAS ESTRUTURAS I PROF. IBERÊ 1 / 37 MÉTODO DOS ESFORÇOS
ESTÁTCA DAS ESTUTUAS POF. BEÊ / 7 ÉTODO DOS ESFOÇOS Na resolução de estruturas hiperestáticas (aquelas que não podem ser resolvidas com as equações fundamentais da estática, a saber : somatória forças
Sumário. Introdução O conceito de tensão 1. Tensão e deformação Carregamento axial 49
1 Introdução O conceito de tensão 1 Introdução 2 1.1 Um breve exame dos métodos da estática 2 1.2 Tensões nos elementos de uma estrutura 4 1.3 Tensão em um plano oblíquo sob carregamento axial 25 1.4 Tensão
Mecânica dos Sólidos I Lista de exercícios I Barras e treliças
Mecânica dos Sólidos I Lista de exercícios I arras e treliças (1)Uma biela consiste em três barras de aço de 6.25 mm de espessura e 31.25mm de largura, conforme esquematizado na figura. Durante a montagem,
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Estruturas Submetidas à Flexão e Cisalhamento
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 1 Tensão
Capítulo 1 Tensão 1.1 - Introdução Resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das forças internas que
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS
Resistência dos Materiais 2 AULA 9-10 DEFLEXÕES DE VIGAS E EIXOS PROF.: KAIO DUTRA A Linha Elástica A deflexão de uma estrutura é causada por seu carregamento interno como a força normal, força cortante,
FACULDADES INTEGRADAS EINSTEIN DE LIMEIRA
FUDDES INTEGRDS EINSTEIN DE IMEIR urso de Graduação em Engenharia ivil Teoria das Estruturas I - 20 Prof. José ntonio Schiavon, MSc. NOTS DE U ula 7: inha de Influência em Estruturas Isostáticas. Objetivo:
Resistência dos Materiais
Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade
CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18
Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 03: Estruturas Submetidas à Flexão e Cisalhamento
FAU UFRJ GEOMETRIA DESCRITIVA II. Apostila de Apoio
FAU UFRJ GEOMETRIA DESCRITIVA II Apostila de Apoio Bibliografia: CARVALHO, Benjamin de A. Morfologia e Desenho das Curvas. (Terceira Parte) In: Desenho Geométrico. Rio de Janeiro. Ed. Ao Livro Técnico
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1
Lista de Exercícios para Prova 1 1 - Para as estruturas hiperestáticas abaixo, determine um SISTEMA PRINCIPAL válido. No SISTEMA PRINCIPAL escolhido, determine os gráficos de momento fletor e as reações
CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.
Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois
Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2
Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:
TC 071 PONTES E ESTRUTURAS ESPECIAIS II
5ª ula Superestrutura de onte em Grelha T 07 ONTES E ESTRUTURS ESES 5ª U (4/08/.00) SUERESTRUTUR DE ONTE E GREH - FEXDDE E RGDEZ a) arra axialmente comprimida E onsidere a barra axialmente comprimida da
Nota de aula 15 - Flambagem
Nota de aula 15 - Flambagem Flávia Bastos (retirado da apostila do rof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 1o. semestre de 2011 Flávia Bastos RESMAT II 1/22 Informações sobre este documento:
Capítulo 6 - Treliças
Capítulo 6 - Treliças 6.. Definição Denomina-se treliça plana, o conjunto de elementos de construção (barras redondas, chatas, cantoneiras, I, U, etc.), interligados entre si, sob forma geométrica triangular,
TM Estática II
TM 332 - Estática II Emílio Eiji Kavamura, MSc Departamento de Engenaharia Mecânica UFPR TM-332, 2012 [email protected] (UFPR) Estática 2012 1 / 78 Roteiro da aula Centróides e Baricentros Formas
