Nota de aula 15 - Flambagem
|
|
|
- Maria de Lourdes Klettenberg Ximenes
- 8 Há anos
- Visualizações:
Transcrição
1 Nota de aula 15 - Flambagem Flávia Bastos (retirado da apostila do rof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 1o. semestre de 2011 Flávia Bastos RESMAT II 1/22
2 Informações sobre este documento: Estes slides servem para auxiliar no desenvolvimento expositivo durante as aulas de resistência dos materiais II ministradas pela professora Flávia Bastos e são baseados na apostila do rof. Elson Toledo. Flávia Bastos RESMAT II 2/22
3 Carga Crítica Flambagem 1. Carga Crítica Alguns elementos podem estar submetidos a uma carga de compressão e, caso sejam compridos e esbeltos, tal carga pode ser suficientemente grande para provocar sua deflexão lateral. Colunas Flambagem Carga Crítica cr carga axial máxima que uma coluna pode suportar quando está no limite da flambagem. Flávia Bastos RESMAT II 3/22
4 Coluna ideal Flambagem 2. Coluna ideal perfeitamente reta antes do carregamento; material homogêneo; carga aplicada através do centróide da seção transversal; comportamento linear-elástico; flexão plana. Flávia Bastos RESMAT II 4/22
5 Coluna ideal Flambagem Em teoria a carga axial pode ser aumentada até que a falha ocorra por fratura ou escoamento do material. Entretanto, quando a carga crítica cr é atingida, a coluna está no limite de tornar-se instável, de modo que uma pequena força lateral F, quando removida, vai fazê-la permanecer na posição fletida. Qualquer pequena redução de para menos de cr permite que a coluna fique reta e qualquer aumento de, além de cr, provoca aumento adicional da delexão lateral. A habilidade de restauração baseia-se em sua resistência à flexão. Flávia Bastos RESMAT II 5/22
6 Coluna ideal Flambagem Equação que relaciona o momento interno e sua forma fletida: EI d2 v dx 2 = M (1) M = v (2) EI d2 v = v dx2 (3) d 2 ( ) v dx 2 + v = 0 EI (4) equação diferencial homogênea de 2a ordem com coeficientes constantes. Flávia Bastos RESMAT II 6/22
7 Coluna ideal Flambagem Solução geral: v = C 1 sen ( ) ( ) EI x + C 2 cos EI x (5) Condições de contorno: v = 0 em x = 0 C 2 = 0 v = 0 em x = L sen ( ) EI L = 0 solução não trivial Flávia Bastos RESMAT II 7/22
8 Coluna ideal Flambagem L = nπ (6) EI = n2 π 2 EI L 2 n=1,2,3... (7) O menor valor de é obtido quando n = 1: cr = π2 EI L 2 carga crítica de Euler (8) v = C 1 sen πx L (9) Flávia Bastos RESMAT II 8/22
9 Coluna ideal Flambagem Com momento de inércia expresso por I = Ar 2, onde r é o raio de giração: cr = π2 E(Ar 2 ) L 2 (10) ( ) = π2 E ( A L ) 2 cr r (11) sendo λ = L r σ cr = π2 E λ 2 (12) denominado de índice de esbeltez. Flávia Bastos RESMAT II 9/22
10 Colunas com vários tipos de apoio 3. Colunas com vários tipos de apoio - Fixa na base e livre no topo; M = (δ v) (13) EI d2 v = (δ v) dx2 (14) d 2 ( ) v dx 2 + v = EI EI δ (15) equação diferencial não homogênea: solução complementar + solução particular. Flávia Bastos RESMAT II 10/22
11 Colunas com vários tipos de apoio solução: v = C 1 sen ( ) ( ) EI x + C 2 cos EI x + δ (16) condições de contorno: v = 0 em x = 0 C 2 = δ dv dx = 0 em x = 0 C 1 = 0 Flávia Bastos RESMAT II 11/22
12 Colunas com vários tipos de apoio ortanto: v = δ [ 1 cos ( )] EI x (17) v = δ em x = L cos ( ) EI L = 0 (18) quando n = 1: EI L = nπ 2 (19) cr = π2 EI 4L 2 (20) Flávia Bastos RESMAT II 12/22
13 Colunas com vários tipos de apoio A coluna com apoio fixo na base suporta apenas um quarto da carga crítica que pode ser aplicada a uma coluna apoiada por pino nas extremidades. comprimento efetivo de flambagem L fl = kl: cr = π2 EI (kl) 2 (21) σ cr = π2 E ( kl ) 2 (22) r Flávia Bastos RESMAT II 13/22
14 Colunas com vários tipos de apoio Condição dos apoios l fl Carga crítica rótula/rótula l π 2 EI l 2 engaste/ rótula 0, 7l π 2 EI (0,7l) 2 engaste/ engaste l/2 π 2 EI l 2 engaste/ livre 2l π 2 EI (2l) 2 Flávia Bastos RESMAT II 14/22
15 Fórmula da Secante 4. Fórmula da Secante Colunas nunca são perfeitamente retas; A aplicação da carga não é conhecida com grande precisão. Carga aplicada a uma distância excêntrica (e) pequena. carga axial ; momento fletor M = e; extremidades A e B apoiadas por pinos. Flávia Bastos RESMAT II 15/22
16 Fórmula da Secante Momento interno na coluna: Equação diferencial da curva de deflexão: M = (e + v) (23) EI d2 v = (e + v) (24) dx2 d 2 v dx 2 + EI v = EI e (25) Flávia Bastos RESMAT II 16/22
17 Fórmula da Secante solução particular + solução complementar: ( ) ( ) v = C 1 sen EI x + C 2 cos EI x Condições de contorno: v = 0 em x = 0 C 2 = e e (26) v = 0 em x = L C 1 = [ e 1 cos ( sen ( )] EI L ) EI L Flávia Bastos RESMAT II 17/22
18 Fórmula da Secante Identidades trigonométricas: ( ) ( 1 cos EI L = 2sen 2 EI e sen ( ) ( EI L = 2sen EI ) L 2 ) ( L cos 2 EI ) L 2 Flávia Bastos RESMAT II 18/22
19 Fórmula da Secante C 1 = e [ tg ( EI )] L 2 (27) v = e [ tg ( EI Deflexão máxima: ) ( ) ( ) ] L sen 2 EI x + cos EI x 1 (28) v = v max em x = L 2 v max = e [ sec ( EI ) ] L 1 2 (29) Flávia Bastos RESMAT II 19/22
20 Fórmula da Secante A tensão máxina na coluna é provocada tanto pela cara axial como pelo momento fletor. O momento fletor máximo ocorre no ponto médio da coluna: M = (e + v max ) (30) σ max = A + Mc I M = e sec ( EI ) L 2 ( = A e c sec I EI ) L 2 (31) (32) Flávia Bastos RESMAT II 20/22
21 Hipérbole de Euler sendo λ = L r σ cr = π2 E λ 2 (33) denominado de índice de esbeltez. λ lim σ cr = σ e onde σ e é a tensão de escoamento do material. Então: λ 2 lim = π2 E (34) σ e π λ lim = 2 E (35) σ e Flávia Bastos RESMAT II 21/22
22 Hipérbole de Euler Flávia Bastos RESMAT II 22/22
Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL
ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL O que é e por que estudar? Onde ocorre? Que fatores influenciam? Como evitar? or que, normalmente, é desejável que a diagonal das treliças
Fundamentos de Mecânica dos Materiais
Fundamentos de Mecânica dos Materiais - Estabilidade de estruturas Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e V. Dias da Silva -, R.C. Hibbeler Índice
1. Flambagem Introdução
1. Flambagem 1.1. Introdução Flambagem ou encurvadura é um fenômeno que ocorre em peças esbeltas (peças onde a área de secção transversal é pequena em relação ao seu comprimento), quando submetidas a um
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS - FLAMBAGEM
CE2 ESTBILIDDE DS CONSTRUÇÕES II LIST DE EXERCÍCIOS - FLMBGEM FONTE: HIBBELER, R. C. Resistência dos Materiais. 7. ed. São Paulo: Prentice Hall, 2010. SOLUÇÃO 13.3 ÁRE = (10 25) + 10 10 = 1100 mm² MOMENTOS
RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul
RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul [email protected] [email protected] Graduação em Engenharia Mecânica Disciplina: RESISTÊNCIA DOS MATERIAIS
8 FLAMBAGEM 8.1 ESTABILIDADE DE ESTRUTURAS
8 FLAMBAGEM É o fenômeno que ocorre quando uma carga axial de compressão, atuando em uma barra, ocasiona uma flexão lateral, na direção do menor raio de giração de sua seção transversal, rompendo a peça
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 05 Flambagem de Colunas Eng. Civil Augusto Romanini
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares
FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
FESP Faculdade de Engenharia São Paulo Avaliação: A2 Data: 15/set/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Duração: 85 minutos Nome: Matrícula
Exemplos: a) Barra Comprimida: deformações típicas da torção e da flexão. N N y θ. Figura 01 T T. Figura 02. x θ y x z x.
1 FAMBAGEM Definição de Flambagem Denomina-se flambagem a perda de estabilidade de um corpo solicitado, caracterizada pelo aparecimento de deformações, a princípio, incompatíveis com o estado de tensão.
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,
DIMENSIONAMENTO DE BARRA COMPRIMIDAS
UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 113 ESTRUTURAS DE CONCRETO, METÁLICAS E DE MADEIRA DIMENSIONAMENTO DE BARRA COMPRIMIDAS
Estruturas de Aço e Madeira Aula 05 Peças de Aço Comprimidas
Estruturas de Aço e Madeira Aula 05 Peças de Aço Comprimidas - Compressão e Flambagem - Flambagem por Flexão (Global) - Dimensionamento conforme a Norma (Sem Flambagem Local) Prof. Juliano J. Scremin 1
Construções Metálicas I AULA 5 Compressão
Universidade Federal de Ouro Preto Escola de Minas Ouro Preto - MG Construções Metálicas I AULA 5 Compressão Introdução Denomina-se coluna uma peça vertical sujeita à compressão centrada. Exemplos de peças
Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada
Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada - Limites de Esbeltez; - Peças Curtas e Medianamente Esbeltas; - Peças Esbeltas; - Compressão Normal e Inclinada em Relação
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
Equações diferenciais
Equações diferenciais Equações diferenciais Equação diferencial de 2ª ordem 2 d 2 Mz x q x dx d Mz x Vy x q x C dx Mz x q x C x C 1 2 1 Equações diferenciais Equação do carregamento q0 q x 2 d 2 Mz x q
Aula 05 BARRAS COMPRIMIDAS
DEPEC Departamento de Engenharia Civil do CEFET/RJ ESTRUTURAS 4 ESTRUTURAS METÁLICAS Aula 05 BARRAS COMPRIMIDAS Barras Prismáticas Submetidas à Compressão Assim como no dimensionamento de barras submetidas
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 5 Flambagem
Capítulo 5 Flambagem 5.1 Experiências para entender a flambagem 1) Pegue uma régua escolar de plástico e pressione-a entre dois pontos bem próximos, um a cinco centímetros do outro. Você está simulando
Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II
Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 011 Flávia Bastos
Leandro Lima Rasmussen
Resolução da lista 5 de exercícios de Resistência dos Materiais Exercício 1) Leandro Lima Rasmussen Para começar, calcula-se o CG, os momentos de inércia Iz e Iy e o raio de giração da seção. Instalando
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II Prof. Dr. Daniel Caetano 2018-2 Objetivos Compreender o conceito de flambagem Compreender o surgimento de tensões por dilatação/contração térmica
Nota de aula 1 - Teoria da Flexão Oblíqua - Resistência dos Materiais II
Nota de aula 1 - Teoria da Flexão Oblíqua - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 2010 Flávia Bastos
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão
Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da
Barras prismáticas submetidas a momento fletor e força cortante
Barras prismáticas submetidas a momento fletor e força cortante Introdução Os esforços mais comuns de incidência em vigas estruturais são a força cortante e o momento fletor, os quais são causados por
Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II
Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 010 Flávia Bastos
Curso de Estruturas Metálicas
Elementos Comprimidos Este capítulo se aplica a barras prismáticas submetidas à força axial dc compressão. Para que um elemento comprimido seja estável, devemos ter, com base na expressão geral da segurança
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II
RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender o conceito de flambagem Compreender o surgimento de tensões por dilatação/contração térmica
Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II
Estado Triaxial de Tensões Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o.
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
Prof. Dr. Valdir Pignatta e Silva Escola Politécnica da Universidadè de São Paulo
Instituto de Engenharia - São Paulo conforme revisão da ABT BR 476 Prof. Dr. Valdir Pignatta e Silva Escola Politécnica da Universidadè de São Paulo Autor de 4 livros e de mais de artigos pulicados Pesquisador
Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II
Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 2011 Flávia
Tensões de Flexão nas Vigas
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões de Flexão nas Vigas
Construções Metálicas I AULA 6 Flexão
Universidade Federal de Ouro Preto Escola de inas Ouro Preto - G Construções etálicas I AULA 6 Flexão Introdução No estado limite último de vigas sujeitas à flexão simples calculam-se, para as seções críticas:
Resistência dos Materiais
- Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
Deflexão em vigas e eixos
Capítulo 12: Deflexão em vigas e eixos Adaptado pela prof. Dra. Danielle Bond Deflexão em Vigas e Eixos Muitas vezes é preciso limitar o grau de deflexão que uma viga ou eixo pode sofrer quando submetido
ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA. Prof. Alexandre Augusto Pescador Sardá
ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA Prof. Alexandre Augusto Pescador Sardá Vigas de Alma Cheia Vigas de Alma Cheia Conceitos gerais: As almas das vigas metálicas servem principalmente para ligar as
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. eer E. Russell Johnston, Jr. Deflexão de Vigas por Integração Capítulo 7 Deflexão de Vigas por Integração 7.1 Introdução 7. Deformação de
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 02: Estruturas com barras sob corportamento axial
2 ANÁLISE ESTÁTICA DA ESTABILIDADE MÉTODO ANALÍTICO.
ANÁISE ESTÁTICA DA ESTABIIDADE MÉTODO ANAÍTICO. Neste capítulo são apresentados conceitos básicos de estabilidade de estruturas, dando maior ênfase à estabilidade de arcos parabólicos com apoios elásticos
2. Revisão Bibliográfica
. Revisão Bibliográfica.1. Considerações iniciais Neste capítulo é apresentada uma revisão bibliográfica sobre pilares de concreto armado, dividida basicamente em duas partes. A primeira apresenta alguns
CIDADE PASSO FUNDO INSTRUÇÕES GERAIS. a c d
SERVIÇO PÚBLICO FEDERAL MEC / SETEC CIDADE PASSO FUNDO INSTRUÇÕES GERAIS 1 - Este caderno de prova é constituído por 40 (quarenta) questões objetivas. 2 - A prova terá duração máxima de 04 (quatro) horas.
Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II
Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 21 Flávia
Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013
Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um
1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)
11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.
Capítulo 5 Carga Axial
Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Determinar a tensão normal e as deformações em elementos
P-Δ deslocamentos horizontais dos nós da estrutura ou efeitos globais de segunda ordem;
3 Estabilidade e Análise Estrutural O objetivo da análise estrutural é determinar os efeitos das ações na estrutura (esforços normais, cortantes, fletores, torsores e deslocamentos), visando efetuar verificações
Propriedades mecânicas dos materiais
Propriedades mecânicas dos materiais Ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade é inerente
Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng.
Disciplina: Resistência dos Materiais Unidade V - Flexão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.
Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte
Dimensionamento de Estruturas em Aço Parte 1 Módulo 2 2ª parte Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da Viga V2 =
ESTRUTURAS METÁLICAS MÓDULO I
estruturasonline. ESTRUTURAS METÁLICAS MÓDULO I Projeto de um galpão treliçado 09 Dimensionamento (elementos comprimidos) DIMENSIONAMENTO DE ELEMENTOS COMPRIMIDOS Barras prismáticas submetidas à força
Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:
Estruturas Hiperestáticas Planas
Estruturas Hiperestáticas Planas P1 19/09/96 1ª Questão Traçar o diagrama de momentos fletores e forças cortantes decorrentes de um resfriamento T da barra CE da estrutura da figura abaixo. Considerar
Nota de aula 12 - Lei de Hooke Generalizada - Resistência dos Materiais II
Nota de aula 12 - Lei de Hooke Generalizada - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. lson Toledo) MAC - Faculdade de ngenharia - UFJF 2o. semestre de 2010 Flávia Bastos
Estruturas de Aço e Madeira Aula 08 Vigas de Alma Cheia (3)
Estruturas de Aço e Madeira Aula 08 Vigas de Alma Cheia (3) - Vigas de Alma Não-Esbelta sem Contenção Lateral (FLT) - Vigas de Alma Esbelta (ANEXO H da NBR 8800/2008 ) Prof. Juliano J. Scremin 1 Aula 08
Curso de Dimensionamento de Estruturas de Aço EAD - CBCA. Módulo2. Parte 2
Curso de Dimensionamento de Estruturas de Aço EAD - CBCA Módulo2 Parte 2 Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da
Capítulo 3: Propriedades mecânicas dos materiais
Capítulo 3: Propriedades mecânicas dos materiais O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade
Flexão Composta PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL 2015
PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL 2015 Encontramos diversas situações em Engenharia em que as peças estão solicitadas simultaneamente pela ação de momentos fletores
E = 70GPA σ e = 215MPa. A = 7500mm 2 I x = 61,3x10 6 mm 4 I y = 23,2x10 6 mm 4
Lista 1 1. A coluna de alumínio mostrada na figura é engastada em sua base e fixada em seu topo por meios de cabos de forma a impedir seu movimento ao longo do eixo x. Determinar a maior carga de compressão
Estruturas de Aço e Madeira Aula 05a Flambagem Local em Peças de Aço Comprimidas
Estruturas de Aço e Madeira Aula 05a Flambagem Local em Peças de Aço Comprimidas - Flambagem Local - Dimensionamento conforme a Norma (Com Flambagem Local) Prof. Juliano J. Scremin 1 Aula 05a - Seção 1:
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
Estruturas de Aço e Madeira Aula 06 Vigas de Alma Cheia (1)
Estruturas de Aço e Madeira Aula 06 Vigas de Alma Cheia (1) - Introdução: Estados Limites Últimos para Vigas - Ideias Básicas para o Dimensionamento de Vigas em Aço - Classificação das Vigas Metálicas
PILARES EM CONCRETO ARMADO
PILARES EM CONCRETO ARMADO DIMENSIONAMENTO E DETALHAMENTO Pilares Elementos lineares de eixo reto, usualmente dispostos na vertical, em que as forças normais de compressão são preponderantes. (ABNT NBR
Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf
Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf [email protected] Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo
Estabilidade. Marcio Varela
Estabilidade Marcio Varela Esforços internos O objetivo principal deste módulo é estudar os esforços ou efeitos internos de forças que agem sobre um corpo. Os corpos considerados não são supostos perfeitamente
Sumário. Introdução O conceito de tensão 1. Tensão e deformação Carregamento axial 49
1 Introdução O conceito de tensão 1 Introdução 2 1.1 Um breve exame dos métodos da estática 2 1.2 Tensões nos elementos de uma estrutura 4 1.3 Tensão em um plano oblíquo sob carregamento axial 25 1.4 Tensão
RESISTÊNCIA DE MATERIAIS II
INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Civil e Arquitectura Secção de Mecânica Estrutural, Estruturas e Construção Ano lectivo de 2003/2004 2 o teste e o exame Lisboa, 23 de Junho de 2004
Estruturas de Aço e Madeira Aula 07 Vigas de Alma Cheia (2)
Estruturas de Aço e Madeira Aula 07 Vigas de Alma Cheia (2) - Flexão em Vigas de Alma Não-Esbelta com Contenção Lateral - Tabela G.1 da NBR 8800 / 2008 ( FLA e FLM em vigas de alma não-esbelta ) - Esforço
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke
Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Engenharia Aeroespacial Universidade Federal do ABC 07 de março, 2016 Conteúdo 1 Introdução 2 Tensão 3 Deformação 4 Lei de Hooke
Prof. Dr. Eduardo Lenz Cardoso
Introdução ao Método dos Elementos Finitos Prof. Dr. Eduardo Lenz Cardoso [email protected] Breve Curriculo Dr. Eng Mecânica UFRGS/DTU Prof. Subst. UFRGS (Mecânica dos Sólidos I/ MEF/ Mecânica dos
A norma australiana considera que a capacidade característica, R k, é uma estimativa da
Cap. 2 Revisão bibliográfica 38 2.3.2 Norma australiana A norma australiana referente ao projeto das estruturas de madeira AS 1720.1 (Timber Structures) foi publicada em 1997 pela Standards Association
Barras comprimidas. Curso de Projeto e Cálculo de Estruturas metálicas
Barras comprimidas Barras comprimidas: Barras comprimidas: Flambagem Global. Elemento elástico Barras Flambagem Aumento Do comprimento Barras comprimidas: Flambagem Local. Limitação da Esbeltez: Limitação
RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica
Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. [email protected] Conteúdo
Deflexão em vigas de eixo reto
10 de novembro de 2016 Linha elástica da flexão é a curva formada pelo eixo de uma viga inicialmente retilíneo, devido à aplicação de momentos de flexão. Figura : Exemplo de viga em flexão Antes da aplicação
Teste de tração - compressão
PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Renata Machado Soares - REMA I Teste de tração - compressão Resistência capacidade de suportar carga sem deformação excessiva ou ruptura; A partir de um ensaio
MAC-015 Resistência dos Materiais Unidade 03
MAC-015 Resistência dos Materiais Unidade 03 Engenharia Elétrica Engenharia de Produção Engenharia Sanitária e Ambiental Leonardo Goliatt, Michèle Farage, Alexandre Cury Departamento de Mecânica Aplicada
APLICAÇÕES DE EQUACÕES DIFERENCIAIS EM MODELAGEM MATEMÁTICA PARA ENGENHARIA: UM ESTUDO SOBRE A FLAMBAGEM DE COLUNAS
45 APLICAÇÕES DE EQUACÕES DIFERENCIAIS EM MODELAGEM MATEMÁTICA PARA ENGENHARIA: UM ESTUDO SOBRE A FLAMBAGEM DE COLUNAS Gemilson Leandro da Silva Aguiar¹; Moacir Cézar da Vitória Júnior²; Natan Sian das
3 Programa Experimental
3 Programa Experimental 3.1. Características dos Pilares Foram ensaiados seis pilares com as características mostradas na Figura 3.1. Os pilares têm seção transversal retangular de 12,5 cm x 15 cm e altura
X Olimpíada de Engenharia Civil da UFJF Pontes de Papel
X Olimpíada de Engenharia Civil da UFJF Pontes de Papel Dados para o projeto das pontes de papel 01 de fevereiro de 2016 1. Introdução As propriedades do papel que será empregado na construção das pontes
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da
Exercícios de Compressão. 5.1 Resolvidos
5 Exercícios de Compressão 5.1 Resolvidos Ex. 5.1.1 Comparação entre seções comprimidas A figura desse problema mostra diversas formas de seção transversal com a área da seção transversal aproximadamente
ESTRUTURAS METÁLICAS. Vigas em Flexão Simples DIMENSIONAMENTO SEGUNDO A NBR-8800:2008. Prof Marcelo Leão Cel Prof Moniz de Aragão Maj
SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO ESTRUTURAS METÁLICAS DIMENSIONAMENTO SEGUNDO A NBR-8800:2008 Vigas em Flexão Simples Prof Marcelo Leão Cel Prof Moniz de Aragão Maj 1 Peças em
Dados para o Projeto
Dados para o Projeto Os dados e gráficos publicados nestas páginas podem ser utilizados livremente, desde que seja citada a fonte e sejam devidamente mencionados os autores dos mesmos. Para uma citação
Universidade Federal de Ouro Preto Escola de Minas DECIV. Superestrutura de Ferrovias. Aula 10 DIMENSIONAMENTO DE DORMENTES
Universidade Federal de Ouro Preto Escola de Minas DECIV CIV 259 Aula 10 DIMENSIONAMENTO DE DORMENTES Universidade Federal de Ouro Preto Escola de Minas DECIV CIV 259 Universidade Federal de Ouro Preto
O que é Resistência dos Materiais?
Roteiro de aula O que é Resistência dos Materiais? Definições Resistência x Rigidez Análise x Projeto Áreas de Aplicação Forças externas Esforços internos Elementos estruturais Hipóteses básicas Unidades
SOLICITAÇÕES COMBINADAS (FLEXÃO COMPOSTA)
Versão 2009 (FLEXÃO COMPOSTA) As chamadas Solicitações Simples são: a) Tração e Compressão (Solicitação Aial): age somente esforço normal N na seção b) Torção: age somente momento torsor T na seção c)
Determinação da Carga Crítica de Flambagem em Colunas do Tipo Engastada-Articulada segundo os Métodos de Newton
Universidade Federal de São João Del-Rei MG 26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Determinação da Carga Crítica de Flambagem em Colunas do Tipo Engastada-Articulada
Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA
Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA A Figura abaixo ilustra uma barra reta de seção transversal constante, chamada barra prismática. O lado da barra que contém o comprimento
