CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS
|
|
|
- Manoela Alice Melgaço
- 6 Há anos
- Visualizações:
Transcrição
1 CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma grandeza vetorial cuja intensidade pode ser obtida pela expressão da física: F = m.a onde: F = força m = massa do corpo a = aceleração provocada Sendo força um elemento vetorial somente se caracteriza se forem conhecidos: direção sentido módulo ou intensidade ponto de aplicação Exemplo 1 :Força provocando movimento F Exemplo 2: Força provocando deformação F
2 Exemplo 3 : PESO DOS CORPOS: O peso dos corpos é uma força de origrm gravitacional que apresenta casracterísticas especiais: 2 P Módulo: P = m. g Direção : Vertical Sentido : de cima para abaixo Ponto de aplicação: centro de gravidade do corpo B. UNIDADES Existem muitas unidades representando forças. As que mais vamos utiliizar são: N - Newton kn - kilonewton kgf - kilograma força 1 kgf = 10 N 1 kn = 10 3 N 1 kn = 10 2 kgf 1 kn = 103 N = 102 kgf C. CARACTERÍSTICAS DAS FORÇAS 1. Princípio de ação e reação: Quando dois corpos see encontram, toda a ação exercida por um dos corpos cobre o outro corresponde uma reação do segundo sobre o primeiro de mesmo módulo e direçãso, mas porem com sentidos contrários, que é a 3ª lei de Newton.. Podemos observar que estas duas forças tem pontos de aplicação diferentes e portanto causam efeitos diferentes, cada uma atuando no seu ponto de aplicação. 2. Princípio da transmissibilidade de uma força, Quando aplicamos uma força em um corpo sólido a mesma se transmite com seu módulo, direção e sentido em toda a sua reta suporte ao longo deste corpo.
3 3 3. Decomposição das forças. Qualquer força no espaço pode ser decomposta segundo três direções que desejarmos. Normalmente, usamos como referência três direções ortogonais entre si, escolhidas de acordo com a conveniência do problema. y Fy F Fx x F = Fx Fy Fz Fz Podemos nestes casos usar a resultante F ou suas componentes Fx, Fy e Fz para obter o efeito desejado. Qualquer força contida em um plano também pode ser decomposta segundo duas direções. Normalmente nos interessam duas direções perpendiculares entre si, também escolhidas de acordo com a conveniência do problema. Vamos nos ater ao caso plano que é o mais usual Exemplo: y z F - força a ser decomposta F y F α x e y direções ortogonais de referência F x x α - ângulo formado por F em relação a x Fx, Fy- componentes da força nas direções x e y A decomposição é feita por trigonometria: Fx = F. cos α Fy = F. sen α Fy/ Fx = tg α A força F decomposta também pode ser chamada de resultante da soma vetorial de suas componentes Fx e Fy.
4 Nos problemas pode-se utilizar para cálculos apenas a força resultante, ou as suas componentes, o que se toprnar mais fácil. Isto pode se constituir em uma das ferramentas mais úteis no trabalho com as forças. Observe que soma vetorial ou geométrica não correspode a soma algébrica. 4 D. CLASSIFICAÇÃO DAS FORÇAS As forças podem ser classificadas de acordo com a sua origem, modo de se comportar, etc...como por exemplo as forças de contato (ex: locomotivas, musculares, etc..) e as de ação à distância (ex: elétricas, gravitacionais, magnéticas, etc...) Em análise estrutural as forças são divididas conforme esquema abaixo: FORÇAS EXTERNAS: atuam na parte externa na estrutura, e são o motivo de sua existência. Podem ser: ações : São forças independentes que podem atuar em qualquer ponto de uma estrutura. Correspondem às cargas as quais estaremos submetendo a estrutura, normalmente conhecidas ou avaliadas. Ex: peso do pedestre em uma passarela, peso próprio das estruturas, etc... reações : São forças que surgem em determinados pontos de uma estrutura (vínculos ou apoios), sendo consequência das ações portanto não são independentes, devendo ser calculadas para se equivalerem as ações e assim preservarem o equilíbrio do sistema. FORÇAS INTERNAS : são aquelas que mantém unidos os pontos materiais que formam o corpo sólido de nossa estrutura (solicitações internas). Se o corpo é estruturalmente composto de diversas partes, as forças que mantém estas partes unidas também são chamadas de forças internas (forças desenvolvidas em rótulas). II. MOMENTO DE UMA FORÇA A. CONCEITO: O momento de uma força é a medida da tendência que tem a força de produzir giro em um corpo rígido. Este giro pode se dar em torno de um ponto (momento polar ) ou em torno de um eixo (momento axial). Na nossa disciplina vamos nos ater à momento de força em relação à ponto, já que trabalharemos com carregamentos planos (cargas contidas em um único plano) B. MOMENTO POLAR (momento de uma força em relação à um ponto) Chama-se de momento de uma força F em relação à um ponto "0", o produto vetorial do vetor OA pela força F, sendo "A" um ponto qualquer situado sobre a reta suporte da força F. Logo também é um vetor, e para a sua caracterização precisamos determinar o seu módulo, direção e sentido. Representa fisicamente a grandeza da tendência de giro em torno deste ponto que esta força impõe ao corpo.
5 5 Mo π O Mo A F d M o = F OA O efeito do vetor momento é o de provocar um giro com determinado sentido em relação ao ponto o considerado. O vetor momento apresenta as seguintes características: direção : perpendicular ao plano formado pela força e pelo vetor OA sentido : regra da mão direita módulo: produto do módulo da força F pela menor distância do ponto "0" a reta suporte da força. ponto de aplicação : ponto "O" em relação ao qual se calculou o momento. Mo F.OA.senα = ou Mo = F. d A distância d que representa o módulo do vetor OA é também chamada de braço de alavanca. Ela é a menor distância entre a reta suporte da força e o ponto em relação ao qual se calcula o momento, isto é, pode ser obtida pela perpendicular à reta que passa pelo ponto. Isto simplifica em muito o calculo do momento polar de uma força. Regra da mão direita: M = F.d
6 A regra da mão direita consiste em posicionar os dedos da mão direita no sentido da rotação provocada pela força em torno do ponto O. Neste caso o polegar indica o sentido do momento. 6 Podemos também convencionar sinais + escolha. ou - para cada um dos sentidos, de acordo com a nossa Exemplo 1 : Determine o peso que devemos colocar na extremidade direita da gangorra a fim de que ela permaneça em equilíbrio estático. P1 = 30 kn a = 2 m b = 4 m Exemplo 2 : Determine a força desenvolvida no tirante da estrutura, a fim de que ela permaneça em equilíbrio, sabendo-se que a barra pesa 5 kn. A barra é presa a uma parede por meio de um pino O. G = 5 kn L = 3 m α= 15º T =? C. UNIDADE DE MOMENTO
7 Sendo o momento produto de uma força por uma distância,a unidade desta grandeza é o produto de uma unidade de força por uma unidade de distância. Exemplos: kgf.m, kn.m, N.m, kn.cm, etc 7 III. SISTEMA DE FORÇAS A. DEFINIÇÃO : É o conjunto de forças que atuam simultaneamente em um corpo rígido ou em um ponto material. B. RESULTANTE DE VÁRIAS FORÇAS CONCORRENTES: A resultante de várias forças que concorrem em um ponto é a soma geométrica à partir do ponto, de forças equipolentes às que constituem o sistema. Obs: Forças equipolentes são aquelas que tem mesmo módulo, mesma direção e mesmo sentido. Lembrando que uma força pode ser decomposta segundo eixos de referência, podemos determinar a resultante de uma forma mais simples,obtendo-se cada componente pela soma algébrica das projeções de todas as forças sobre este eixo. No caso de forças concorrentes em um plano A resultante de forças concorrentes em um ponto de um plano também pode ser calculada através da decomposição destas forças em relação à duas direções ortogonais escolhidas. F 1x = F 1. cos α F1y = F1. sen α F 2x = F 2. cos β F2y = F2. sen β Fx = F1x + F2x F y = F 1y + F 2y
8 8 R = Σ( F ) + Σ( F ) x 2 2 y PITÁGORAS IV. PRINCÍPIO DA SUPERPOSIÇÃO DE EFEITOS ENUNCIADO " O efeito produzido por um conjunto de forças atuando simultaneamente em um corpo é igual a soma do efeito produzido por cada uma das forças atuando isolada" Deve-se fazer a ressalva de que a validade deste princípio se resume a casos em que o efeito produzido pela força seja diretsamente proporcional a mesma. Isto acontece na maioria dos casos estudados. A partir deste princípio podemos dizer que: - O momento polar resultante de um sistema de forças é a soma algébrica dos momentos polares, produzidos em relação ao mesmo ponto, por cada uma das forças atuando isolada. V. BINÁRIO OU PAR DE FORÇAS A. CONCEITO Denomina-se binário a um sistema constituido por um par de forças paralelas de módulos iguais e sentidos opostos. A resultante em termo de forças é nula, entretanto há um momento polar resultante de módulo igual ao produto da força pela distância entre as duas direções paralelas. Dois binários são equivalentes quando tem o mesmo momento polar resultante em módulo, direção e sentido. Podemos adotar o princípio da superposição de efeitos para trabalharmos com um conjunto de binários atuando em um corpo sólido. Exemplo: convenção (sentido antihorário positivo)
9 9 M1 = 60 kn. 2m = 120 kn.m M2 = 30 kn. 4m = 120 kn.m VI. TRANSLAÇÃO DE FORÇAS Transladar uma força (como artifício de cálculo) é transportá-la de sua direção para outra direção paralela. Isto implica no acréscimo de um momento devido à translação, cujo módulo é igual ao produto da força pela distância de translação. VII. REDUÇÃO DE UM SISTEMA DE FORÇAS À UM PONTO Qualquer sistema de forças pode ser reduzido à um sistema vetor-par, onde o vetor é a resultante das forças, localizada à partir de um ponto arbitrariamente escolhido e o par é o momento polar resultante do sistema em relação ao mesmo ponto. Exemplo 1: Reduzir o sistema de forças da figura ao ponto B indicado. Exemplo 2 : Reduzir o sistema acima ao ponto A.
10 10 R: VII. EQUIVALÊNCIA DE UM SISTEMA DE FORÇAS Dois sistemas de forças são equivalentes quando tem resultantes iguais e momentos polares em relação ao mesmo ponto também iguais. Exemplo: F = α = Fx = F y = a = b = F - sistema inicial Fx, Fy - sistema equivalente MA (sistema inicial) = MA (sistema equivalente) = OBSERVAÇÃO: O uso de sistemas equivalentes é um artifício de cálculo muito útil. Podemos, de acordo com a nossa conveniência substituir uma força, ou um sistema de forças por sistemas equivalentes mais adequados ao nosso uso. EXERCÍCIOS PROPOSTOS:
11 1. Suponha um plano formado pelos eixos x e y, conforme desenho, onde atuam as cargas F 1 e F 2. Calcule: a. Momentos desenvolvidos por F1 em relação aos pontos A, B e C. b. Momentos desenvolvidos por F2 em relação aos pontos A, B e C. c. Momentoda resultante do sistema em relação aos pontos A, B e C. d. Resultante do sistema na direção x e. Resultante do sistema na dieção y Convencione o giro no sentido horário positivo. 11 F1 = 20 kn F2 = 30 kn R: a) M1A = 0 M1B = 69,28 kn.m M1C = 109,28 kn.m b) M2A = 120 kn.m M2B= 120 kn.m M2C = 0 c) MA = 120 kn.m MB = 189,28 kn.m MC = 109,28 kn.m d) F x = + 17,32 kn e) F y = - 20 kn 2. Suponha no espaço as forças F1 e F2. Calcule: a. Momentos da força F1 em relação aos eixos x,y,e,z,. b. Momento da força F2 em relação aos eixos x,y e z. c. Momento da resultante em relação aos eixos x, y, e z. F1 = 10 kn F2 = 15 kn R: a) Mx1 = 0 My1 = 0 Mz1 = 20 kn.m b) Mx2 = 31,5 kn.m My2 = 31,5 kn.m Mz2 = 21 kn.m 3. Suponha as forças indicadas no desenho atuando perpendicularmente ao eixo x. O sistema 1 representa um binário e o sistema 2 representa outro. Convencione anti horário positivo.
12 12 a. Quanto vale o binário 1 b. Quanto vale o binário 2 c. São equivalentes? Porque? d. Quanto vale o momento polar do sistema 1 em relação aos pontos A, C e E. e. uanto vale o momento polar do sistema 2 em relação aos pontos B, D e E. f. Quanto vale o momento polar resultante destes dois sistemas em relação aos pontos A,B,C D e E. R: a) + 20 kn.m b) + 20 kn.m c)sim d) M1A = M1B=M1E = + 20 kn.m e) M2B=M2D=M2E = + 20 kn.m f) MA = MB =...=ME = + 40 kn.m 4. Qual a força horizontal que atua nos parafusos 1 e 2 da ligação abaixo, considerando o momento provocado pelo peso na ponta da haste R : P1 = 100 kgf P2 = 100 kgf 7. Suponha as estruturas planas representadas abaixo. Determine,se necessário usando sistemas
13 equivalentes Σ Fx,ΣFy, ΣMA, ΣMB e ΣMC a. 13 R: ΣFx = 25,98 kn ΣFy = 65 kn ΣMA = 138,04 kn.m ΣMB = 70 kn.m ΣMC = 330 kn.m b. R: ΣFx =16,64 kn ΣFy = -4,96kN ΣMA = -36 kn.m ΣMB = -84 kn.m ΣMC = -98,96 kn.m 8. Reduzir ao ponto A o sistema de forças da figura:
efeito: movimento P = m. g
CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. Conceito: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma
CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS
CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma
Irineu dos Santos Yassuda
MECÂNICA TÉCNICA 2 Curso: Técnico em Automação Industrial Irineu dos Santos Yassuda Revisão de Matemática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma
Resistência dos Materiais
Resistência dos Materiais Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma medida da tendência dessa força de provocar a rotação de um corpo em torno do
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
RELAÇÕES TRIGONOMÈTRICAS
TÉCNICO EM EDIFICAÇÕES MÓDULO 01 RELAÇÕES TRIGONOMÈTRICAS NOTAS DE AULA: - Prof. Borja 2016.2 MÓDULO 1 Relações Trigonométricas OBJETIVOS Ao final deste módulo o aluno deverá ser capaz de: resolver problemas
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
FORÇA TICA FORÇA A RESULTANTE
ESTÁTIC TIC Estuda a causa dos movimentos, sem se preocupar com os movimentos. FORÇ gente capaz de produzir variações no estado de movimento de um corpo e ou produzir deformações neste corpo. É uma grandeza
Disciplina: Sistemas Estruturais Assunto: Principios da Estática e da Mecânica Prof. Ederaldo Azevedo Aula 2 e-mail: [email protected] 2. PRINCIPIOS BÁSICOS DA ESTÁTICA E DA MECÂNICA A ciência
Mecânica. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento
Mecânica A teoria do movimento é denominada MECÂNICA CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento Estática É a parte da MECÂNICA que estuda o EQUILÍBRIO
Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise.
Nesta secção será feito o estudo de forças aplicadas a um corpo rígido. Estudar-se-á a substituição de um dado sistema de forças por um sistema de forças equivalente mais simples, cálculo de produtos externos
Estática. Prof. Willyan Machado Giufrida. Estática
Estática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma medida da tendência dessa força de provocar a rotação de um corpo em torno do ponto ou do eixo.
MÓDULO 02 - MOMENTO DE UMA FORÇA
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TÉCNICO EM EDIFICAÇÕES MODALIDADE SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES MÓDULO 02 -
Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise.
1. Corpos Rígidos Nesta secção será feito o estudo de forças aplicadas a um corpo rígido. Estudar-se-á a substituição de um dado sistema de forças por um sistema de forças equivalente mais simples, cálculo
Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais
Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado
MECÂNICA DOS SÓLIDOS
MECÂNICA DOS SÓLIDOS MOMENTOS E O EQUILÍBRIO DOS CORPOS RÍGIDOS Prof. Dr. Daniel Caetano 2019-1 Objetivos Conceituar Momento de uma Força Habilitar para o cálculo de momentos Conhecer os graus de liberdade
EME 311 Mecânica dos Sólidos
2 ESTÁTICA DOS CORPOS RÍGIDOS EME 311 Mecânica dos Sólidos - CAPÍTULO 2 - Profa. Patricia Email: [email protected] IEM Instituto de Engenharia Mecânica UNIFEI Universidade Federal de Itajubá 2.1
Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura.
52 CAPÍTULO V CÁLCULO DAS REAÇÕES EXTERNAS I. GENERALIDADES Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura. Os vínculos
UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. Primeira Lista de Exercícios (2017.2) Professores: Dr.
UFABC - Universidade Federal do ABC ESTO008-13 Mecânica dos Sólidos I Primeira Lista de Exercícios (20172) Professores: Dr Cesar Freire CECS Dr Wesley Góis CECS 1 Preparativos para a primeira semana do
MOMENTO DE UMA FORÇA
INSTITUT FEDERAL DE EDUCAÇÃ CIÊNCIA e TECNLGIA D RI GRANDE D NRTE DIRETRIA ACADÊMICA DE CNSTRUÇÃ CIVIL TECNLGIA EM CNSTR. DE EDIFÍCIS TEC. EDIFICAÇÕES ESTABILIDADE DAS CNSTRUÇÕES MMENT DE UMA FRÇA Apostila
CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES
CONSTRUÇÃO DE EDIFÍCIOS - EDIFICAÇÕES ESTABILIDADE ESFORÇOS SIMPLES Apostila Organizada pelo professor: Edilberto Vitorino de Borja 2016.1 1. CARGAS ATUANTES NAS ESTRUTURAS 1.1 CARGAS EXTERNAS Uma estrutura
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Cap.05 1 Objetivos deste capítulo Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito
Estática do ponto material e do corpo extenso
Estática do ponto material e do corpo extenso Estática do ponto material e do corpo extenso Estática é a área da Física que estuda as condições de equilíbrio do ponto material e do corpo extenso. Estática
LISTA DE EXERCÍCIOS Nº 4
Estudante: Curso: Engenharia Civil Disciplina: Mecânica da Partícula Período Letivo: 2/2015 Semestre: 2º Docente: MSc. Demetrius dos Santos Leão RA: Sala/ Turma: LISTA DE EXERCÍCIOS Nº 4 Decomposição de
Unidade: Equilíbrio de Corpos Rígidos
Unidade: Equilíbrio de Corpos Rígidos Mecânica Geral Caros alunos, neste arquivo de apresentação, você encontrará um resumo dos tópicos estudados na Unidade IV. Use-o como guia para complementar o estudo
Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil Introdução aos Sistemas Estruturais Prof.
Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil Introdução aos Sistemas Estruturais Prof. Estela Garcez 1. a soma vetorial das forças que atuam sobre o corpo deve
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite. 1 de setembro de Nesta aula, serão apresentados os seguintes conceitos:
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite 1 de setembro de 2016 1 Plano da aula. Nesta aula, serão apresentados os seguintes conceitos: Determinação do torque pelos métodos da decomposição
Estática. Vista da estrutura da ponte Golden Gate, São Francisco, Califórnia (EUA).
Estática Todo o nosso estudo até agora foi dedicado quase que exclusivamente ao movimento. Passamos da Cinemática - descrição matemática dos movimentos - à Dinâmica, em que essa descrição se aprofunda
Aula 5 Equilíbrio de um corpo rígido
Aula 5 Equilíbrio de um corpo rígido slide 1 Condições de equilíbrio do corpo rígido Como mostra a Figura, este corpo está sujeito a um sistema externo de forças e momentos que é o resultado dos efeitos
MECÂNICA GERAL 1. Marcel Merlin dos Santos
MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Revisão de álgebra vetorial Lei dos cossenos Lei dos senos Exercícios Componentes cartesianas de uma força Exercícios Equilíbrio de uma partícula
Aula 07 - Momento (formulação vetorial) 2011 Pearson Prentice Hall. Todos os direitos reservados.
Aula 07 - Momento (formulação vetorial) slide 1 2011 Pearson Prentice Hall. Todos os direitos reservados. Lembrete: 24/08 Momento sobre um eixo específico. Momento de um binário 29/08 Revisão e esclarecimento
REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.
MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Cap.04 1 Resultantes de um sistema de forças Prof. Antonio Dias Antonio Dias / Cap.04 2 Objetivo Discutir o conceito do momento de uma força
Capítulo 5 Equilíbrio de um corpo rígido
Capítulo 5 Equilíbrio de um corpo rígido slide 1 Objetivos deste capítulo Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito do diagrama de corpo livre para um corpo rígido.
RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 01 INTRODUÇÃO
CONTROLE DE QUALIDADE INDUSTRIAL A resistência dos materiais é um assunto bastante antigo. Os cientistas da antiga Grécia já tinham o conhecimento do fundamento da estática, porém poucos sabiam do problema
peso da barra: P = 15 N; comprimento do segmento AO: D A = 1 m; comprimento do segmento BO: D B = 0,5 m.
Uma barra AOB homogênea de secção constante cujo peso é de 15 N é dobrada segundo um ângulo reto em O de maneira que AO = 1 m e BO = 0,5 m. Suspende-se a barra pelo ponto O, determinar: a) O ângulo α formado
FÍSICA B ª SÉRIE EXERCÍCIOS COMPLEMENTARES ALUNO
EXERCÍCIOS COMPLEMENTARES ALUNO TURMA: FÍSICA B - 2012 1ª SÉRIE DATA: / / 1) Analise as afirmativas abaixo sobre o conceito de grandezas escalares e vetoriais. I Uma grandeza é chamada de escalar quando
Equilíbrio de um Corpo Rígido Cap. 5
Objetivos MECÂNICA - ESTÁTICA Equilíbrio de um Corpo Rígido Cap. 5 Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito de diagrama de corpo livre para um corpo rígido. Mostrar
O equilíbrio ESTÁTICO, quando o corpo permanece em repouso. O equilíbrio DINÂMICO, quando o corpo permanece em movimento retilíneo uniforme.
1- OÇA: orça é uma grandeza vetorial (caracterizado por um módulo ou intensidade, uma direção e um sentido) capaz de produzir em um, uma deformação e /ou uma variação em sua velocidade vetorial. 1.1- LEIS
Polígrafo Mecânica para Engenharia Civil
Universidade Federal do Pampa (UFP/UFSM) Centro de Tecnologia de Alegrete - CTA Curso de Engenharia Civil Polígrafo Mecânica para Engenharia Civil Prof Almir Barros da S. Santos Neto Polígrafo elaborado
Teoria das Estruturas I - Aula 06
Teoria das Estruturas I - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Prof. Juliano J. Scremin 1 Aula 06 - Seção 01: Barras Inclinadas 2 Barras Inclinadas:
Mecânica. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento
Mecânica A teoria do movimento é denominada MECÂNICA. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento - Não é possível prever movimentos usando somente a
Mecânica Un.2. Momento em relação a um Ponto. Créditos: Professor Leandro
Mecânica Un.2 Momento em relação a um Ponto Créditos: Professor Leandro Equilíbrio Equilíbrio Para que uma partícula esteja em equilíbrio, basta que a o resultante das forças aplicadas seja igual a zero.
Prof. MSc. David Roza José -
1/17 2/17 Momento de uma Força Quando uma força é aplicada a um corpo ela vai produzir uma tendência do corpo de girar em relação a um ponto que não está na linha de ação da força. Esta tendência de girar
2010The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho
Prof.: Anastácio Pinto Gonçalves Filho Introdução Para um corpo rígido em equilíbrio estático, as forças e momentos externos estão balenceadas e não impõem movimento de translação ou de rotação ao corpo.
Física D Semiextensivo v. 1
Física D Semiextensivo v. 1 Exercícios 01) 01 02) B 03) A 01. Verdadeira. 02. Falsa. Pressão é uma grandeza escalar. 04. Falsa. Quantidade de movimento é grandeza vetorial. 08. Falsa. Impulso e velocidade
Análise de Forças no Corpo Humano. = Cinética. = Análise do Salto Vertical (unidirecional) Exemplos de Forças - Membro inferior.
Princípios e Aplicações de Biomecânica EN2308 Profa. Léia Bernardi Bagesteiro (CECS) [email protected] 31/10/2012 Análise de Forças no Corpo Humano = Cinética = Análise do Salto Vertical (unidirecional)
Docente: Marília Silva Soares Ano letivo 2011/2012 1
Ciências Físico-químicas - 9º ano de Unidade 1 EM TRÂNSITO 3 Forças e suas características 3.1. Conceito de força 3.. Caracterização de uma força 3.3. Efeitos das forças nos corpos 3.4. Resultante de um
SOLUÇÃO PRATIQUE EM CASA
SOLUÇÃO PC1. [B] SOLUÇÃO PRATIQUE EM CASA Dados: m = 150 kg; g = 10 m/s ; b P = 0,5 m; b F = 3,0 m. A alavanca é interfixa, pois o apoio está entre a força potente v resistente P v F e força Se o trabalho
ESTÁTICA DOS CORPOS RÍGIDOS. Exercícios
ESÁICA DOS CORPOS RÍGIDOS Um caso particular de movimento é o repouso --- movimento nulo. Há repouso quando os agentes causadores do movimento se compensam ou equilibram. Daí se dizer que um corpo em repouso
Vetores de força. Objetivos da aula. Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo.
Objetivos da aula Vetores de força Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo. Expressar a força e sua posição na forma de um vetor cartesiano e explicar como
Unidade: Equilíbrio do Ponto material e Momento de uma. Unidade I: força
Unidade: Equilíbrio do Ponto material e Momento de uma Unidade I: força 0 3 EQUILÍBRIO DO PONTO MATERIAL 3.1 Introdução Quando algo está em equilíbrio significa que está parado (equilíbrio estático) ou
Docente: Marília Silva Soares Ano letivo 2011/2012 1
Ciências Físico-químicas - 9º ano de Unidade 1 EM TRÂNSITO Forças e suas características.1. Conceito de força.. Caracterização de uma força.3. Efeitos das forças nos corpos.4. Resultante de um sistema
Introdução ao Cálculo Vetorial
Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem
Teoria das Estruturas - Aula 06
Teoria das Estruturas - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Pórticos Compostos Exemplo de Modelagem Estrutural Prof. Juliano J. Scremin 1
Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.
Nona E 4 Equilíbrio CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Texas Tech University de Corpos Rígidos 2010 The McGraw-Hill
Aula 09 - Momento (formulação vetorial) 2011 Pearson Prentice Hall. Todos os direitos reservados.
Aula 09 - Momento (formulação vetorial) slide 1 Lembrete: 29/08 Revisão e esclarecimento de dúvidas. 31/08/17 - Prova 01 slide 2 Momento de uma força sobre um eixo especificado slide 3 Momento de uma força
Princípios Físicos do Controle Ambiental
Princípios Físicos do Controle Ambiental Capítulo 02 Conceitos Básicos Sobre Mecânica Técnico em Controle Ambiental 18/05/2017 Prof. Márcio T. de Castro Parte I 2 Mecânica Mecânica: ramo da física dedicado
CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR
O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5
Ismael Rodrigues Silva Física-Matemática - UFSC.
Ismael Rodrigues Silva Física-Matemática - UFSC www.ismaelfisica.wordpress.com Máquinas Simples(ver arquivo) Revisão... ForçadeAtrito... AlgunsSistemasMecânicos... SistemasMecânicos... Máquinas Simples:
ESTÁTICA DOS SÓLIDOS
Postulados: (Nóbrega, 1980) ESTÁTICA DOS SÓLIDOS 1. Se nenhuma força for aplicada a um sólido em equilíbrio, ele permanece em equilíbrio. 2. Aplicando uma única força a um sólido isolado em equilíbrio,
Aula 2 Vetores de força
Aula 2 Vetores de força slide 1 Escalares e vetores Um escalar é qualquer quantidade física positiva ou negativa que pode ser completamente especificada por sua intensidade. Exemplos de quantidades escalares:
UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência
UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência Sumário: Betão armado armadura aplicações Equilíbrio estático de um ponto material Momento
Conceitos de vetores. Decomposição de vetores
Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas
Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico.
Grandezas Vetores É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. GRANDEZA ESCALAR São aquelas medidas que precisam
Física Geral Grandezas
Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica
Fís. Leonardo Gomes (Guilherme Brigagão)
Semana 16 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. Equilíbrio
Cinesiologia. PARTE II Força Torque e Alavancas
Cinesiologia PARTE II Força Torque e Alavancas 43 DISCIPLINAS CINESIOLOGIA BIOMECÂNICA FISIOLOGIA TREINAMENTO PSICOLOGIA COMPORTAMENTO MOTOR FILOSOFIA 44 Conceitos CINESIOLOGIA estudo do movimento BIOMECÂNICA
MAC-015 Resistência dos Materiais Unidade 01
MAC-015 Resistência dos Materiais Unidade 01 Engenharia Elétrica Engenharia de Produção Engenharia Sanitária e Ambiental Leonardo Goliatt, Michèle Farage, Alexandre Cury Departamento de Mecânica Aplicada
{ } F = 9,9286 6, , 286 N. i j k. 1, 5i 1j 15k 15,108 { 9, , } Resultantes de Sistemas de Forças Cap. 4
Problema 4.D ECÂNIC - ESTÁTIC Resultantes de Sistemas de Forças Cap. 4 O cabo C eerce uma força F = 100 N no ponto do mastro. Calcule o momento desta força em relação à base do mastro. Utilize dois diferentes
UNIVERSIDADE CATÓLICA DE GOIÁS
01 NOTA DE AULA 0 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 01) Coordenador: PROF. EDSON VAZ CAPÍTULOS: 05 e 06 CAPÍTULO 5 FORÇA
Lista de Exercícios-PRA - Estática R. C. Hibbeler
Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Decomposição de vetores em componentes 1 - Determine a intensidade da força resultante e sua direção, medida no sentido anti-horário a partir do eixo
COLÉGIO VISCONDE DE PORTO SEGURO Unidade I Ensino Fundamental e Ensino Médio
COLÉGIO VISCONDE DE PORTO SEGURO Unidade I - 2008 Ensino Fundamental e Ensino Médio Aluno (a): nº Classe: 2-2 Lista de exercícios para estudos de recuperação de Física Trimestre: 2º Data: / /2008 1. (Ufpr)
Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.
Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações
Estática do ponto material e do corpo extenso
Estática do ponto material e do corpo extenso Estática do ponto material e do corpo extenso Estática é a área da Física que estuda as condições de equilíbrio do ponto material e do corpo extenso. Estática
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Vetores. Mateus Barros 3º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2018.1 Vetores Mateus Barros 3º Período Engenharia Civil Definição O que é um vetor? Um vetor é um segmento de reta orientado, que representa uma grandeza
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que
Interação entre corpos
2.1. Forças Interação entre corpos Dois jogadores interagem fisicamente entre si, exercendo, reciprocamente, forças um sobre o outro, isto é, o jogador da esquerda exerce uma força sobre o jogador da direita
Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada
CAPÍTULO V SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA
CAPÍTULO V SOLICITAÇÕES INTERNAS EM ESTRUTURAS DE BARRA I. CONVENÇÕES: Conforme já vimos, se cortarmos uma estrutura por uma seção, nesta seção devem aparecer esforços que equilibrem o sistema isolado
Resultantes de um sistema de forças
Resultantes de um sistema de forças Objetivos da aula Discutir o conceito do momento de uma força e mostrar como calculá-lo em duas e três dimensões. Fornecer um método para determinação do momento de
MECÂNICA GERAL 1. Marcel Merlin dos Santos
MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Binários Sistemas Força-Binário Redução de um sistema de forças a um sistema força-binário Sistemas equivalentes de forças Equações de equilíbrio
Fís. Semana. Leonardo Gomes (Guilherme Brigagão)
Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
Cap.12: Rotação de um Corpo Rígido
Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da
MECÂNICA GERAL 1. Marcel Merlin dos Santos
MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Princípio da transmissibilidade Produto Vetorial Componentes cartesianas Momento de uma força em relação a um ponto Projeção de um vetor sobre
ESTUDOS DIRIGIDOS (NP2) DATA DE ENTREGA: 24/11/16
Campus Brasília-DF Curso: Engenharia Civil Disciplina: Mecânica da Partícula Profº: MSc. Demetrius dos Santos Leão NOTA (Valor: 2,0 pontos) Nome do aluno: RA: Turma: ESTUDOS DIRIGIDOS (NP2) DATA DE ENTREGA:
SISTEMAS ESTRUTURAIS DE VETOR ATIVO
SISTEMAS ESTRUTURAIS DE VETOR ATIVO 2o. GRUPO ESTRUTURAL CLASSIFICADO POR HENRICH ENGEL CARACTERÍSTICAS VETORES ORGANIZADOS EM MONTAGENS DE PEÇAS TRIANGULARES EXEMPLOS DE ESTRUTURAIS DE VETOR ATIVO EXEMPLOS
Apresentação da Disciplina MECÂNICA APLICADA. Prof. André Luis Christoforo.
Objetivos da Estática: 01 Universidade Federal de São Carlos Departamento de Engenharia Civil - DECiv Apresentação da Disciplina MECÂNICA APICADA Prof. André uis Christoforo [email protected]
1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii
SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas
P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.
Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha
Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.
PUC - Goiás Curso: Engenharia Civil Disciplina: Mecânica Vetorial Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para
Já sabemos que um sistema de forças em equilíbrio no espaço obedece as seis equações fundamentais da estática:
96 CAPÍTULO IX GRELHAS ISOSTÁTICAS I. ASPECTOS GERAIS Já sabemos que um sistema de forças em equilíbrio no espaço obedece as seis equações fundamentais da estática: Σ F x = 0 Σ F y = 0 Σ F z = 0 Σ Mx =
A interação de um corpo com sua vizinhança é descrita em termos de. Uma força pode causar diferentes efeitos num corpo como, por exemplo:
Forças A interação de um corpo com sua vizinhança é descrita em termos de uma FORÇA. Uma força pode causar diferentes efeitos num corpo como, por exemplo: a) imprimir movimento b) cessar um movimento c)
MECÂNICA GERAL EQUILÍBRIO DE PONTO MATERIAL
MECÂNICA GERAL EQUILÍBRIO DE PONTO MATERIAL Prof. Dr. Daniel Caetano 2019-1 Objetivos Compreender a noção de equilíbrio Identificar as forças atuando em um ponto Verificar o equilíbrio de um ponto Atividade
