Na Física (em módulo) é uma Lei

Tamanho: px
Começar a partir da página:

Download "Na Física (em módulo) é uma Lei"

Transcrição

1 1 a interpretação Interpretações matemáticas Na Física (em módulo) é uma Lei Elementos de uma expressão matemática Variável dependente Coeficiente Variável independente

2 2 a interpretação Interpretações matemáticas Considerando-se a situação, em que, um móvel se desloca devido a aplicação de uma força, como também, sabendo-se que massa do móvel é constante (m = 10 kg) e a aceleração não será modificada (a = 2 m/s 2 ). Logo, Ou seja, em relação ao tempo as variáveis não modificam. Assim, Na Física, situação escalar

3 3 a interpretação Interpretações matemáticas Usando o mesmo exemplo anterior, em que, devido a agentes físicos externos (Força de Atrito) a aceleração é modificada ao decorrer do movimento Logo, Na Física, situação vetorial

4 Demonstrar a equação diferencial Velocidade (v), grandeza física que modifica a posição (s) ao decorrer do tempo (t) Aceleração (a), grandeza física que modifica a velocidade (v) ao decorrer do tempo (t)

5 Equações Diferenciais Ordinárias (EDO) Classificações São as que envolvem uma única variável independente nas derivadas ordinárias. Equações Diferenciais Parciais (EDP) São as que envolvem duas ou mais variáveis independentes nas derivadas parciais. Variável dependente Variáveis independentes Derivadas parciais (variáveis diferentes)

6 Classificações EDO Lineares Pode possuir: Potência na variável independente Produto da variável dependente com a independente ou com suas funções Produto da variável independente com suas derivadas EDO Não Lineares Pode possuir: Potência na variável dependente Potência nas derivadas Produto da variável dependente com suas derivadas

7 Classificações EDO Lineares Homogêneas Possui zero em um dos termos da equação EDO Lineares Não Homogêneas Não possui zero em um dos termos da equação

8 Exercício Evidencie a ordem e a classificação das equações diferenciais abaixo:

9 Natureza dos Coeficientes EDO com Coeficientes Constantes Se os termos estiverem correlacionados com a variável dependente ou suas derivadas. Coeficientes Variável dependente ou derivada EDO com Coeficientes Variáveis Se os termos estiverem correlacionados com as variáveis dependentes ou de suas derivadas e contiver a variável independente. Coeficientes Variável independente Variável dependente ou derivada

10 Tipos de Soluções Em uma equação algébrica são os valores que podem satisfazer a equação. Exemplo

11 Tipos de Soluções Já, em uma equação diferencial são as funções que podem satisfazer a equação. Exemplo Prove que a função: y = 3e 2x é a solução da equação diferencial: y 4y = 0

12 Tipos de Soluções Solução Geral (SG) Não existe um método de solução geral para todas equações diferenciais Existem técnicas de soluções (Condição Inicial e Condição de Contorno) para diferentes classificações de equações diferenciais Acontece de usar mais de uma técnica para solucionar uma equação diferencial Algumas vezes, a solução de equações diferenciais somente podem ser resolvidas por artifícios matemáticos Poucas outras, não possuem solução analítica

13 Tipos de Soluções Solução Geral (SG) Condições para EDO de 2 a Ordem e Homogênea, que evidencie:

14 Tipos de Soluções Condição Inicial e de Contorno Brasil Nordeste Planeta Fazer a previsão pluviométrica no Nordeste apenas com os dados meteorológicos locais. É uma Condição inicial Mas, será que teremos todos os dados meteorológicos necessários? Nem sempre Será que apenas os dados locais são necessários para uma previsão pluviométrica com grande margem de precisão? Não Coletar dados meteorológicos do contorno do Nordeste. É uma Condição de Contorno

15 Exemplo Um cientista ao trabalhar com vários dados coletados por outro estudioso evidenciou a seguinte equação diferencial: Dessa forma, ajude o cientista a encontrar a: a) A solução geral da equação. b) Os valores para a condição inicial quando: c) Os valores para a condição de contorno quando:

16 Resolução (a)

17 Resolução (b)

18 Resolução (b)

19 Resolução (b)

20 Resolução (c)

21 EDO POR INTEGRAÇÃO Apenas algumas EDO podem ser resolvidas por integração direta. A EDO deve possuir um termo único com uma derivada de y e nenhum termo relacionado com y. Exemplo A Resolução por Integração Direta Exemplo B Não resolve por Integração Direta

22 Exemplo Das EDO abaixo, verifique a(s) que pode(m) ser resolvida(s) por Integração Direta e encontre a(s) solução(ões) da(s) que é(são) possível(is).

23 Resolução

24 Resolução

25 Resolução

26 Demostre que a função pode ser a solução da EDO Exercício Equação Diferencial Função Solução

27 Demostre que a função pode ser a solução da EDO Exercício Equação Diferencial Função Solução

28 Sistema (massa-mola) Para modificar o estado inercial aplica-se: EDO com Aplicações A massa ao se deslocar evidencia a força resistente da mola. Os sistemas mecânicos experimentam o atrito de seus próprios elementos, em que, tal força é proporcional à velocidade e o coeficiente de amortecimento. Mais outras forças externas.

29 Sistema (massa-mola) EDO com Aplicações

30 Analise se a equação: Resolução Exemplo que representa o movimento de um oscilador do tipo massa-mola amortecido é uma solução para a EDO para esse tipo de sistema. Sabendo-se que F externa = 0, m = 1, k = 25 e b = 6.

31 Resolução Exemplo

32 Resolução Exemplo

33

34

35

36

37

d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh

d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh TURMA 202: Modelagem Matemática PRA3 Prof. José A. Dávalos Chuquipoma Questão LER 04 LISTA DE EXERCÍCIOS RESOLVIDOS 04 Data para submissão na Plataforma Moodle: 22/09/204 Um objeto de massa m = se encontra

Leia mais

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações )

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações ) Nota de Aula: Equações Diferenciais Ordinárias de Ordem ( Aplicações ) Vamos nos ater a duas aplicações de grande interesse na engenharia: Sistema massa-mola-amortecedor ( Oscilador Mecânico ) O Sistema

Leia mais

= 0,28 m/s. F = m d 2 x d t 2

= 0,28 m/s. F = m d 2 x d t 2 Um bloco de massa m = 0,1 kg é ligado a uma mola de constante elástica k = 0,6 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

Grandezas Fundamentais da Mecânica

Grandezas Fundamentais da Mecânica Grandezas Fundamentais da Mecânica A Mecânica é a parte da Física que procura estudar os movimentos dos corpos e seu repouso, além de buscar explicações lógicas para as suas ocorrências, fazendo análises

Leia mais

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância Prof. Ettore Baldini-Neto 1610: Galileu, usando um telescópio recém construído, descobre

Leia mais

F = m d 2 x d t 2. F R = bv = b d x

F = m d 2 x d t 2. F R = bv = b d x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 0,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular. Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes

Leia mais

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno

Leia mais

Força direção magnitude magnitude

Força direção magnitude magnitude Leis de Newton Sir Isaac Newton 1642 1727 Formulou as leis básicas da mecânica. Descobriu a Lei da Gravitação Universal. Inventou o cálculo Diferencial e Integral. Fez muitas observações sobre luz e óptica.

Leia mais

Equações Diferenciais Ordinárias de Ordem Superior a Um

Equações Diferenciais Ordinárias de Ordem Superior a Um Capítulo 2 Equações Diferenciais Ordinárias de Ordem Superior a Um 2.1 EDOs lineares homogéneas de ordem dois. Redução de ordem. Exercício 2.1.1 As seguintes equações diferenciais de 2 a ordem podem ser

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace

Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Transformada de Laplace da Derivada de uma Função Teorema 1:

Leia mais

Trabalho Menu Introdução Energia Unidades no SI Trabalho de uma força constante Classificação Unidades de trabalho Casos particulares de trabalho

Trabalho Menu Introdução Energia Unidades no SI Trabalho de uma força constante Classificação Unidades de trabalho Casos particulares de trabalho Trabalho Menu 1 Introdução 2 Energia 3 Unidades no SI 4 Trabalho de uma força constante 5 Classificação 6 Unidades de trabalho 7 Casos particulares de trabalho 8 Trabalho de uma força variável 9 Trabalho

Leia mais

Física I. Introdução à Mecânica Lista de Exercícios

Física I. Introdução à Mecânica Lista de Exercícios Física I Introdução à Mecânica Lista de Exercícios 1. Grandezas Físicas Uma das grandezas mais conhecidas da física é a força. Sua unidade de medida no Sistema Internacional de unidades é o newton (N).

Leia mais

Equações diferencias ordinárias - Exercícios

Equações diferencias ordinárias - Exercícios Página 1 de 5 Equações diferencias ordinárias - Exercícios 1) A lei do resfriamento de Newton diz que a temperatura de um corpo varia a uma taxa proporcional à diferença entre a temperatura do mesmo e

Leia mais

O QUE É MECÂNICA DO PONTO DE VISTA DA FÍSICA?

O QUE É MECÂNICA DO PONTO DE VISTA DA FÍSICA? O QUE É MECÂNICA DO PONTO DE VISTA DA FÍSICA? Podemos dizer que a mecânica é uma área da física que trata as questões de movimento dos corpos levando em conta, de uma maneira geral, as causas do movimento.

Leia mais

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade. 7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 6 CINEMÁTICA DOS FLUIDOS PROF.: KAIO DUTRA Conservação da Massa O primeiro princípio físico para o qual nós aplicamos a relação entre as formulações de sistema e de volume

Leia mais

Equações Diferenciais Parciais.

Equações Diferenciais Parciais. EDP p.1/23 Equações Diferenciais Parciais. Margarete Oliveira Domingues PGMET/INPE Definições Básicas EDP p.2/23 EDP p.3/23 EDP Uma equação de derivadas parciais ou EDP é uma equação envolvendo duas ou

Leia mais

Regime: Semestre: GRANDEZAS FÍSICAS, UNIDADES E DIMENSÕES Conceito de Grandeza: Grandezas fundamentais e derivadas

Regime: Semestre: GRANDEZAS FÍSICAS, UNIDADES E DIMENSÕES Conceito de Grandeza: Grandezas fundamentais e derivadas FUNDAMENTOS DE FÍSICA [10400] GERAL Regime: Semestre: OBJETIVOS O objectivo da disciplina de Física é o de adquirir conhecimentos técnicos baseados nos princípios físicos fundamentais à análise de problemas

Leia mais

FACULDADE SUDOESTE PAULISTA Física Geral e experimental I Engenharia Civil e Produção

FACULDADE SUDOESTE PAULISTA Física Geral e experimental I Engenharia Civil e Produção Notas de aula: Cinemática escalar: Conceitos Iniciais Para descrição de movimento sempre há necessidade de um ponto base, ou seja, um ponto de referencia, o qual dá se o nome de referencial. Fisicamente

Leia mais

ESTRATÉGIAS DE ENSINO (teóricas e práticas) Exposição dialogada e apresentação de vídeos sobre o assunto.

ESTRATÉGIAS DE ENSINO (teóricas e práticas) Exposição dialogada e apresentação de vídeos sobre o assunto. MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CÂMPUS ITAJAÍ PLANO DE ENSINO IDENTIFICAÇÃO Unidade Curricular:

Leia mais

SUMÁRIO. 1 Preparando o Cenário para o Estudo da Dinâmica Cinemática da Partícula... 29

SUMÁRIO. 1 Preparando o Cenário para o Estudo da Dinâmica Cinemática da Partícula... 29 SUMÁRIO 1 Preparando o Cenário para o Estudo da Dinâmica... 1 1.1 Uma Breve História da Dinâmica...1 Isaac Newton (1643-1727)... 3 Leonhard Euler (1707-1783)... 6 1.2 Conceitos Fundamentais...8 Espaço

Leia mais

Introdução às Equações Diferenciais Ordinárias e Suas Aplicações.

Introdução às Equações Diferenciais Ordinárias e Suas Aplicações. Universidade Federal de Campina Grande UFCG Centro de Ciências e Tecnologia CCT Unidade Acadêmica de Matemática UAMat Programa de Educação Tutorial PET Introdução às Equações Diferenciais Ordinárias e

Leia mais

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas. Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que

Leia mais

Resolução comentada da questão 1 da P1 de 2015 da disciplina PME Mecânica dos Fluidos I

Resolução comentada da questão 1 da P1 de 2015 da disciplina PME Mecânica dos Fluidos I Resolução comentada da questão 1 da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos I Caio Cancian Março 2016 Resumo A primeira questão da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos

Leia mais

Campus de Botucatu PLANO DE ENSINO. DOCENTE RESPONSÁVEL: Prof. Dr. Marcos Antonio de Rezende

Campus de Botucatu PLANO DE ENSINO. DOCENTE RESPONSÁVEL: Prof. Dr. Marcos Antonio de Rezende PLANO DE ENSINO I IDENTIFICAÇÃO CURSO: Física Médica MODALIDADE: Bacharelado DISCIPLINA: Física I (X) OBRIGATÓRIA ( ) OPTATIVA DEPARTAMENTO: Física e Biofísica DOCENTE RESPONSÁVEL: Prof. Dr. Marcos Antonio

Leia mais

OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira

OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Caos. Apresentado na disciplina Mecânica Cássica (PGF 5005) IFUSP. Iberê L. Caldas

Caos. Apresentado na disciplina Mecânica Cássica (PGF 5005) IFUSP. Iberê L. Caldas Caos Iberê L. Caldas Apresentado na disciplina Mecânica Cássica (PGF 5005) IFUSP Caos na Mecânica Clássica Criação da Mecânica. Determinismo. Sensibilidade às condições iniciais. Indeterminismo clássico.

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

Mecânica Newtoniana (Física I)

Mecânica Newtoniana (Física I) Tec. Processos Metalúrgicos 2013/1 Funcionamento da ciência O método científico: Funcionamento da ciência O método científico: Funcionamento da ciência A Física clássica: Funcionamento da ciência A Física

Leia mais

Aplicação dos conceitos de posição, velocidade e aceleração. Aplicação de derivadas e primitivas de

Aplicação dos conceitos de posição, velocidade e aceleração. Aplicação de derivadas e primitivas de Ano lectivo 2010-2011 Engenharia Civil Exercícios de Física Ficha 4 Movimento a uma Dimensão Capítulo 3 Conhecimentos e e capacidades a adquirir a adquirir pelo pelo aluno aluno Aplicação dos conceitos

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

Revisão Grandezas - Comprimento

Revisão Grandezas - Comprimento Revisão Grandezas - Comprimento Revisão Grandezas - Tempo Revisão Gradezas - Prefixos Revisão Gradezas (densidade) Revisão - Dimensões Revisão Movimento 1D v x = x t Revisão Velocidade Instantânea v x

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

FÍSICA - I. Força e Movimento I. 2ª. Parte. Prof. M.Sc. Lúcio P. Patrocínio

FÍSICA - I. Força e Movimento I. 2ª. Parte. Prof. M.Sc. Lúcio P. Patrocínio FÍSICA - I Força e Movimento I 2ª. Parte Prof. M.Sc. Lúcio P. Patrocínio Objetivos Trabalhar FORÇAS como grandezas vetoriais. Enunciar as três Leis de Newton. Aplicar as três Leis de Newton em problemas

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

GRANDEZAS ESCALARES E VETORIAIS OPERAÇÕES ELEMENTARES

GRANDEZAS ESCALARES E VETORIAIS OPERAÇÕES ELEMENTARES GRANDEZAS ESCALARES E VETORIAIS OPERAÇÕES ELEMENTARES Diariamente nos deparamos com muitas grandezas físicas. Algumas dessas grandezas ficam perfeitamente definidas com um valor numérico e sua unidade

Leia mais

CONTEÚDOS PARA BANCA MATEMÁTICA II. EDITAL Mestres e Doutores

CONTEÚDOS PARA BANCA MATEMÁTICA II. EDITAL Mestres e Doutores CONTEÚDOS PARA BANCA MATEMÁTICA II EDITAL 07-2010 Mestres e Doutores 1- Trigonometria: identidades trigonométricas e funções circulares; a) Defina função periódica e encontre o período das funções circulares,

Leia mais

7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis

7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis 7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis 7.1-Equação de Bernoulli A equação de Bernoulli é uma equação diferencial de primeira ordem do tipo: onde é uma constante sendo e e e quaisquer

Leia mais

Solução: F = m. a. 20 = 5. a. Logo. a = 20/5. a = 4 ALUNO (A): Nº MANHÃ TURMA 1 ENSINO MÉDIO 1ª ANO

Solução: F = m. a. 20 = 5. a. Logo. a = 20/5. a = 4 ALUNO (A): Nº MANHÃ TURMA 1 ENSINO MÉDIO 1ª ANO ª ANO Verifique se esta contém 0 QUESTÕES, numeradas de 0 a 0. Leia atentamente toda a antes de começar a resolver. Não deixe questões em branco. Não converse. Boa Sorte! NOTA DA ] O corpo indicado na

Leia mais

O QUE É ESTUDADO? Matéria Conceito de massa Partícula Cinética escalar/vetorial

O QUE É ESTUDADO? Matéria Conceito de massa Partícula Cinética escalar/vetorial MECANICA 1 Cinemática O QUE É ESTUDADO? Matéria Conceito de massa Partícula Cinética escalar/vetorial Matéria / Massa Matéria é tudo aquilo que tem massa e ocupa um volume no espaço. Isso permite definir

Leia mais

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x

Leia mais

Trabalho de Equações Diferenciais Ordinárias

Trabalho de Equações Diferenciais Ordinárias Universidade Tecnológica Federal do Paraná Diretoria de Graduação e Educação Prossional Departamento Acadêmico de Matemática Trabalho de Equações Diferenciais Ordinárias Data de Entrega: 16/12/2015 Nome:

Leia mais

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho [email protected] Juiz de Fora - MG Introdução: Objetivo: Estabelecer

Leia mais

UNIDADES DE MEDIDA. 1 litro = 1 dm 3 GRANDEZAS:

UNIDADES DE MEDIDA. 1 litro = 1 dm 3 GRANDEZAS: UNIDADES DE MEDIDA GRANDEZAS: COMPRIMENTO - No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro, veja

Leia mais

Roteiro do Experimento Força de Atrito Variável Parte II

Roteiro do Experimento Força de Atrito Variável Parte II A) Introdução ao experimento Experimentos Virtuais de Mecânica Roteiro do Experimento Força de Atrito Variável Parte II Na Parte I da análise do experimento, as grandezas cinemáticas relativas ao movimento

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO

UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO DISCIPLINA Equações Diferenciais CÓDIGO MAF-2010-C01 PROFESSOR CRISTIAN PATRICIO NOVOA BUSTOS CURSO Engenharia PERÍODO CRÉDITO

Leia mais

11 MATRIZ CURRICULAR DO CURSO DE LICENCIATURA EM MATEMÁTICA

11 MATRIZ CURRICULAR DO CURSO DE LICENCIATURA EM MATEMÁTICA 11 MATRIZ CURRICULAR DO CURSO DE LICENCIATURA EM MATEMÁTICA Quadro 11. Distribuição semestral das disciplinas 1º SEMESTRE 7150 Fundamentos da Matemática I 4 0 0 0 2 90 6 ---- 7151 Geometria Euclidiana

Leia mais

Aluno Data Curso / Turma Professor

Aluno Data Curso / Turma Professor Apostila Modelagem e Simulação de Sistemas Dinâmicos Aluno Data Curso / Turma Professor 24/10/09 Engenharia Industrial Mecânica / 2006-1 MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS Everton Farina, Eng.º

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,0 ponto) PROAC / COSEAC - Gabarito. Engenharia de Produção e Mecânica Volta Redonda

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,0 ponto) PROAC / COSEAC - Gabarito. Engenharia de Produção e Mecânica Volta Redonda Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Calcule a derivada segunda d dx x ( e cos x) 1 ( ) d e x cosx = e x cos x e x sen x dx d dx ( x x ) e cos x e senx = 4e x cos x + e x sen x +

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas

Leia mais

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho [email protected] Juiz de Fora MG Introdução: Objetivo: Desenvolver

Leia mais

Problemas sobre osciladores simples

Problemas sobre osciladores simples Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto

Leia mais

Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão):

Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão): Page 1 of 6 Oscilações Guia de Estudo (Formato para Impressão): Após o estudo deste tópico você deve: Entender os conceitos de Frequência, Período, Amplitude e Constante de Fase; Conhecer e saber resolver

Leia mais

Lista 3 Prof. Diego Marcon

Lista 3 Prof. Diego Marcon Lista 3 Prof. Diego Marcon Métodos Aplicados de Matemática I 9 de Maio de 7 Lista de eercícios referente ao restante da primeira área da nossa disciplina: Equações lineares de ordem mais alta Sistemas

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade

Leia mais

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do limite 3 x 8 lim é x 2 x 2 2ª QUESTÃO O domínio da função real definida por é 3ª QUESTÃO A imagem da função real definida por, para todo, é GRUPO 1 PROVA DE MATEMÁTICA

Leia mais

Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf

Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf Vibrações Mecânicas Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE Ramiro Brito Willmersdorf 2015.1 Introdução Sistemas que requerem 2 coordenadas generalizadas para especificar unicamente sua configuração;

Leia mais

MECÂNICA - CINEMÁTICA

MECÂNICA - CINEMÁTICA MECÂNICA - CINEMÁTICA Cinemática CONCEITOS FUNDAMENTAIS 1. REFERENCIAL É um corpo ou um conjunto de corpos que usamos para estabelecer a posição de outros corpos. MOVIMENTO A posição de um corpo varia,

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

4 Modelagem Numérica. 4.1 Método das Diferenças Finitas

4 Modelagem Numérica. 4.1 Método das Diferenças Finitas 4 Modelagem Numérica Para se obter a solução numérica das equações diferenciais que regem o processo de absorção de CO 2,desenvolvido no capitulo anterior, estas precisam ser transformadas em sistemas

Leia mais

FÍSICA - I. Objetivos AVALIAÇÃO DIAGNÓSTICA. Identificar as características de um movimento unidimensional com ênfase no movimento retilíneo.

FÍSICA - I. Objetivos AVALIAÇÃO DIAGNÓSTICA. Identificar as características de um movimento unidimensional com ênfase no movimento retilíneo. FÍSICA - I MVIMENT EM UMA DIMENSÃ Prof. M.Sc. Lúcio P. Patrocínio bjetivos Identificar as características de um movimento unidimensional com ênfase no movimento retilíneo. Estabelecer os conceitos de deslocamento,

Leia mais

CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA ANO LETIVO

CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA ANO LETIVO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA ANO LETIVO - 2017 PLANO DE CURSO (Res. CEPE nº 34/2005) CÓDIGO NOME TURMAS 6FIS043 FISICA APLICADA À ENGENHARIA I 1000 e 2000 CURSO SÉRIE Engenharia Civil

Leia mais

Isaac Newton ( )

Isaac Newton ( ) Isaac Newton (1642-1726) -Seguramente, um dos maiores gênios que a Humanidade já produziu. Aos 24 anos, já tinha desenvolvido: - As 3 Leis do Movimento. - Lei da Gravitação Universal. -Cálculo diferencial

Leia mais

Movimento harmônico simples (MHS)

Movimento harmônico simples (MHS) Movimento harmônico simples (MHS) Movimento periódico: movimento que se repete em intervalos de tempo sucessivos e iguais. Ex.: movimento circular uniforme (MCU). Período (T): menor intervalo de tempo

Leia mais

ROTEIRO DE ATIVIDADES

ROTEIRO DE ATIVIDADES FSSS Alagoinhas - BA ROTEIRO DE ATIVIDADES EXPERIMENTAIS PARA O LABORATÓRIO DE FÍSICA I Prof. Dr. José Carlos Alves Pinheiro Alagoinhas, 2017 SUMÁRIO 1 DECOMPOSIÇÃO DE FORÇAS 2- MOVIMENTO RETILÍNEO UNIFORME

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA. LMAEE Laboratório de Matemática Aplicada a Engenharia Elétrica

UNIVERSIDADE ESTADUAL PAULISTA. LMAEE Laboratório de Matemática Aplicada a Engenharia Elétrica unesp UNIVERSIDADE ESTADUAL PAULISTA CAMPUS DE GUARATINGUETÁ DEPARTAMENTO DE ENGENHARIA ELÉTRICA LMAEE- - Laboratório de Matemática Aplicada a Engenharia Elétrica LAB. 3 RESOLUÇÃO, DE EQUAÇÕES DIFERENCIAIS

Leia mais

FÍSICA I A) 3,0 B) 1,2 C) 1,5 D) 2,0 E) 2,5

FÍSICA I A) 3,0 B) 1,2 C) 1,5 D) 2,0 E) 2,5 FÍS Esta prova tem por finalidade verificar seus conhecimentos sobre as leis que regem a natureza. nterprete as questões do modo mais simples e usual. Não considere complicações adicionais por fatores

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

Retardado: quando o módulo da velocidade diminui no decorrer. do tempo. Nesse caso teremos: v. e a têm sinais contrários. Movimento Uniforme (M.U.

Retardado: quando o módulo da velocidade diminui no decorrer. do tempo. Nesse caso teremos: v. e a têm sinais contrários. Movimento Uniforme (M.U. Cinemática Escalar Conceitos Básicos Espaço (S) O espaço de um móvel num dado instante t é dado pelo valor da medida algébrica da sua distância até a origem dos espaços O. Retardado: quando o módulo da

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

Matemática Aplicada à Economia II Lista 1 Equações Diferenciais Ordinárias

Matemática Aplicada à Economia II Lista 1 Equações Diferenciais Ordinárias Matemática Aplicada à Economia II Lista 1 Equações Diferenciais Ordinárias 1) Encontre: g) h) 2) Calcule as seguintes integrais definidas: 3) Diz-se que a integral definida representa uma área sob uma

Leia mais

Física I Prova 3 7/06/2014

Física I Prova 3 7/06/2014 Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12

Leia mais

Essa vídeo aula tem por objetivo tratar dos conceitos de trabalho, potência e energia.

Essa vídeo aula tem por objetivo tratar dos conceitos de trabalho, potência e energia. Essa vídeo aula tem por objetivo tratar dos conceitos de trabalho, potência e energia. A definição de energia é bastante difícil de ser dada. Uma boa compreensão dessa vem com o conceito de transformação,

Leia mais

MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA

MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA CURSO DE ENGENHARIA MECÂNICA MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA INTRODUÇÃO AOS MÉTODOS DE DIFERENÇAS FINITAS E DE VOLUMES

Leia mais