Na Física (em módulo) é uma Lei
|
|
|
- Isaque Madeira Antunes
- 8 Há anos
- Visualizações:
Transcrição
1 1 a interpretação Interpretações matemáticas Na Física (em módulo) é uma Lei Elementos de uma expressão matemática Variável dependente Coeficiente Variável independente
2 2 a interpretação Interpretações matemáticas Considerando-se a situação, em que, um móvel se desloca devido a aplicação de uma força, como também, sabendo-se que massa do móvel é constante (m = 10 kg) e a aceleração não será modificada (a = 2 m/s 2 ). Logo, Ou seja, em relação ao tempo as variáveis não modificam. Assim, Na Física, situação escalar
3 3 a interpretação Interpretações matemáticas Usando o mesmo exemplo anterior, em que, devido a agentes físicos externos (Força de Atrito) a aceleração é modificada ao decorrer do movimento Logo, Na Física, situação vetorial
4 Demonstrar a equação diferencial Velocidade (v), grandeza física que modifica a posição (s) ao decorrer do tempo (t) Aceleração (a), grandeza física que modifica a velocidade (v) ao decorrer do tempo (t)
5 Equações Diferenciais Ordinárias (EDO) Classificações São as que envolvem uma única variável independente nas derivadas ordinárias. Equações Diferenciais Parciais (EDP) São as que envolvem duas ou mais variáveis independentes nas derivadas parciais. Variável dependente Variáveis independentes Derivadas parciais (variáveis diferentes)
6 Classificações EDO Lineares Pode possuir: Potência na variável independente Produto da variável dependente com a independente ou com suas funções Produto da variável independente com suas derivadas EDO Não Lineares Pode possuir: Potência na variável dependente Potência nas derivadas Produto da variável dependente com suas derivadas
7 Classificações EDO Lineares Homogêneas Possui zero em um dos termos da equação EDO Lineares Não Homogêneas Não possui zero em um dos termos da equação
8 Exercício Evidencie a ordem e a classificação das equações diferenciais abaixo:
9 Natureza dos Coeficientes EDO com Coeficientes Constantes Se os termos estiverem correlacionados com a variável dependente ou suas derivadas. Coeficientes Variável dependente ou derivada EDO com Coeficientes Variáveis Se os termos estiverem correlacionados com as variáveis dependentes ou de suas derivadas e contiver a variável independente. Coeficientes Variável independente Variável dependente ou derivada
10 Tipos de Soluções Em uma equação algébrica são os valores que podem satisfazer a equação. Exemplo
11 Tipos de Soluções Já, em uma equação diferencial são as funções que podem satisfazer a equação. Exemplo Prove que a função: y = 3e 2x é a solução da equação diferencial: y 4y = 0
12 Tipos de Soluções Solução Geral (SG) Não existe um método de solução geral para todas equações diferenciais Existem técnicas de soluções (Condição Inicial e Condição de Contorno) para diferentes classificações de equações diferenciais Acontece de usar mais de uma técnica para solucionar uma equação diferencial Algumas vezes, a solução de equações diferenciais somente podem ser resolvidas por artifícios matemáticos Poucas outras, não possuem solução analítica
13 Tipos de Soluções Solução Geral (SG) Condições para EDO de 2 a Ordem e Homogênea, que evidencie:
14 Tipos de Soluções Condição Inicial e de Contorno Brasil Nordeste Planeta Fazer a previsão pluviométrica no Nordeste apenas com os dados meteorológicos locais. É uma Condição inicial Mas, será que teremos todos os dados meteorológicos necessários? Nem sempre Será que apenas os dados locais são necessários para uma previsão pluviométrica com grande margem de precisão? Não Coletar dados meteorológicos do contorno do Nordeste. É uma Condição de Contorno
15 Exemplo Um cientista ao trabalhar com vários dados coletados por outro estudioso evidenciou a seguinte equação diferencial: Dessa forma, ajude o cientista a encontrar a: a) A solução geral da equação. b) Os valores para a condição inicial quando: c) Os valores para a condição de contorno quando:
16 Resolução (a)
17 Resolução (b)
18 Resolução (b)
19 Resolução (b)
20 Resolução (c)
21 EDO POR INTEGRAÇÃO Apenas algumas EDO podem ser resolvidas por integração direta. A EDO deve possuir um termo único com uma derivada de y e nenhum termo relacionado com y. Exemplo A Resolução por Integração Direta Exemplo B Não resolve por Integração Direta
22 Exemplo Das EDO abaixo, verifique a(s) que pode(m) ser resolvida(s) por Integração Direta e encontre a(s) solução(ões) da(s) que é(são) possível(is).
23 Resolução
24 Resolução
25 Resolução
26 Demostre que a função pode ser a solução da EDO Exercício Equação Diferencial Função Solução
27 Demostre que a função pode ser a solução da EDO Exercício Equação Diferencial Função Solução
28 Sistema (massa-mola) Para modificar o estado inercial aplica-se: EDO com Aplicações A massa ao se deslocar evidencia a força resistente da mola. Os sistemas mecânicos experimentam o atrito de seus próprios elementos, em que, tal força é proporcional à velocidade e o coeficiente de amortecimento. Mais outras forças externas.
29 Sistema (massa-mola) EDO com Aplicações
30 Analise se a equação: Resolução Exemplo que representa o movimento de um oscilador do tipo massa-mola amortecido é uma solução para a EDO para esse tipo de sistema. Sabendo-se que F externa = 0, m = 1, k = 25 e b = 6.
31 Resolução Exemplo
32 Resolução Exemplo
33
34
35
36
37
d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh
TURMA 202: Modelagem Matemática PRA3 Prof. José A. Dávalos Chuquipoma Questão LER 04 LISTA DE EXERCÍCIOS RESOLVIDOS 04 Data para submissão na Plataforma Moodle: 22/09/204 Um objeto de massa m = se encontra
Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações )
Nota de Aula: Equações Diferenciais Ordinárias de Ordem ( Aplicações ) Vamos nos ater a duas aplicações de grande interesse na engenharia: Sistema massa-mola-amortecedor ( Oscilador Mecânico ) O Sistema
= 0,28 m/s. F = m d 2 x d t 2
Um bloco de massa m = 0,1 kg é ligado a uma mola de constante elástica k = 0,6 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até
Grandezas Fundamentais da Mecânica
Grandezas Fundamentais da Mecânica A Mecânica é a parte da Física que procura estudar os movimentos dos corpos e seu repouso, além de buscar explicações lógicas para as suas ocorrências, fazendo análises
Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto
Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância Prof. Ettore Baldini-Neto 1610: Galileu, usando um telescópio recém construído, descobre
F = m d 2 x d t 2. F R = bv = b d x
Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 0,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até
Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.
Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes
Cálculo Diferencial e Integral C. Me. Aline Brum Seibel
Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno
Força direção magnitude magnitude
Leis de Newton Sir Isaac Newton 1642 1727 Formulou as leis básicas da mecânica. Descobriu a Lei da Gravitação Universal. Inventou o cálculo Diferencial e Integral. Fez muitas observações sobre luz e óptica.
Equações Diferenciais Ordinárias de Ordem Superior a Um
Capítulo 2 Equações Diferenciais Ordinárias de Ordem Superior a Um 2.1 EDOs lineares homogéneas de ordem dois. Redução de ordem. Exercício 2.1.1 As seguintes equações diferenciais de 2 a ordem podem ser
Equações Ordinarias 1ªOrdem - Lineares
Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace
Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Transformada de Laplace da Derivada de uma Função Teorema 1:
Trabalho Menu Introdução Energia Unidades no SI Trabalho de uma força constante Classificação Unidades de trabalho Casos particulares de trabalho
Trabalho Menu 1 Introdução 2 Energia 3 Unidades no SI 4 Trabalho de uma força constante 5 Classificação 6 Unidades de trabalho 7 Casos particulares de trabalho 8 Trabalho de uma força variável 9 Trabalho
Física I. Introdução à Mecânica Lista de Exercícios
Física I Introdução à Mecânica Lista de Exercícios 1. Grandezas Físicas Uma das grandezas mais conhecidas da física é a força. Sua unidade de medida no Sistema Internacional de unidades é o newton (N).
Equações diferencias ordinárias - Exercícios
Página 1 de 5 Equações diferencias ordinárias - Exercícios 1) A lei do resfriamento de Newton diz que a temperatura de um corpo varia a uma taxa proporcional à diferença entre a temperatura do mesmo e
O QUE É MECÂNICA DO PONTO DE VISTA DA FÍSICA?
O QUE É MECÂNICA DO PONTO DE VISTA DA FÍSICA? Podemos dizer que a mecânica é uma área da física que trata as questões de movimento dos corpos levando em conta, de uma maneira geral, as causas do movimento.
7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.
7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4
FENÔMENOS DE TRANSPORTES
FENÔMENOS DE TRANSPORTES AULA 6 CINEMÁTICA DOS FLUIDOS PROF.: KAIO DUTRA Conservação da Massa O primeiro princípio físico para o qual nós aplicamos a relação entre as formulações de sistema e de volume
Equações Diferenciais Parciais.
EDP p.1/23 Equações Diferenciais Parciais. Margarete Oliveira Domingues PGMET/INPE Definições Básicas EDP p.2/23 EDP p.3/23 EDP Uma equação de derivadas parciais ou EDP é uma equação envolvendo duas ou
Regime: Semestre: GRANDEZAS FÍSICAS, UNIDADES E DIMENSÕES Conceito de Grandeza: Grandezas fundamentais e derivadas
FUNDAMENTOS DE FÍSICA [10400] GERAL Regime: Semestre: OBJETIVOS O objectivo da disciplina de Física é o de adquirir conhecimentos técnicos baseados nos princípios físicos fundamentais à análise de problemas
FACULDADE SUDOESTE PAULISTA Física Geral e experimental I Engenharia Civil e Produção
Notas de aula: Cinemática escalar: Conceitos Iniciais Para descrição de movimento sempre há necessidade de um ponto base, ou seja, um ponto de referencia, o qual dá se o nome de referencial. Fisicamente
ESTRATÉGIAS DE ENSINO (teóricas e práticas) Exposição dialogada e apresentação de vídeos sobre o assunto.
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CÂMPUS ITAJAÍ PLANO DE ENSINO IDENTIFICAÇÃO Unidade Curricular:
SUMÁRIO. 1 Preparando o Cenário para o Estudo da Dinâmica Cinemática da Partícula... 29
SUMÁRIO 1 Preparando o Cenário para o Estudo da Dinâmica... 1 1.1 Uma Breve História da Dinâmica...1 Isaac Newton (1643-1727)... 3 Leonhard Euler (1707-1783)... 6 1.2 Conceitos Fundamentais...8 Espaço
Introdução às Equações Diferenciais Ordinárias e Suas Aplicações.
Universidade Federal de Campina Grande UFCG Centro de Ciências e Tecnologia CCT Unidade Acadêmica de Matemática UAMat Programa de Educação Tutorial PET Introdução às Equações Diferenciais Ordinárias e
, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.
Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que
Resolução comentada da questão 1 da P1 de 2015 da disciplina PME Mecânica dos Fluidos I
Resolução comentada da questão 1 da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos I Caio Cancian Março 2016 Resumo A primeira questão da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos
Campus de Botucatu PLANO DE ENSINO. DOCENTE RESPONSÁVEL: Prof. Dr. Marcos Antonio de Rezende
PLANO DE ENSINO I IDENTIFICAÇÃO CURSO: Física Médica MODALIDADE: Bacharelado DISCIPLINA: Física I (X) OBRIGATÓRIA ( ) OPTATIVA DEPARTAMENTO: Física e Biofísica DOCENTE RESPONSÁVEL: Prof. Dr. Marcos Antonio
OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira
FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
Caos. Apresentado na disciplina Mecânica Cássica (PGF 5005) IFUSP. Iberê L. Caldas
Caos Iberê L. Caldas Apresentado na disciplina Mecânica Cássica (PGF 5005) IFUSP Caos na Mecânica Clássica Criação da Mecânica. Determinismo. Sensibilidade às condições iniciais. Indeterminismo clássico.
F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x
Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A
Mecânica Newtoniana (Física I)
Tec. Processos Metalúrgicos 2013/1 Funcionamento da ciência O método científico: Funcionamento da ciência O método científico: Funcionamento da ciência A Física clássica: Funcionamento da ciência A Física
Aplicação dos conceitos de posição, velocidade e aceleração. Aplicação de derivadas e primitivas de
Ano lectivo 2010-2011 Engenharia Civil Exercícios de Física Ficha 4 Movimento a uma Dimensão Capítulo 3 Conhecimentos e e capacidades a adquirir a adquirir pelo pelo aluno aluno Aplicação dos conceitos
Sessão 1: Generalidades
Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar
Seção 9: EDO s lineares de 2 a ordem
Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y
Revisão Grandezas - Comprimento
Revisão Grandezas - Comprimento Revisão Grandezas - Tempo Revisão Gradezas - Prefixos Revisão Gradezas (densidade) Revisão - Dimensões Revisão Movimento 1D v x = x t Revisão Velocidade Instantânea v x
Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.
Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento
FÍSICA - I. Força e Movimento I. 2ª. Parte. Prof. M.Sc. Lúcio P. Patrocínio
FÍSICA - I Força e Movimento I 2ª. Parte Prof. M.Sc. Lúcio P. Patrocínio Objetivos Trabalhar FORÇAS como grandezas vetoriais. Enunciar as três Leis de Newton. Aplicar as três Leis de Newton em problemas
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
GRANDEZAS ESCALARES E VETORIAIS OPERAÇÕES ELEMENTARES
GRANDEZAS ESCALARES E VETORIAIS OPERAÇÕES ELEMENTARES Diariamente nos deparamos com muitas grandezas físicas. Algumas dessas grandezas ficam perfeitamente definidas com um valor numérico e sua unidade
CONTEÚDOS PARA BANCA MATEMÁTICA II. EDITAL Mestres e Doutores
CONTEÚDOS PARA BANCA MATEMÁTICA II EDITAL 07-2010 Mestres e Doutores 1- Trigonometria: identidades trigonométricas e funções circulares; a) Defina função periódica e encontre o período das funções circulares,
7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis
7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis 7.1-Equação de Bernoulli A equação de Bernoulli é uma equação diferencial de primeira ordem do tipo: onde é uma constante sendo e e e quaisquer
Solução: F = m. a. 20 = 5. a. Logo. a = 20/5. a = 4 ALUNO (A): Nº MANHÃ TURMA 1 ENSINO MÉDIO 1ª ANO
ª ANO Verifique se esta contém 0 QUESTÕES, numeradas de 0 a 0. Leia atentamente toda a antes de começar a resolver. Não deixe questões em branco. Não converse. Boa Sorte! NOTA DA ] O corpo indicado na
O QUE É ESTUDADO? Matéria Conceito de massa Partícula Cinética escalar/vetorial
MECANICA 1 Cinemática O QUE É ESTUDADO? Matéria Conceito de massa Partícula Cinética escalar/vetorial Matéria / Massa Matéria é tudo aquilo que tem massa e ocupa um volume no espaço. Isso permite definir
Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente
MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x
Trabalho de Equações Diferenciais Ordinárias
Universidade Tecnológica Federal do Paraná Diretoria de Graduação e Educação Prossional Departamento Acadêmico de Matemática Trabalho de Equações Diferenciais Ordinárias Data de Entrega: 16/12/2015 Nome:
DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.
DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho [email protected] Juiz de Fora - MG Introdução: Objetivo: Estabelecer
UNIDADES DE MEDIDA. 1 litro = 1 dm 3 GRANDEZAS:
UNIDADES DE MEDIDA GRANDEZAS: COMPRIMENTO - No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro, veja
Roteiro do Experimento Força de Atrito Variável Parte II
A) Introdução ao experimento Experimentos Virtuais de Mecânica Roteiro do Experimento Força de Atrito Variável Parte II Na Parte I da análise do experimento, as grandezas cinemáticas relativas ao movimento
UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO
UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO DISCIPLINA Equações Diferenciais CÓDIGO MAF-2010-C01 PROFESSOR CRISTIAN PATRICIO NOVOA BUSTOS CURSO Engenharia PERÍODO CRÉDITO
11 MATRIZ CURRICULAR DO CURSO DE LICENCIATURA EM MATEMÁTICA
11 MATRIZ CURRICULAR DO CURSO DE LICENCIATURA EM MATEMÁTICA Quadro 11. Distribuição semestral das disciplinas 1º SEMESTRE 7150 Fundamentos da Matemática I 4 0 0 0 2 90 6 ---- 7151 Geometria Euclidiana
Aluno Data Curso / Turma Professor
Apostila Modelagem e Simulação de Sistemas Dinâmicos Aluno Data Curso / Turma Professor 24/10/09 Engenharia Industrial Mecânica / 2006-1 MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS Everton Farina, Eng.º
UNIDADE 15 OSCILAÇÕES
UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,0 ponto) PROAC / COSEAC - Gabarito. Engenharia de Produção e Mecânica Volta Redonda
Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Calcule a derivada segunda d dx x ( e cos x) 1 ( ) d e x cosx = e x cos x e x sen x dx d dx ( x x ) e cos x e senx = 4e x cos x + e x sen x +
Equações Diferenciais Noções Básicas
Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas
DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.
DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho [email protected] Juiz de Fora MG Introdução: Objetivo: Desenvolver
Problemas sobre osciladores simples
Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto
Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão):
Page 1 of 6 Oscilações Guia de Estudo (Formato para Impressão): Após o estudo deste tópico você deve: Entender os conceitos de Frequência, Período, Amplitude e Constante de Fase; Conhecer e saber resolver
Lista 3 Prof. Diego Marcon
Lista 3 Prof. Diego Marcon Métodos Aplicados de Matemática I 9 de Maio de 7 Lista de eercícios referente ao restante da primeira área da nossa disciplina: Equações lineares de ordem mais alta Sistemas
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade
PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do limite 3 x 8 lim é x 2 x 2 2ª QUESTÃO O domínio da função real definida por é 3ª QUESTÃO A imagem da função real definida por, para todo, é GRUPO 1 PROVA DE MATEMÁTICA
Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf
Vibrações Mecânicas Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE Ramiro Brito Willmersdorf 2015.1 Introdução Sistemas que requerem 2 coordenadas generalizadas para especificar unicamente sua configuração;
MECÂNICA - CINEMÁTICA
MECÂNICA - CINEMÁTICA Cinemática CONCEITOS FUNDAMENTAIS 1. REFERENCIAL É um corpo ou um conjunto de corpos que usamos para estabelecer a posição de outros corpos. MOVIMENTO A posição de um corpo varia,
Prova P3 Física para Engenharia II, turma nov. 2014
Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com
4 Modelagem Numérica. 4.1 Método das Diferenças Finitas
4 Modelagem Numérica Para se obter a solução numérica das equações diferenciais que regem o processo de absorção de CO 2,desenvolvido no capitulo anterior, estas precisam ser transformadas em sistemas
FÍSICA - I. Objetivos AVALIAÇÃO DIAGNÓSTICA. Identificar as características de um movimento unidimensional com ênfase no movimento retilíneo.
FÍSICA - I MVIMENT EM UMA DIMENSÃ Prof. M.Sc. Lúcio P. Patrocínio bjetivos Identificar as características de um movimento unidimensional com ênfase no movimento retilíneo. Estabelecer os conceitos de deslocamento,
CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA ANO LETIVO
CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA ANO LETIVO - 2017 PLANO DE CURSO (Res. CEPE nº 34/2005) CÓDIGO NOME TURMAS 6FIS043 FISICA APLICADA À ENGENHARIA I 1000 e 2000 CURSO SÉRIE Engenharia Civil
Isaac Newton ( )
Isaac Newton (1642-1726) -Seguramente, um dos maiores gênios que a Humanidade já produziu. Aos 24 anos, já tinha desenvolvido: - As 3 Leis do Movimento. - Lei da Gravitação Universal. -Cálculo diferencial
Movimento harmônico simples (MHS)
Movimento harmônico simples (MHS) Movimento periódico: movimento que se repete em intervalos de tempo sucessivos e iguais. Ex.: movimento circular uniforme (MCU). Período (T): menor intervalo de tempo
ROTEIRO DE ATIVIDADES
FSSS Alagoinhas - BA ROTEIRO DE ATIVIDADES EXPERIMENTAIS PARA O LABORATÓRIO DE FÍSICA I Prof. Dr. José Carlos Alves Pinheiro Alagoinhas, 2017 SUMÁRIO 1 DECOMPOSIÇÃO DE FORÇAS 2- MOVIMENTO RETILÍNEO UNIFORME
UNIVERSIDADE ESTADUAL PAULISTA. LMAEE Laboratório de Matemática Aplicada a Engenharia Elétrica
unesp UNIVERSIDADE ESTADUAL PAULISTA CAMPUS DE GUARATINGUETÁ DEPARTAMENTO DE ENGENHARIA ELÉTRICA LMAEE- - Laboratório de Matemática Aplicada a Engenharia Elétrica LAB. 3 RESOLUÇÃO, DE EQUAÇÕES DIFERENCIAIS
FÍSICA I A) 3,0 B) 1,2 C) 1,5 D) 2,0 E) 2,5
FÍS Esta prova tem por finalidade verificar seus conhecimentos sobre as leis que regem a natureza. nterprete as questões do modo mais simples e usual. Não considere complicações adicionais por fatores
Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica
Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia
Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas
Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples
Retardado: quando o módulo da velocidade diminui no decorrer. do tempo. Nesse caso teremos: v. e a têm sinais contrários. Movimento Uniforme (M.U.
Cinemática Escalar Conceitos Básicos Espaço (S) O espaço de um móvel num dado instante t é dado pelo valor da medida algébrica da sua distância até a origem dos espaços O. Retardado: quando o módulo da
y (n) (x) = dn y dx n(x) y (0) (x) = y(x).
Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.
EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO
Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50
Matemática Aplicada à Economia II Lista 1 Equações Diferenciais Ordinárias
Matemática Aplicada à Economia II Lista 1 Equações Diferenciais Ordinárias 1) Encontre: g) h) 2) Calcule as seguintes integrais definidas: 3) Diz-se que a integral definida representa uma área sob uma
Física I Prova 3 7/06/2014
Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12
Essa vídeo aula tem por objetivo tratar dos conceitos de trabalho, potência e energia.
Essa vídeo aula tem por objetivo tratar dos conceitos de trabalho, potência e energia. A definição de energia é bastante difícil de ser dada. Uma boa compreensão dessa vem com o conceito de transformação,
MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA CURSO DE ENGENHARIA MECÂNICA MÉTODOS NUMÉRICOS APLICADOS À ENGENHARIA INTRODUÇÃO AOS MÉTODOS DE DIFERENÇAS FINITAS E DE VOLUMES
