Equações Diferenciais

Tamanho: px
Começar a partir da página:

Download "Equações Diferenciais"

Transcrição

1 Equações Diferenciais

2 EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos que governam o processo. Quando esta relação é expressa em símbolos matemáticos, o resultado é frequentemente uma equação diferencial. Talvez a aplicação mais importante do cálculo sejam as equações diferenciais. Quando cientistas físicos ou cientistas sociais usam cálculo, muitas vezes o fazem para analisar uma equação diferencial que tenho surgido no processo de modelagem de algum fenômeno que eles estejam estudando. Embora, em geral, seja quase impossível encontrar uma fórmula explícita para a maioria das solução de uma equação diferencial, veremos que as abordagens gráficas e numéricas fornecem a informação necessária. 2

3 CAMPO DE DIREÇÕES Geometricamente, o conjunto de solução de uma equação diferencial ordinária de primeira ordem define um conjunto de curvas com traço no plano xy. Essas curvas designam-se por curvas integrais da equação diferencial. Cada uma das curvas integrais é solução de um determinado problema do valor inicial. Para cada ponto (x, y) a equação diferencial define y, isto é, para cada ponto (x, y) conhecemos o valor da inclinação da reta tangente ao traço da curva integral que passa nesse ponto. Dizemos que uma equação diferencial y = f(x, y) gera um campo de direções no plano xy. Se em cada ponto (x, y) representarmos a reta com inclinação f(x, y) obtemos uma representação do campo de direções associado à equação diferencial. As soluções da equação diferencial são curvas cujas tangentes em cada ponto são definidas por essas inclinações. Isto sugere um método geométrico para entender aproximadamente como deveriam ser as curvas integrais da edo. Para isto, traçamos um pequeno segmento de reta em cada ponto (x, y) com coeficiente angular m = f(x, y). 3

4 CAMPO DE DIREÇÕES Vejamos alguns exemplos: 1. Considere a edo y = y. Calculando alguns coeficientes angulares: 4

5 CAMPO DE DIREÇÕES 2. Considere a edo y = x y. Calculando alguns coeficientes angulares: 5

6 6

7 ESTUDO QUALITATIVO Como vimos nos exemplos anteriores a análise do campo de direções associado a uma equação diferencial permite conhecer propriedades das soluções mesmo sem possuirmos a expressão analítica que define a solução. Designamos por estudo qualitativo ao estudo do comportamento das soluções de uma dada equação diferencial sem a resolver. Em muitas situações reais não pretendemos conhecer a lei que descreve um determinado problema mas apenas descrever o comportamento das soluções desse problema. Noutras situações não é possível por meios analíticos obter a solução e o estudo qualitativo é essencial. O esboço do campo de direções associado à equação diferencial é um instrumento importante para o estudo qualitativo. Para caracterizar o comportamento das soluções de uma equação diferencial de primeira ordem e uma vez que conhecemos uma expressão para a primeira derivada temporal, estudando a função derivada podemos descrever o comportamento das soluções da equação diferencial. Vejamos dois modelos como exemplos: 7

8 UM OBJETO EM QUEDA 1. Suponha que um objeto esta caindo na atmosfera, perto do nível do mar. Formule uma equação diferencial que descreva o movimento. 8

9 UM OBJETO EM QUEDA 1. Suponha que um objeto esta caindo na atmosfera, perto do nível do mar. Formule uma equação diferencial que descreva o movimento. Como a velocidade deve variar com o tempo, consideremos v como uma função de t. Como as unidades de medida não estão especificadas, vamos medir o tempo t em segundo (s) e a velocidade v em metros por segundo (m/s). Vamos supor também que a velocidade v é positiva quando o sentido do movimento é para baixo, isto é, quando o objeto esta caindo. Da 2ª lei de Newton: F = ma, Segue que F = m e como a = (1) 9

10 UM OBJETO EM QUEDA Por outro lado, as forças que agem em um objeto em queda são: mg devido à gravidade que exerce uma força igual ao peso do objeto (no sentido do movimento). Existe também uma força devido à resistência do ar que, supõese, é proporcional à velocidade kv (no sentido contrário ao movimento), isto é F = mg kv 2 Assim, das equações (1) e (2), vem: m = mg kv = g k v (3) m Para resolver a Eq.(3) precisamos encontrar uma função v = v(t) que satisfaça a equação. A seguir, vamos tomar um exemplo para esse modelo e fazer uma análise qualitativa, interpretando geometricamente, através de seu campo de direções. 10

11 UM OBJETO EM QUEDA Vamos supor que m = 10kg e k = 2kg/s. Assim: = g k m v = 9, = 9,8 v 5 Se v = 40, Se v = 50, então então = 1,8 = 0,2 11

12 UM OBJETO EM QUEDA Vamos supor que m = 10kg e k = 2kg/s. Assim: = g k m v = 9, = 9,8 v 5 Se v = 40, então = 1,8 Se v = 50, então = 0,2 Podemos pensar que se v for menor que um certo valor crítico, então todos os segmentos de reta têm coeficientes angulares positivos e a velocidade do objeto em queda aumenta enquanto ele cai. Por outro lado, se v for maior do que o valor crítico, então os segmentos de reta têm coeficientes angulares negativos e o objeto em queda vai diminuindo a velocidade à medida que cai. 12

13 UM OBJETO EM QUEDA Qual é esse valor crítico que separa os objetos cuja velocidade esta aumentando daqueles cuja velocidade esta diminuindo? 13

14 UM OBJETO EM QUEDA Qual é esse valor crítico que separa os objetos cuja velocidade esta aumentando daqueles cuja velocidade esta diminuindo? Quais valores de v farão com que seja zero? 14

15 UM OBJETO EM QUEDA Qual é esse valor crítico que separa os objetos cuja velocidade esta aumentando daqueles cuja velocidade esta diminuindo? Quais valores de v farão com que seja zero? A função constante v = 49, é uma solução. Como essa solução não varia o tempo, v(t) = 49 é chamada de solução de equilíbrio. Essa é a solução que corresponde a um equilíbrio entre a gravidade e a resistência do ar. Ver figura no Winplot 15

16 RATOS DO CAMPO E CORUJAS Considere uma população de ratos do campo que habitam uma certa área rural. Vamos supor que, na ausência de predadores, a população de ratos cresça a uma taxa proporcional à população atual. dp = rp Onde o fator de proporcionalidade r é chamada taxa de crescimento. Agora aumentemos o problema supondo que diversas corujas vivem na vizinhança e que elas matam k ratos do campo por dia. dp = rp k 16

17 RATOS DO CAMPO E CORUJAS Como exemplo, vamos supor que o tempo seja medido em meses e que a taxa r tem valor de 0,5 ao mês e que as corujas matam 15 ratos do campo por dia. Dessa forma, k = 450. Logo, dp = rp k dp = 0,5P

18 RATOS DO CAMPO E CORUJAS Como exemplo, vamos supor que o tempo seja medido em meses e que a taxa r tem valor de 0,5 ao mês e que as corujas matam 15 ratos do campo por dia. Dessa forma, k = 450. Logo, dp = rp k dp = 0,5P 450 Se P = 850 então dp = 25 Se P = 950 então dp = 25 18

19 RATOS DO CAMPO E CORUJAS Como exemplo, vamos supor que o tempo seja medido em meses e que a taxa r tem valor de 0,5 ao mês e que as corujas matam 15 ratos do campo por dia. Dessa forma, k = 450. Logo, dp = rp k dp = 0,5P 450 Se P = 850 então dp = 25 Se P = 950 então dp = 25 Fazendo dp igual a zero, encontramos a solução de equilíbrio P t = 900, quando as expressões para o crescimento e para a ação predatória estão perfeitamente equilibradas. Ver figura no Winplot 19

Como erguer um piano sem fazer força

Como erguer um piano sem fazer força A U A UL LA Como erguer um piano sem fazer força Como vimos na aula sobre as leis de Newton, podemos olhar o movimento das coisas sob o ponto de vista da Dinâmica, ou melhor, olhando os motivos que levam

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Equações diferencias são equações que contém derivadas.

Equações diferencias são equações que contém derivadas. Equações diferencias são equações que contém derivadas. Os seguintes problemas são exemplos de fenômenos físicos que envolvem taxas de variação de alguma quantidade: Escoamento de fluidos Deslocamento

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

Diferenciais Ordinárias (EDO)

Diferenciais Ordinárias (EDO) Resolução Numérica de Equações Diferenciais Ordinárias (EDO) Ivanovitch Medeiros Dantas da Silva Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação DCA0399

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Faculdades Anhanguera

Faculdades Anhanguera 2º Aula de Física 2.1 Posição A posição de uma partícula sobre um eixo x localiza a partícula em relação á origem, ou ponto zero do eixo. A posição é positiva ou negativa, dependendo do lado da origem

Leia mais

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

Undécima lista de exercícios. Função exponencial e função logarítmica.

Undécima lista de exercícios. Função exponencial e função logarítmica. MA091 Matemática básica Verão de 01 Undécima lista de exercícios Função exponencial e função logarítmica 1 Você pegou um empréstimo bancário de R$ 500,00, a uma taxa de 5% ao mês a) Escreva a função que

Leia mais

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar 3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar Vimos que as previsões sobre as capacidades caloríficas molares baseadas na teoria cinética estão de acordo com o comportamento

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Capítulo 8 Equações Diferenciais Ordinárias Vários modelos utilizados nas ciências naturais e exatas envolvem equações diferenciais. Essas equações descrevem a relação entre uma função, o seu argumento

Leia mais

Além do Modelo de Bohr

Além do Modelo de Bohr Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade

Leia mais

Correlação e Regressão Linear

Correlação e Regressão Linear Correlação e Regressão Linear A medida de correlação é o tipo de medida que se usa quando se quer saber se duas variáveis possuem algum tipo de relação, de maneira que quando uma varia a outra varia também.

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Figura 2.1: Carro-mola

Figura 2.1: Carro-mola Capítulo 2 EDO de Segunda Ordem com Coeficientes Constantes 2.1 Introdução - O Problema Carro-Mola Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Resolução da Prova de Raciocínio Lógico do TCE/SP, aplicada em 06/12/2015.

Resolução da Prova de Raciocínio Lógico do TCE/SP, aplicada em 06/12/2015. de Raciocínio Lógico do TCE/SP, aplicada em 6/12/215. Raciocínio Lógico p/ TCE-SP Na sequência, criada com um padrão lógico-matemático, (1; 2; 1; 4; 2; 12; 6; 48; 24;...) o quociente entre o 16º termo

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica.

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica. Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos em escala di-logarítmica.

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Recuperação. - Mecânica: ramo da Física que estuda os movimentos;

Recuperação. - Mecânica: ramo da Física que estuda os movimentos; Recuperação Capítulo 01 Movimento e repouso - Mecânica: ramo da Física que estuda os movimentos; - Um corpo está em movimento quando sua posição, em relação a um referencial escolhido, se altera com o

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

4Distribuição de. freqüência

4Distribuição de. freqüência 4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA PORCENTAGEM MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA Quando é dito que 40% das pessoas entrevistadas votaram no candidato A, esta sendo afirmado que, em média, de cada pessoas, 40 votaram no candidato

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard O mercado de bens Olivier Blanchard Pearson Education CAPÍTULO 3 3.1 A composição do PIB A composição do PIB Consumo (C) são os bens e serviços adquiridos pelos consumidores. Investimento (I), às vezes

Leia mais

φ(x,y,y',y'',y''',..., d n y/dx n ) = 0 (1) Esta equação é de n-ésima ordem e tem somente uma variável independente, x.

φ(x,y,y',y'',y''',..., d n y/dx n ) = 0 (1) Esta equação é de n-ésima ordem e tem somente uma variável independente, x. 245 Capítulo 15 Resolução numérica de equações diferenciais Para podermos investigar exemplos de simulação que surgem na Física, Engenharia, Biomatemática etc., estudamos, neste capítulo, alguns métodos

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Lista 13: Gravitação. Lista 13: Gravitação

Lista 13: Gravitação. Lista 13: Gravitação Lista 13: Gravitação NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal Guia de aulas: Equações diferenciais Prof. Carlos Vidigal Profª. Érika Vidigal 1º Semestre de 013 Índice 1.Introdução... 3. Equações Diferenciais de 1ª Ordem... 7.1. Equações Diferenciais Separáveis...

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

ENERGIA CINÉTICA E TRABALHO

ENERGIA CINÉTICA E TRABALHO ENERGIA CINÉTICA E TRABALHO O que é energia? O termo energia é tão amplo que é diícil pensar numa deinição concisa. Teoricamente, a energia é uma grandeza escalar associada ao estado de um ou mais objetos;

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara Equações Diferenciais Ordinárias Modelagem de Sistemas Dinâmicos Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS

CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS A DEPENDÊNCIA DA VELOCIDADE DE REAÇÃO COM A TEMPERATURA A velocidade da maioria das reações químicas aumenta à medida que a temperatura também aumenta.

Leia mais

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor 1. (Ita) Considere as afirmações a seguir: I. Em equilíbrio eletrostático, uma superfície metálica é equipotencial. II. Um objeto eletrostaticamente carregado induz uma carga uniformemente distribuída

Leia mais

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Unidade 3 Função Logarítmica Definição de aritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Definição de Logaritmo de um número Suponha que certo medicamento,

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

Exercícios: Lançamento Vertical e Queda Livre

Exercícios: Lançamento Vertical e Queda Livre Exercícios: Lançamento Vertical e Queda Livre Cursinho da ETEC Prof. Fernando Buglia 1. (Unifesp) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

Dinâmica de um Sistema de Partículas

Dinâmica de um Sistema de Partículas Dinâmica de um Sistema de Partículas Prof. Dra. Diana Andrade, Prof. Dra Ângela Krabbe & Prof. Dr. Sérgio Pilling Ementa da disciplina Dinâmica de um Sistema de Partículas Sistema de Unidade. Movimento

Leia mais

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1:

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1: O momento do gol A UU L AL A Falta 1 minuto para terminar o jogo. Final de campeonato! O jogador entra na área adversária driblando, e fica de frente para o gol. A torcida entra em delírio gritando Chuta!

Leia mais

CONSERVAÇÃO DA ENERGIA

CONSERVAÇÃO DA ENERGIA CONSERVAÇÃO DA ENERGIA Introdução Quando um mergulhador pula de um trampolim para uma piscina, ele atinge a água com uma velocidade relativamente elevada, possuindo grande energia cinética. De onde vem

Leia mais

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

4 π. Analisemos com atenção o sistema solar: Dado que todos os planetas já ocuparam posições diferentes em relação ao Sol, valerá a pena fazer uma

4 π. Analisemos com atenção o sistema solar: Dado que todos os planetas já ocuparam posições diferentes em relação ao Sol, valerá a pena fazer uma Analisemos com atenção o sistema solar: Dado que todos os planetas já ocuparam posições diferentes em relação ao Sol, valerá a pena fazer uma leitura do passado e do futuro. Todos os planetas do sistema

Leia mais

Este procedimento gera contribuições não só a φ 2 e φ 4, mas também a ordens superiores. O termo por exemplo:

Este procedimento gera contribuições não só a φ 2 e φ 4, mas também a ordens superiores. O termo por exemplo: Teoria Quântica de Campos II 168 Este procedimento gera contribuições não só a φ 2 e φ 4, mas também a ordens superiores. O termo por exemplo: Obtemos acoplamentos com derivadas também. Para o diagrama

Leia mais

Experimento. Guia do professor. Otimização da cerca. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Otimização da cerca. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Números e funções Guia do professor Experimento Otimização da cerca Objetivos da unidade 1. Resolver um problema de otimização através do estudo de uma função quadrática. 2. Estudar as propriedades de

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente

Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente Introdução Você já deve ter reparado que, quando colocamos

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa 1) Eficiência e Equilíbrio Walrasiano: Uma Empresa Suponha que há dois consumidores, Roberto e Tomás, dois bens abóbora (bem 1) e bananas (bem ), e uma empresa. Suponha que a empresa 1 transforme 1 abóbora

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS 69 EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Rafael de Freitas Manço (UNI-FACEF) Antônio Acra Freiria (UNI-FACEF) INTRODUÇÃO Nas mais diversas áreas das ciências as equações diferenciais aparecem em situações práticas.

Leia mais

Do neurônio biológico ao neurônio das redes neurais artificiais

Do neurônio biológico ao neurônio das redes neurais artificiais Do neurônio biológico ao neurônio das redes neurais artificiais O objetivo desta aula é procurar justificar o modelo de neurônio usado pelas redes neurais artificiais em termos das propriedades essenciais

Leia mais

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA:

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: NOME: Nº 1 o ano do Ensino Médio TURMA: Data: 11/ 12/ 12 DISCIPLINA: Física PROF. : Petrônio L. de Freitas ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: INSTRUÇÕES (Leia com atenção!)

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

Metodologia para seleção de amostras de contratos de obras públicas (jurisdicionados) utilizando a programação linear aplicativo Solver

Metodologia para seleção de amostras de contratos de obras públicas (jurisdicionados) utilizando a programação linear aplicativo Solver REVISTA Metodologia para seleção de amostras de contratos de obras públicas (jurisdicionados) utilizando a programação linear aplicativo Solver André Mainardes Berezowski 1 Resumo Trata da apresentação

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA TÓPICOS DE MATEMÁTICA APLICADA B

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA TÓPICOS DE MATEMÁTICA APLICADA B UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA TÓPICOS DE MATEMÁTICA APLICADA B JORGE MELO PAULO FLORES PLANO DE AULA PESQUISA OPERACIONAL

Leia mais

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0 1 - FUNÇÃO QUADRÁTICA UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 01 É toda função do tipo f(x)=ax 2 +bx+c, onde a, b e c são constantes reais com a 0. Ou, simplesmente, uma função polinomial de grau

Leia mais

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular

Leia mais

SEGEMENTAÇÃO DE IMAGENS. Nielsen Castelo Damasceno

SEGEMENTAÇÃO DE IMAGENS. Nielsen Castelo Damasceno SEGEMENTAÇÃO DE IMAGENS Nielsen Castelo Damasceno Segmentação Segmentação Representação e descrição Préprocessamento Problema Aquisição de imagem Base do conhecimento Reconhecimento e interpretação Resultado

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

ação? 8-4) Avaliação de ações de crescimento constante. Os investidores exigem uma taxa de retomo de 15 por cento sobre as ações da Levine Company (k

ação? 8-4) Avaliação de ações de crescimento constante. Os investidores exigem uma taxa de retomo de 15 por cento sobre as ações da Levine Company (k EXERCÍCIOS 8-1) Avaliação de ações preferenciais. A Ezzell Corporation emitiu ações preferenciais com um dividendo estabelecido a 10 por cento do par. Ações preferenciais deste tipo atualmente rendem 8

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 Este é o 6º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

Lista de Exercícios - Integrais

Lista de Exercícios - Integrais Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais