Crescimento Populacional
|
|
|
- Augusto Sales Laranjeira
- 8 Há anos
- Visualizações:
Transcrição
1 Crescimento Populacional ( )
2 Taxa de variação Suponha que y é uma quantidade que depende de outra quantidade x. Assim, y é uma função de x e escrevemos y = f(x). Se x variar de x 1 para x 2, então a variação de x é x = x 2 x 1 e a variação correspondente de y é y = f(x 2 ) f(x 1 ) O quociente y x = f(x 2) f(x 1 ) x 2 x 1 designa-se por taxa média de variação de y em relação a x no intervalo [x 1,x 2 ].
3 Consideremos as taxas médias de variação em intervalos cada vez menores (fixando x 1 e fazendo x 2 tender para x 1, logo x tende para 0). O limite das taxas médias de variação é designado por taxa (instantânea) de variação de y em relação a x em x = x 1. y lim x 0 x = lim f(x 2 ) f(x 1 ) f(x 1 + h) f(x 1 ) = lim = f (x 1 ) x 2 x 1 x 2 x 1 h 0 h se f (x 1 ) existir.
4 Crescimento populacional Um modelo para o crescimento de uma população baseia-se na premissa de que uma população cresce a uma taxa proporcional ao tamanho da população. (É razoável presumir isso para uma população em condições ideais, i.e, meio ambiente ilimitado, alimento adequado, ausência de predadores, etc.) Sejam t tempo P(t) n o de indivíduos da população no instante t A taxa de crescimento da população é a derivada dp dt = P (t). Assim, segundo esta premissa temos P (t) = kp(t), onde k é a constante de proporcionalidade.
5 P (t) = kp(t) Se desconsideramos uma população nula então P(t) > 0, para todo o t. Assim, se k > 0 então P (t) > 0, para todo o t. Isso significa que a população está a aumentar. As únicas funções P(t) que satisfazem P (t) = kp são da forma onde C é uma constante. P(t) = Ce kt Como as populações têm apenas valores positivos, estamos apenas interessados nas funções P(t) = Ce kt, C > 0
6 P(t) = Ce kt, C > 0 Fazendo t = 0 obtemos P(0) = Ce 0 = C, logo a constante C representa a população inicial. Exercício Numa cultura de bactérias o seu comportamento é dado por f(t) = 500e kt, onde t representa o tempo em minutos e k é uma constante. 1 Determine o número inicial de bactérias. 2 Calcule k, sabendo que ao fim de 27 minutos, o número de bactérias é Determine o tempo necessário para obter 1595 bactérias.
7 O modelo para o crescimento de uma população que descrevemos anteriormente é apropriado para modelar o crescimento populacional sob condições ideais. Um modelo mais realista deve reflectir o facto de que um meio ambiente tem recursos limitados. Algumas populações têm um crescimento inicial do tipo exponencial, contudo o nível da população estabiliza quando ela se aproxima da sua capacidade de suporte S (ou diminui em direcção a S se ela excede o valor S).
8 De modo a um modelo considerar ambos os casos, consideramos duas premissas: kp se P for pequeno (em comparação com S) (inicialmente a taxa de crescimento é proporcional a P) dp dt dp dt < 0 se P > S (P diminui se excede S) Uma equação que contempla ambas as premissas é: dp dt = kp(1 P S ) e designa-se por equação logística.
9 dp dt = kp(1 P S ) Observações Se P for muito pequeno (em comparação com S), então P S está próximo de 0, logo, dp dt kp. Se P > S, então 1 P S é negativo e dp dt < 0
10 dp dt = kp(1 P S ) 1 As funções P(t) = 0 e P(t) = S são soluções desta equação. Significa que, se a população for 0 ou estiver na capacidade de suporte, permanecerá dessa maneira. 2 Se a população estiver entre 0 e S, então dp dt > 0, e a população aumenta. 3 Se a população ultrapassa a sua capacidade de suporte (P > S), então dp dt < 0, e a população diminui.
11 Solução Geral da Equação Logística [ dp dt = kp(1 P S )] S P(t) = 1 + Ae kt onde A = S P(0) P(0)
12 dp dt = kp(1 P S ) Exemplo Suponha que o comportamento de uma população P com inicialmente 100 indivíduos é descrita pela equação dp dt = 0,08P(1 P ) onde t representa o número de meses. Determine o tamanho desta população passados 40 meses. Quando é que a população alcançará 900 indivíduos?
13 Exemplo (cont.) Resolução: A equação é uma equação logística com k = 0,08, capacidade de suporte S = e população inicial P(0) = 100. Assim, a solução geral é dada por P(t) = onde A = = 9. Logo, P(t) = Ae 0,08t e 0,08t
14 Exemplo (cont.) Resolução (cont.): P(t) = e 0,08t Assim, o tamanho desta população passados 40 meses é dado por P(40) = , e 0,08 40 A população alcançará 900 indivíduos para t tal que 900 = e 0,08t 900(1 + 9e 0,08t ) = e 0,08t = 10 9
15 Exemplo (cont.) Resolução (cont.): 1 + 9e 0,08t = e 0,08t = e 0,08t = 1 9 e 0,08t = ,08t = ln 1 81
16 Exemplo (cont.) Resolução (cont.): 0,08t = ln ,08t = ln81 1 0,08t = ln81 t = ln81 0,08 t 54,9 Assim, a população atinge 900 indivíduos aos 55 meses (aproximadamente).
17 Exercício Suponha que uma população se desenvolve de acordo com a equação logística dp dt = 0,05P 0,0005P 2 onde t é medido em semanas. 1 Determine a capacidade de suporte e o valor de k. 2 Suponha que a população inicial tem 20 indivíduos. Determine o número de indivíduos passado 2 semanas.
Cálculo 4 Aula 18 Equações Diferenciais. Prof. Gabriel Bádue
Cálculo 4 Aula 18 Equações Diferenciais Prof. Gabriel Bádue Motivação Modelos matemáticos Crescimento Populacional Movimento de uma mola Movimento Planetário Aplicações de forças Equações Diferenciais
Equações Diferenciais de 1ª ordem ALGUMAS APLICAÇÕES
Equações Diferenciais de 1ª ordem ALGUMAS APLICAÇÕES APLICAÇÃO: MODELOS DE CRESCIMENTO POPULACIONAL MODELO DE MALTHUS Problemas populacionais nos levam às perguntas: 1. Qual será a população de certo local
Equações Diferenciais
Equações Diferenciais EQUAÇÕES DIFERENCIAS Talvez a aplicação mais importante do cálculo sejam as equações diferenciais. Quando cientistas físicos ou cientistas sociais usam cálculo, muitas vezes o fazem
MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações
MAP3 Introdução às Equações Diferenciais Ordinárias e Aplicações Lista 1 o semestre de 18 Prof. Claudio H. Asano 1 Classificação das Equações Diferenciais 1.1 Classifique as equações diferenciais a seguir.
CÁLCULO I. 1 Crescimento e Decaimento Exponencial
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada
Derivadas. Derivadas. ( e )
Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar
Equações Lineares de 1 a Ordem - Aplicações
Equações Lineares de 1 a Ordem - Aplicações Maria João Resende www.professores.uff.br/mjoao 2016-2 M. J. Resende (UFF) www.professores.uff.br/mjoao 2016-2 1 / 14 Modelos Matemáticos Chamamos de modelo
Equações Diferenciais Noções Básicas
Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo
Soluções dos Problemas do Capítulo 3
48 Temas e Problemas Soluções dos Problemas do Capítulo 3. A cada período de 5 anos, a população da cidade é multiplicada por,0. Logo, em 0 anos, ela é multiplicada por,0 4 =,084. Assim, o crescimento
Equações Diferenciais
IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013
Equações Diferenciais Noções Básicas
Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando
AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018
CURSO DE BIOMEDICINA CENTRO DE CIÊNCIAS DA SAÚDE UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
Funções reais de variável real. Derivadas de funções reais de variável real e aplicações O essencial
Funções reais de variável real Derivadas de funções reais de variável real e aplicações O essencial Taxa média de variação Dada uma função real de variável real f e dois pontos a e b do respetivo domínio,
1ª Avaliação. lim lim lim. Resolvendo o sistema formado pelas equações (1) e (2), teremos c 3 e
1ª Avaliação 1) Determine os limites abaio: a) lim 4 4 1 1 4 1 1 4 4 4 1 1 1 lim lim lim 4 4 4 4 4 16 4 4 4 b) 4 16 lim 4 4 4 16 lim lim lim lim 4 4 4 8 4 ) Determine os valores das constantes c e k que
Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Prof.:
Derivadas e Taxas de Variação. Copyright Cengage Learning. Todos os direitos reservados.
Derivadas e Taxas de Variação Copyright Cengage Learning. Todos os direitos reservados. 1 Derivadas e Taxas de Variação O problema de encontrar a reta tangente a uma curva e o problema para encontrar a
Capítulo 3- Modelos populacionais
Capítulo 3- Modelos populacionais 3.1- Introdução (página 64 do manual) Aqui pretendemos estudar a evolução do número de indivíduos de uma população. (64) Crescimento populacional positivo: Há um aumento
1. Na tabela abaixo, estão representados os valores de uma função y(t), para diversos valores de t. t y
Centro Universitário UNIVATES Disciplina de Cálculo III Professora Maria Madalena Dullius Este teste é constituído por 16 questões de escolha múltipla. Dentre as alternativas, escolha apenas uma, a que
Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim
Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim Nestas atividades temos como objetivo abordar a definição, solução e notação de uma equação diferencial e,
Capítulo 3- Modelos populacionais
Capítulo 3- Modelos populacionais 3.1- Introdução (página 84 do manual) [Vídeo 29] Aqui pretendemos estudar a evolução do número de indivíduos de uma população. (84) Crescimento populacional positivo:
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
Cálculo Diferencial e Integral I
2 o Ficha B1 x 2 x se x > 0 x + 1 x arctg(x 2 ) x se x 0 i) Estude a função f do ponto de vista da continuidade. iii) O conjunto f([1, 2]) é limitado? Resolução. 1. i) Para x > 0 a função f é contínua
CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.
Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1
Matemática para Economia I - 6 a lista de exercícios Prof. - Juliana Coelho
Matemática para Economia I - 6 a lista de exercícios Prof. - Juliana Coelho 1 - Ache as derivadas parciais pedidas: (a) f y onde f(x, y) = x 2 + 3xy 2y + 1; (b) f x onde f(x, y) = x 2 + y 2 ; (c) f xx
Aceleração média, aceleração e gráficos velocidade-tempo
Aceleração média, aceleração e gráficos velocidade-tempo Aceleração média Para quantificar a variação da velocidade de um corpo num certo intervalo de tempo define-se a grandeza aceleração média (símbolo
DERIVADA. Aula 02 Matemática I Agronomia Prof. Danilene Donin Berticelli
DERIVADA Aula 02 Matemática I Agronomia Prof. Danilene Donin Berticelli No instante que o cavalo atravessou a reta de chegada, ele estava correndo a 42 mph. Como pode ser provada tal afirmação? Uma fotografia
MÉTODO DE FORD-WALFORD APLICADO AO MODELO GENERALIZADO DE VON BERTALANFFY
MÉTODO DE FORD-WALFORD APLICADO AO MODELO GENERALIZADO DE VON BERTALANFFY CARLA DE AZEVEDO PAES NUNES MARIA HERMÍNIA DE PAULA LEITE MELLO 2 Resumo O método de Ford-Walford é aplicado a modelos de dinâmica
6. CIRCUITOS DE CORRENTE CONTÍNUA
6. CCUTOS DE COENTE CONTÍNUA 6.. Força Electromotriz 6.2. esistências em Série e em Paralelo. 6.3. As egras de Kirchhoff 6.4. Circuitos C 6.5. nstrumentos Eléctricos Análise de circuitos simples que incluem
O USO DE EQUAÇÕES DIFERENCIAIS NO CRESCIMENTO DE BACTÉRIAS
O USO DE EQUAÇÕES DIFERENCIAIS NO CRESCIMENTO DE BACTÉRIAS E. CIMADON 1 ;L. TRES ;M. P. PERGHER ;P. P. RUSEZYT 4 ; S. D. STROSCHEIN 5 Resumo: Este artigo tem por objetivo apresentar um problema com o intuito
Aulas n o 22: A Função Logaritmo Natural
CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos
Exercícios Matemática I (M193)
Exercícios Matemática I (M93) Funções. Associe a cada uma das seguintes funções o gráfico que a representa. a) f(x) = 2x + 4. b) f(x) = 3x +. c) f(x) = x 2. d) f(x) = 2x 3. e) f(x) = 0 x. f) f(x) = (0,
Dada uma função contínua a(t) definida num intervalo I = [0, T ], considere o problema x = a(t) x, x(0) = x 0. (1) Solução do Problema. 0 a(s) ds.
Lei Exponencial Dada uma função contínua a(t) definida num intervalo I = [, T ], considere o problema x = a(t) x, x() = x. (1) Solução do Problema O problema (1) admite uma única solução, que é explicitamente
PROCESSOS ESTOCÁSTICOS. Modelagem de falhas, Técnicas de Markov para modelagem da confiabilidade de sistemas
ROCESSOS ESTOCÁSTICOS Modelagem de falhas, Técnicas de Markov para modelagem da confiabilidade de sistemas Modelagem de falhas Confiabilidade de sistemas Necessário modelar o comportamento do sistema,
1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais:
Universidade do Estado de Mato Grosso - Campus de Sinop Cálculo Diferencial e Integral III - FACET Lista 6 Profª Ma. Polyanna Possani da Costa Petry 1. Resolva as equações diferenciais: a) y + 2y = 2e
Curso de Cálculo Diferencial Avançado Professora Luciana França da Cunha Aguiar. Unidade 3 - Equações Diferenciais Ordinárias
Curso de Cálculo Diferencial Avançado Professora Luciana França da Cunha Aguiar Unidade 3 - Equações Diferenciais Ordinárias Uma equação algébrica é uma equação em que as incógnitas são números, enquanto
Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma
A derivada (continuação) Aula 17
A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema
Guia de Atividades 2
Guia de Atividades 2 Atividade A Nesta atividade você trabalhará com a planilha intitulada iodo.sxc, que se encontra no material de apoio do Teleduc. As duas primeiras colunas desta planilha apresentam
1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1.
1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1. TEXTO PARA AS PRÓXIMAS 2 QUESTÕES. (Uerj 2001) Em um município, após uma pesquisa de
Taxas de Variação: Velocidade e Funções Marginais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas de Variação:
CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.
Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida
4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS
LISTA EXATAMENTE LOGARÍTMOS 1. (Cesgranrio) O valor de log x (x x ) é: a) 3 4. b) 4 3. c) 3. d) 3. e) 4.. (Cesgranrio) Se log 10 (x - ) = 0, então x vale: a). b) 4. c) 3. d) 7/3. e) /. 3. (Fei) Se log
APLICAC OES - EDO s DE 1a. ORDEM
APLICAÇÕES - EDO s DE 1 ạ ORDEM 2 1. Dinâmica Populacional (Modelo Malthusiano) O modelo mais simples de crescimento populacional é aquele em que se supõe que a taxa de crescimento de uma população dy
Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013
Solução numérica de Equações Diferenciais Ordinárias: Método de Euler Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires;
em função de t é indique qual dos gráficos abaixo melhor representa uma primitiva y em função de t:
Centro Universitário UNIVATES Disciplina de Cálculo III Professora Maria Madalena Dullius Este teste é constituído por 0 questões de escolha múltipla e duas questões abertas. Dentre as alternativas, escolha
Capítulo Regra da cadeia
Cálculo 2 - Capítulo 28 - Regra da cadeia 1 Capítulo 28 - Regra da cadeia 281 - Introdução 283 - Generalização 282 - Regra da cadeia Este capítulo trata da chamada regra da cadeia para funções de duas
PARAMETRIZAÇÃO DE CURVA:
PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de
24 a Aula AMIV LEAN, LEC Apontamentos
24 a Aula 2004.11.10 AMIV LEAN, LEC Apontamentos ([email protected]) 24.1 Método de Euler na aproximação de EDO s Métodos numéricos para a determinação de soluções de EDO s podem ser analisados
Mecânica e Ondas 1º Ano -2º Semestre 2º Teste/1º Exame 05/06/ :00h. Mestrado Integrado em Engenharia Aeroespacial
Mestrado Integrado em Engenharia Aeroespacial Mecânica e Ondas 1º Ano -º Semestre º Teste/1º Exame 05/06/013 15:00h Duração do Teste (problemas 3, 4 e 5): 1:30h Duração do Exame: :30h Leia o enunciado
Equações diferencias são equações que contém derivadas.
Equações diferencias são equações que contém derivadas. Os seguintes problemas são exemplos de fenômenos físicos que envolvem taxas de variação de alguma quantidade: Escoamento de fluidos Deslocamento
Introdução Generalização
Cálculo 2 - Capítulo 2.9 - Derivação implícita 1 Capítulo 2.9 - Derivação implícita 2.9.1 - Introdução 2.9.3 - Generalização 2.9.2 - Derivação implícita Veremos agora uma importante aplicação da regra
DERIVADAS PARCIAIS. Seção 14.3
DERIVDS PRCIIS Seção 14.3 Section 14.3 Seja I o índice de temperatura aparente do ar (humidex) I = f(t, H), sendo T: temperatura real e H: umidade relativa (%) Digite a equação aqui. 2 Section 14.2 Seja
Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo
Cálculo Diferencial - 2016.2 - Lista de Problemas 1.1 1 Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo Questão 01 Encontre o domínio da função (a) f(x) = x + 4 x 2 9 (b) f(t) = 3 2t 1 (c)
12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.
01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta
Diferenciabilidade de funções reais de várias variáveis reais
Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
Sessão 1: Generalidades
Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar
FUNÇÕES EXPONENCIAIS Leia e descubra que eu não vim do além
FUNÇÕES EXPONENCIAIS Leia e descubra que eu não vim do além Coordenação da Matemática 1 De potência em potência Os primeiros registros de cálculos utilizando potências são encontrados em tabelas babilônicas,
3 AULA. Séries de Números Reais LIVRO. META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais.
LIVRO Séries de Números Reais META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais. PRÉ-REQUISITOS Seqüências (Aula 02). Séries de Números Reais.
Ciências da Natureza e Matemática
1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 1. Resolva as equações abaixo: 3. Resolvas as equações exponenciais abaixo: 4.(ITA) A soma das raízes reais e positivas da equação vale: a)
x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3
Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar
DERIVADA. A Reta Tangente
DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,
CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de
Introdução à Integrais Antiderivação. Aula 02 Matemática II Agronomia Prof. Danilene Donin Berticelli
Introdução à Integrais Antiderivação Aula 02 Matemática II Agronomia Prof. Danilene Donin Berticelli Como podemos usar a inflação para prever preços futuros? Como usar o conhecimento de taxa de crescimento
APLICAÇÕES DA DERIVADA PARCIAL Economia Prof. Dr. Jair S. Santos
APLICAÇÕES DA DERIVADA PARCIAL Economia Prof. Dr. Jair S. Santos Função de Produção Superfície de Demanda Produtividade Marginal Bens competitivos e complementares Elasticidade Marginal de Demanda ercícios
CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação
Função de Proporcionalidade Direta
Função de Proporcionalidade Direta Recorda Dadas duas grandezas x e y, diz-se que y é diretamente proporcional a x: y se x 0 e y 0 e o quociente entre dois quaisquer valores correspondentes for constante.
