PROFMAT AV2 MA
|
|
|
- Vitória Abreu Delgado
- 9 Há anos
- Visualizações:
Transcrição
1 PROFMAT AV MA Questão 1. Calcule as seguintes epressões: [ ] (1,0) (a) log n log n (1,0) (b) log a/ log, onde a > 0, > 0 e a base dos logaritmos é fiada arbitrariamente. (a) Como = n 1/n 3, temos logo o valor da epressão dada é 3. log n = 1 n 3 = n 3, (b) Tomando logaritmo na base b que foi fiada, temos Como a função log é injetiva, segue-se que ( log log a/ log ) = log a log = log a. log log a/ log = a. 1
2 PROFMAT AV MA Questão. (Como caracterizar a função eponencial a partir da função logaritmo.) Seja f : R R uma função crescente, tal que f( + y) = f() f(y) para quaisquer, y R. Prove as seguintes afirmações: (1,0) (a) f() > 0 para todo R e f(1) > 1. (1,0) (b) Pondo a = f(1) a função g : R R definida por g() = log a f() é linear. (Use o Teorema Fundamental da Proporcionalidade.) (0,5) (c) Para todo R, g() =, onde g é a função definida no item (b). (0,5) (d) f() = a para todo R. O objetivo desta questão é mostrar que é possível caracterizar a função eponencial a partir da função logaritmo, sem usar argumentos geométricos, como está no livro no caso de logaritmos naturais. (a) Sendo crescente, f não é identicamente nula. Daí resulta que f() 0 para todo R, pois se eistisse 0 R com f( 0 ) = 0 teríamos, para qualquer R, f() = f( 0 + ( 0 )) = f( 0 ) f( 0 ) = 0 e f seria identicamente nula. Em seguida, notamos que f() = f( + ) = f( ) f( ) = [f( )] > 0 para todo R. Vamos mostrar que f(0) = 1. Como f(0) = f(0+0) = f(0) f(0), então f(0) é solução positiva da equação =. Como essa equação só tem 1 como solução positiva, a igualdade está demonstrada. Finalmente, como f é crescente, f(1) > f(0) = 1. (b) O Teorema Fundamental da Proporcionalidade diz que se g : R R é crescente e satisfaz g( + y) = g() + g(y) para quaisquer, y R, então g é linear, isto é, g() = c, com c > 0. No nosso caso, temos g( + y) = log a f( + y) = log a [f() f(y)] = log a f() + log a f(y) = g() + g(y), para quaisquer, y R. (c) Temos g(1) = log a f(1) = log a a = 1, portanto g() = para todo R. (d) Como acabamos de ver, log a f() =, para todo R. Como log a a = e a função log a é injetiva, segue-se que f() = a.
3 PROFMAT AV MA Questão 3. (1,0) (a) Usando as fórmulas para cos( + y) e sen( + y), prove que tg( y) = (desde que tg( y), tg() e tg(y) estejam definidas). tg() tg(y) 1 + tg() tg(y) (1,5) (b) Levando em conta que um ângulo é máimo num certo intervalo quando sua tangente é máima, use a fórmula acima para resolver o seguinte problema: Dentro de um campo de futebol, um jogador corre para a linha de fundo do time adversário ao longo de uma reta paralela à lateral do campo que cruza a linha de fundo fora do gol (ver figura). Os postes da meta distam a e b (com a < b) da reta percorrida por ele. Mostre que o jogador vê a meta sob ângulo máimo quando sua distância ao fundo do campo é igual a ab. a b (a) A manipulação é direta: tg( y) = sen( y) sen() cos(y) sen(y) cos() = cos( y) cos() cos(y) + sen() sen(y). Dividindo o numerador e o denominador por cos() cos(y) (se tg() e tg(y) estão definidas, cos() e cos(y) são não nulos), vem tg( y) = sen() cos() sen(y) cos(y) 1 + sen() cos() sen(y) cos(y) = tg() tg(y) 1 + tg() tg(y). (b) Em cada instante, o jogador vê a meta sob o ângulo α = α α 1, onde α 1 e α são os ângulos entre sua trajetória e as retas que o ligam aos postes da meta. Temos tg(α) = tg(α ) tg(α 1 ) 1 + tg(α1) tg(α ). 3
4 Se é a distância do jogador ao fundo do campo, temos tg(α 1 ) = a e tg(α ) = b, logo tg(α) = b a 1 + ab = b a + ab. Como o numerador b a é constante, tg(α) é máima quando o denominador for mínimo. Ou seja, é preciso achar que minimiza a epressão + ab. Como a média aritmética é sempre maior do que ou igual à média geométrica, então 1 ab ( + ) ab = ab, ou seja, o denominador é sempre maior do que ou igual a a ab. A igualdade vale se e somente se os dois termos da média são iguais, isto é, quando = ab. Portanto + ab Obs. atinge seu menor valor quando = ab. É possível resolver a questão (b) com outros argumentos. Sejam A e B os etremos da meta, que distam a e b da linha do jogador, respectivamente (veja figura abaio, à esquerda). Para cada posição P do jogador, eiste um único círculo que passa por A, B e P. O centro desse círculo, O, está na mediatriz dos pontos A e B (pois AOB é triângulo isósceles), estando, portanto, a b+a de distância da linha do jogador. Os segmentos OA e OB têm comprimento igual ao raio do círculo, digamos r, cujo valor depende de P. Pelo Teorema do Ângulo Inscrito, AÔB = A ˆP B. Assim, A ˆP B é máimo quando AÔB é máimo. E AÔB é máimo quando a distância OA = OB = r é mínima. Mas o menor r possível é aquele tal que o círculo de centro sobre a mediatriz de A e B e raio r tangencia a linha do jogador. Nessa situação, OP é perpendicular à linha do jogador e r = b+a (ver figura abaio, à direita). O valor de, neste caso, é a altura do triângulo AOB com relação à base AB (ou seja, o comprimento da apótema da corda AB). Esse valor sai do Teorema de Pitágoras aplicado ao triângulo AOQ, em que Q é o ponto médio de AB. Ou seja, Dessa equação resulta a solução = ab. ( ) ( ) b a a + b + = r =. O α B A O α B A α α P P 4
5 PROFMAT AV MA Questão 4. (1,0) (a) 4h após sua administração, a quantidade de uma droga no sangue reduz-se a % da inicial. Que percentagem resta 1h após a administração? Justifique sua resposta, admitindo que o decaimento da quantidade de droga no sangue é eponencial. (1,0) (b) Em quanto tempo a quantidade de droga no organismo se reduz a 50% da dose inicial? (0,5) (c) Se a mesma droga for administrada em duas doses de mg com um intervalo de 1h, qual é a quantidade presente no organismo após 4h da primeira dose? (a) Sendo eponencial, a quantidade de droga no organismo obedece à lei c 0 a t, onde a é um número entre 0 e 1, c 0 é a dose inicial (obtida da epressão para t = 0) e t é medido, por eemplo, em horas. Após 4h a quantidade se reduz a 1 da inicial, isto é, c 0 a 4 = c 0. Portanto a 4 = 1. Daí segue que a1 = 1, e que c 0 a 1 = c 0. Então a quantidade de droga após 1h é a quantidade inicial dividida por. (b) Para saber o tempo necessário para a redução da quantidade de droga à metade (isto é, a meia-vida da droga no organismo), basta achar t que cumpra a t = 1. Como a4 = 1 implica a 4s = ( ) s 1 a resposta é t = 4s, onde s é tal que s = 1. Daí segue que s = log e que t = 4 log. (c) A quantidade logo após a primeira dose é c 0. Após 1h ela decai para c 0 + c0 = c 0(1 + 1 ). Após mais 1h essa quantidade é dividida por, passando a ser ( 1 c ), logo, com c 0 = mg, restarão, após 4h da primeira dose, (1 + ) mg. c0. Uma nova administração a eleva para 5
UFRJ - Instituto de Matemática
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras
Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:?
Módulo 07. Exercícios Lista de exercícios do Módulo 07 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Calcule os logarítmos:. log. log 6 6. log 4 4. log. log 7 7 6. log 7.
GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.
Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto
Matemática B Intensivo V. 1
Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto
Proposta de Teste Intermédio Matemática A 12.º ano
GRUPO I. Se f 0,, então f é estritamente crescente em. Se f é estritamente crescente em e se (0) 0 f, então 0, Se f 0,, então f é estritamente crescente em Logo, f f Resposta: (C). f... e f f e Resposta:
Matemática B Extensivo V. 7
GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²
Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo
Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015.
Resposta da questão : [B] É fácil ver que a equação da reta s é = 3. Desse modo, a abscissa do ponto de interseção das retas p e s é tal 8 que 3 = + 3 =. 7 8 7 8 7 Portanto, temos = 3 = e a resposta é,.
1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy
1ª Avaliação 1) Se = 3,666 e y = 0,777, calcule y ) Determine o conjunto solução do sistema de inequações: 7 0 1 3 0 3) Calcule m para que o gráfico de f( ) ( m 7m) no ponto de ordenada 10 = + corte o
) a sucessão de termo geral
43. Na figura está desenhada parte da representação R \. gráfica de uma função f, cujo domínio é { } As rectas de equações =, y = 1 e y = 0 são assímptotas do gráfico de f. Seja ( n ) a sucessão de termo
CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru
REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que
Limites, derivadas e máximos e mínimos
Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.
1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)
Solução Comentada Prova de Matemática
18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão
ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE
www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE IME PORTUGUÊS/INGLÊS Você na elite das universidades! ITA MATEMÁTICA www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE ITA MATEMÁTICA GABARITO ITA
Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff
Revisão de Círculos Geometria Básica Profa Lhaylla Crissaff 2017.2 1 Definição Circunferência é uma figura geométrica formada por todos os pontos que estão a uma mesma distância de um ponto fixado no plano.
Resolução de Questões das Listas de Cálculo de Uma Variável:
Eercícios resolvidos: Cálculo I -A- Cálculo Diferencial e Integral Aplicado I Cálculo Aplicado I Lista Questão Lista Questão 20 20 6 6 40 40 4 4 2 2 4 6 4 6 4 24 4 24 5 8 5 8 8 8 9 9 9 4 9 4 2 0 2 0 7
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
ENQ Gabarito e Pauta de Correção
ENQ014.1 - Gabarito e Pauta de Correção Questão 1 [ 1,0 pt ] O máximo divisor comum de dois inteiros positivos é 0. Para se chegar a esse resultado pelo processo das divisões sucessivas, os quocientes
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO DA
2a Lista de Exercícios. f (x), se x a g (x), se x < a. x 3 x, x 0, se x = 0. 1, se x 1 x 2 4 x 4, se x 1
UFPR - Universidade Federal do Paraná Setor de Ciências Eatas Departamento de Matemática Prof. José Carlos Eidam MA/PROFMAT - Fundamentos de Cálculo a Lista de Eercícios Derivadas. Sejam f e g funções
CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando
5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende
x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.
CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede
Solução Comentada da Prova de Matemática
Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para
QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.
QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como, pela observação da figura podemos constatar que os gráficos das duas funções se intersetam num ponto de ordenada
CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A
Preparar o Eame 01 016 Matemática A Página 19 88. 88.1. O ângulo CDA está inscrito na circunferência, portanto CDA. Assim: AD CD A ABCD A CDA AD CD AD Tem-se que, cos AD cos CD e sen CD sen. Portanto,
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.2 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. (b) Para quais valores de
MAT Cálculo Diferencial e Integral I Bacharelado em Matemática
MAT- - Cálculo Diferencial e Integral I Bacharelado em Matemática - 200 a Lista de eercícios I. Limite de funções. Calcule os seguintes ites, caso eistam: 2 3 + 9 2 + 2 + 4 2 + 6 5 ) 2 3 2 2 2) + 4 + 8
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
3 Limites e Continuidade(Soluções)
3 Limites e Continuidade(Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y = log y
Questão 01 EB EA = EC ED. 6 x = 3. x =
Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento
ÂNGULOS. Ângulos no círculo
ÂNGULOS Ângulos no círculo A circunferência:. Diâmetro Semicircunferên cia Diâmetro - é o segmento de recta que une 2 pontos da circunferência passando pelo centro. Raio - é o segmento de recta que une
Apostila de Cálculo I
Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre
LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre Lugar Geométrico Lugar geométrico é uma figura cujos pontos e somente eles satisfazem determinada condição. Todos
02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a
01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância
Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria
Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 5º Teste de avaliação versão B.
Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos º Teste de avaliação versão B Grupo I As cinco questões deste grupo são de escolha múltipla. Para
Matemática B Intensivo V. 2
Matemática Intensivo V. Eercícios ) ) C ( ) (5 7) Usando a fórmula do ponto médio: X + X Y + Y C + 5 + 7 6 8 ( ) ERRT: considere (6 ). Temos d () d (C). ssim: ( 6) + ( b ) ( ) + ( 6 b) 9 + b 9 + b b +
Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química
Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 200-2 a Chamada Proposta de resolução. Como são 20 as pessoas entrevistadas e 0 reponderam que a relação entre o seu cão e o seu gato é boa, temos que, calculando a
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares
TD GERAL DE MATEMÁTICA 2ª FASE UECE
Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:
Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido
Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado
Capítulo 1 Números Reais
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;
ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.
ANEXO 7 Referente a Ação 7 5. ATIVIDADE DE PREPARAÇÃO DOS BOLSISTAS ALUNOS MINI-CURSO Construções Geométricas: Esta atividade foi desenvolvida na Universidade com o objetivo de habilitar os bolsistas em
Aula 1. Exercício 1: Exercício 2:
Aula 1 Exercício 1: Com centro em A e raio de medida m achamos dois pontos B e C na reta, esses dois pontos são os centros das circunferências pedidas (2 soluções ). Exercício 2: Com centro em B e raio
Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2
MATEMÁTICA 20 Um objeto parte do ponto A, no instante t = 0, em direção ao ponto B, percorrendo, a cada minuto, a metade da distância que o separa do ponto B, conforme figura. Considere como sendo de 800
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
Matemática 3 Módulo 3
Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =
O limite trigonométrico fundamental
O ite trigonométrico fundamental Meta da aula Continuar a apresentação de ites de funções. Objetivo Ao final desta aula, você deverá ser capaz de: Calcular ites usando o ite trigonométrico fundamental.
( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que
Se A, B, C forem conjuntos tais que ( B) =, n( B A) n A =, nc ( A) =, ( C) = 6 e n( A B C) 4 n B =, então n( A ), n( A C), n( A B C) nesta ordem, a) formam uma progressão aritmética de razão 6. b) formam
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Primeiro Teste de Cálculo Infinitesimal I
Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5
2a. Lista de Exercícios
UFPR - Universidade Federal do Paraná Departamento de Matemática Prof. José Carlos Eidam CM04 - Cálculo I - Turma C - 0/ a. Lista de Eercícios Teoremas do valor intermediário e do valor médio. Seja h()
Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio
Material Teórico - Círculo Trigonométrico Secante, cossecante e cotangente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5 de dezembro de
NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.
R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante
O conhecimento é a nossa propaganda.
Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
(Teste intermédio e exames Nacionais 2012)
Mais eercícios de 1.º ano: www.prof000.pt/users/roliveira0/ano1.htm (Teste intermédio e eames Nacionais 01) 79. Relativamente à Figura Resolva os itens seguintes, recorrendo a métodos, sabe-se que: eclusivamente
GABARITO IME. Matemática
GABARITO IME Matemática Sistema ELITE de Ensino IME - 04/05 Questão 0 GABARITO COMENTADO Os inteiros a, a, a,..., a 5 estão em PA com razão não nula. Os termos a, a e a 0 estão em PG, assim como a 6, a
Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5
Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então
MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0
MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +
1 = 0,20, teremos um aumento percentual de 20% no gasto com
6ROXomR&RPHQWDGDURYDGH0DWHPiWLFD 0. Suponha que o gasto com a manutenção de um terreno, em forma de quadrado, seja diretamente proporcional à medida do seu lado. Se uma pessoa trocar um terreno quadrado
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área
Lista de Exercícios de Cálculo 3 Primeira Semana
Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.
com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.
Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi
Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy
Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,
Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº3 - Trigonometria - 12º ano Exames
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº3 - Trigonometria - 1º ano Exames 006-010 sin x ln x g( Recorrendo às x capacidades gráficas da calculadora, visualize o gráfico da função g e reproduza-o
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU
FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)
A Segunda Derivada: Análise da Variação de Uma Função
A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como
2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).
1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?
Questão 1 Questão 2. Resposta. Resposta
Questão 1 Questão Um jogo consiste num dispositivo eletrônico na forma de um círculo dividido em 10 setores iguais numerados, como mostra a figura. A figura mostra um sistema rotativo de irrigação sobre
ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998
PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. Considerando a eperiência aleatória que consiste em escolher, ao acaso, um jovem inscrito no clube, e os acontecimentos:
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Isótopos radioativos de um elemento químico estão sujeitos a um processo de decaimento
3 Funções reais de variável real (Soluções)
3 Funções reais de variável real (Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y
7 Derivadas e Diferenciabilidade.
Eercícios de Cálculo p. Informática, 006-07 1 7 Derivadas e Diferenciabilidade. E 7-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral I Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores EXERCÍCIOS. Calcule
Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios
Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada
3x 9. 2)lim x 3. x 4 x 2. 5) lim. 2x 3 x 2 + 7x 3 2 x + 5x 2 4x 3 9) lim sen(sen x) 11)lim 1 cosx. 18) lim. x 1 3. x 1 x 1.
1 a Lista de Cálculo I - Escola Politécnica - 2003 Limite de Funções 1. Calcule os seguintes limites, caso eistam: 5 1) lim 0 1 2 + 56 4) lim 7 2 11 + 28 7) lim 10) lim + 1 + 1 9 + 1 13) lim tg(3) cossec(6)
