1 Transformada de Laplace de u c (t)
|
|
|
- Felícia Garrau Barreto
- 8 Há anos
- Visualizações:
Transcrição
1 Tranformada de Laplace - Função de Heaviide Prof ETGalante Equaçõe diferenciai ob ação de funçõe decontínua aparecem com frequência na análie do uxo de corrente em circuito elétrico ou na vibraçõe de itema mecânico Portanto, preciamo tratar de maneira efetiva a funçõe com alto, em particular, preciamo de uma notação eciente para tai funçõe Io é coneguido com a introdução de uma função chamada função degrau unitário, também conhecida como função de Heaviide, cuja denição egue abaixo Denição Para um valor contante de c e para t denimo a função degrau unitário ou função de Heaviide u c (t) da eguinte forma: {, t < c, u c (t) =, t c Figura : Eboço do gráco da função de Heviide u c(t) Figura : Eboço da função y(t) = u c(t) Tranformada de Laplace de u c (t) A tranformada de Laplace da função de Heaviide pode er calculada da eguinte forma: L{u c (t)} = e t u c (t)dt = c e t dt + c e t dt = c e t dt = e c, >
2 Exemplo (Checar exercício da pág 57 do Boyce) Expree a função abaixo em termo de u c (t): { t, t <, g(t) =, t Bom, devemo notar que para t a função e reume a f(t) = t Daí em diante, ito é, para t o termo t deve deaparecer e retar apena um termo Aplicando a denição de u c (t) para t = obtemo então a repota para ete exercício: f(t) = t u (t)[t ] Exemplo (Checar exercício 33 da pág 58 do Boyce) Expree uma onda quadrada em termo de u c (t) Figura 3: Eboço de uma onda quadrada Novamente, lembrando da denição de u c (t) vemo que a repota para o exercício é: f(t) = + ( ) n u n (t) Teorema de Delocamento (ou tranlação) n= Dada uma função f, denida para t, podemo coniderar o delocamento do gráco deta função para a direita Por exemplo, podemo imaginar uma outra função g que vale para t < c, ma cujo gráco a partir de t = c > é uma réplica do gráco de f a partir de t = Ou eja, groo modo, g é igual a f delocada de c unidade para a direita Tal função g nada mai é do que a tranlação de f por uma ditância c no entido do t poitivo A fórmula para eta função g é: {, t < c, g(t) = f(t c), t c Fazendo uo da denição da função de Heaviide, podemo reecrever g(t) de modo mai ucinto: g(t) = u c (t)f(t c)
3 Teorema (Teorema do delocamento da função) Seja L{f(t)} = F () a tranformada de Laplace da função f(t) para > a Seja c > uma contante Então: L{u c (t)f(t c)} = e c F (), > a Por outro lado, lembrando que L{f(t)} = F () f(t) = L {F ()}, vem que: Demontração L{u c (t)f(t c)} = u c (t)f(t c) = L {e c F ()} e t u c (t)f(t c)dt = c e t f(t c)dt Fazendo a mudança de variável v = t c na última integral acima, vem que: t = v + c; dv = dt; { para t = c, então v =, para t, então v Daí, temo: L{u c (t)f(t c)} = e (v+c) f(v)dv = e c e v f(v)dv = e c F () Exemplo (Checar exercício 5 da pág 57 do Boyce) Encontre a tranformada de Laplace da função abaixo:, t < π, g(t) = t π, π t π,, t π A primeira coia que devemo fazer é reecrever a função g(t) acima numa única linha, utilizando para io a funçõe de Heaviide: g(t) = u π (t) (t π) u π (t) (t π) Devmo agora aplicar a tranformada de Laplace em ambo o lado da equação acima, porém note que há um problema: apear de o primeiro termo etar OK, o egundo termo, que é u π (t) (t π), tem um π em u c (t) e um π em t π, o que impoibilita a aplicação direta do teorema Portanto, devemo ajutar o egundo termo ante de aplicar o teorema acima Para tanto reecrevemo g(t): g(t) = u π (t) (t π) u π (t) (t π + π) = u π (t) (t π) u π (t) (t π) π u π (t) 3
4 Agora im a função g etá pronta para que apliquemo a tranformada de Laplace: L{g(t)} = L{u π (t) (t π) u π (t) (t π) π u π (t)} = L{u π (t) (t π)} L{u π (t) (t π)} L{π u π (t)} ( ) ( ) = e π e π π L{u π (t)} = e π e π πe π = e π e π πe π = e π e π ( + π) Para chegarmo neta repota utilizamo o teorema, a linearidade da tranformada de Laplace e a fórmula para a tranformada da função de Heaviide Já temo uma fórmula para a tranformada de Laplace de uma função f(t) delocada (ou tranladada) no entido do t poitivo Ela no diz que um delocamento f(t c) correponde a uma multiplicação por exponencial e c na tranformada F () No teorema a eguir veremo que, analogamente, uma tranlação F ( c) na tranformada correponderá a uma multiplicação por exponencial e ct na função f(t) Teorema (Teorema do delocamento da tranformada) Seja L{f(t)} = F () a tranformada de Laplace da função f(t) para > a Seja c > uma contante Então: L{e ct f(t)} = F ( c), > a + c Por outro lado, lembrando que L{f(t)} = F () f(t) = L {F ()}, vem que: Demontração L{e ct f(t)} = e ct f(t) = L {F ( c)} e t e ct f(t)dt = e ( c)t f(t)dt = F ( c) Para que a última igualdade na linha acima eja verdadeira é neceário que > a+c Para compreender io preciamo voltar um pouquinho ao item do teorema (Exitência da tranformada de Laplace), que foi etudado na Nota de Aula Aula Lá é exigido que f(t) Ce at, o que leva então à condição > a Porém, no cao epecíco da integral acima eta condição e torna e ct f(t) Ce ct e at = Ce (a+c)t > a + c Aim motramo o por quê da condição > a + c, provando o teorema 4
5 Exemplo (Checar exemplo da pág 6/6 do Boyce) Calcule { } e L 5 e ( + 4) Vamo primeiro uar o método da fraçõe parciai para calcular a tranformada invera de H() = / ( + 4) Depoi conideraremo a exponenciai no numerador e aplicaremo o teorema H() = ( + 4) = A + B + C + D ( + 4) = A( + 4) + B( + 4) + (C + D) ( + 4) A( + 4) + B( + 4) + (C + D) = (A + C) 3 + (B + D) + (4A) + 4B = A + C =, B + D =, 4A =, 4B = A =, B = /4, C =, D = /4 No deenvolvimento por fraçõe parciai feito acima uamo a ideia de que é um termo da forma ( ) Subtitindo o valore encontrado de A, B, C e D na expreão de H(), temo: H() = /4 /4 ( + 4) = ( ) ( ) Dea forma a tranformada invera h(t) de H() é: h(t) = 4 t 8 en(t) Porém, voltando ao enunciado inicial do exercício, vemo que H() etá multiplicada por e 5 e Portanto: { } e L 5 e ( + 4) = L { (e 5 e )H() } = L { e 5 H() e H() } = L {e 5 H()} L {e H()} = u 5 (t)h(t 5) u (t)h(t ), onde uamo o teorema e chegamo à repota nal do exercício 5
6 3 EDO' com funçõe de Heaviide Exemplo (Checar item (b) exercício 6 da pág do Boyce) Conidere um determinado itema maa-mola que atifaz ao eguinte PVI: y + 4 y + y = κg(t), y() =, y () =, onde g(t) = u 3/ (t) u 5/ (t) e κ > é um parâmetro Subtituindo o g(t) da EDO pela expreão acima e, em eguida, aplicando a tranformada de Laplace a ambo o lado da equação, temo: L{y + 4 y + y} = L{κ[u 3/ (t) u 5/ (t)]} L{y } + 4 L{y } + L{y} = κl{u 3/ (t)} κl{u 5/ (t)} F () y() y () + 4 (F () y()) + F () = κe 3 [ F () + 4 F () + F () = κ e 3 e 5 ] 5 e κ ( + 4 ) 3 + e e 5 F () = κ 3 e e 5 F () = κ ( + + ) 4 Podemo reecrever eta última expreão como: F () = κ(e 3 e 5 )H(), onde H() = ( ) Agora, como no exemplo anterior, reolvemo primeiro a tranformada invera de H(): H() = = A( + + ) + (B + C) 4 ( + + ) 4 (A + B) + ( 4 A + C ( + + ) = A + B + c = (A + B) + ( 4 A + C) + A ( ) ) + A = A + B =, 4 A + C =, A = A =, B =, C = /4 Subtitindo o valore encontrado de A, B e C na expreão de H(), temo: H() = ( + + ) = /
7 = + /4 ( + 8 ) + = + /8 ( + 8 ) + = + /8 ( + 8 ) + Dea forma a tranformada invera h(t) de H() é: ( ) h(t) = e t/8 co 8 t /8 ( + 8 ) + e t/8 en Porém, como H() etá multiplicada por (e 3 e 5 ): { } = L (e 3 e 5 )H() = L { e 3 H() e 5 H() } = L {e 3 H()} L {e 5 ) = u 3 (t)h ( t 3 Portanto, a repota nal do exercício é: [ ( y(t) = κ u 3 (t)h t 3 ) Dua obervaçõe nai obre ete exercício: u 5 (t)h H()} ( t 5 ) /8 ( + 8 ) + ( ) 8 t ( u 5 (t)h t 5 )] OBS: A minha repota etá correta, ma e alguém for compará-la com a do livro (gabarito), perceberá que etá ecrita de uma forma um pouco diferente No gabarito do Boyce, além da ecrita como 3 7, você encontrará a função h(t) dividida por 4 e a repota nal y(t) (no livro é u(t)) multiplicada por 4 Quanto ao fato de termo a h(t) do livro diferente da minha, vale notar que aqui na minha reolução é dito explicitamente que h(t) é a L {H()}, ma no livro não é dito nada Portanto, ele tem a liberdade de ecrever uma função h(t) diferente da minha Quanto ao fato de a repota nal dele etar multiplicada por 4, io compena o fato de que a h(t) dele etá dividida por 4 Portanto é bem fácil vericar que a dua repota (a minha e a do livro) ão na verdade a mema repota Ma por quê anal o livro faz dea forma? Eu acredito que eja pra facilitar a conta no outro iten e também para o cao de o aluno querer ubtituir y(t) (no cao é u(t)) na equação diferencial para vericar que a função é memo olução do PVI OBS: Note como é mai intereante deixar a repota nal em termo da função h(t) Se você obervar a expreão obtida para h(t), a aber ( ) ( ) h(t) = e t/8 co 8 t e t/8 en 8 t, notará o quão longa e confua caria a repota nal y(t) ó em função de t 7
Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem
FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 7 Repota no domínio do tempo - Sitema de egunda ordem Prof. Marcio Kimpara Univeridade Federal de Mato Groo do Sul Sitema de primeira ordem Prof. Marcio Kimpara
8 Equações de Estado
J. A. M. Felippe de Souza 8 Equaçõe de Etado 8 Equaçõe de Etado 8. Repreentação por Variávei de Etado Exemplo 4 Exemplo 8. 4 Exemplo 8. 6 Exemplo 8. 6 Exemplo 8.4 8 Matriz na forma companheira Exemplo
A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma
Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial
TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações
TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei
1 A função δ de Dirac
Transformadas de Laplace - Delta de Dirac Prof ETGalante Nesta nota de aula abordaremos a função (que não é bem uma função) delta de Dirac, tão importante nas equações diferenciais que modelam fenômenos
Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral,
Etatítica II Antonio Roque Aula 8 Intervalo de Confiança para a Variância de uma População Ditribuída Normalmente Pode-e motrar matematicamente que a variância amotral, ( x x) n é um etimador não envieado
Condução de calor numa barra semi-infinita
Univeridade de São Paulo Ecola de Engenharia de Lorena Departamento de Engenharia de Materiai Condução de calor numa barra emi-infinita Prof. Luiz T. F. Eleno Ecola de Engenharia de Lorena da Univeridade
UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais
Repota: UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Diciplina: Equaçõe Diferenciai Profeora: Geraldine Silveira Lima Eercício Livro: Jame Stewart Eercício 9.1 1. Motre que y 1 é uma olução
Exemplos de equações diferenciais
Transformadas de Laplace - EDO's Prof. E.T.Galante Denição. Uma equação diferencial é uma equação na qual: a incógnita é uma função; há ao menos uma derivada da função incógnita. Antes de mais nada, vamos
Física I. Oscilações - Resolução
Quetõe: Fíica I Ocilaçõe - Reolução Q1 - Será que a amplitude eacontantenafae de um ocilador, podem er determinada, e apena for epecificada a poição no intante =0? Explique. Q2 - Uma maa ligada a uma mola
Aula 20. Efeito Doppler
Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento
Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Medidas de Dispersão
Univeridade Cruzeiro do Sul Campu Virtual Unidade I: Unidade: Medida de Diperão 010 0 A medida de variação ou diperão avaliam a diperão ou a variabilidade da equência numérica em análie. São medida que
Controle de Processos
CONCURSO PETROBRAS ENGENHEIRO(A) DE PROCESSAMENTO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PROCESSAMENTO Controle de Proceo Quetõe Reolvida QUESTÕES RETIRADAS DE PROVAS DA BANCA CESGRANRIO Produzido por Exata
CAPÍTULO 10 Modelagem e resposta de sistemas discretos
CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada
Considere as seguintes expressões que foram mostradas anteriormente:
Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa
Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP
Medida do Tempo de Execução de um Programa Bruno Hott Algoritmo e Etrutura de Dado I DECSI UFOP Clae de Comportamento Aintótico Se f é uma função de complexidade para um algoritmo F, então O(f) é coniderada
MOVIMENTOS VERTICAIS NO VÁCUO
Diciplina de Fíica Aplicada A 1/ Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MOVIMENTOS VERTICAIS NO VÁCUO Agora etudaremo o movimento na direção verticai e etaremo deprezando
Transformada de Laplace
Capítulo 8 Transformada de Laplace A transformada de Laplace permitirá que obtenhamos a solução de uma equação diferencial ordinária de coeficientes constantes através da resolução de uma equação algébrica.
4. CONTROLE PID COM O PREDITOR DE SMITH
4 CONTROLADOR PID COM O PREDITOR DE SMITH 28 4. CONTROLE PID COM O PREDITOR DE SMITH 4.1 SINTONIA DO CONTROLADOR PID Nete capítulo erá apreentada a metodologia para a intonia do controlador PID. Reultado
Análise Matemática IV
Análie Maemáica IV Problema para a Aula Práica Semana. Calcule a ranformada de Laplace e a regiõe de convergência da funçõe definida em 0 pela expreõe eguine: a f = cha b f = ena Reolução: a Aendendo a
Sistemas e Sinais 2009/2010
Análie de Sitema alimentado Sitema e Sinai 9/ Análie de itema realimentado Álgebra de diagrama de bloco Sitema realimentado Etabilidade Deempenho SSin Diagrama de bloco Sitema em érie X Y G G Z Y G X Z
XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXVII Olimpíada Braileira de Matemática GABARITO Segunda Fae Soluçõe Nível Segunda Fae Parte A CRITÉRIO DE CORREÇÃO: PARTE A Cada quetão vale 4 ponto e, e omente e, para cada uma o reultado ecrito pelo
Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos
Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em
Função de Transferência. Função de Transferência
Departamento de Engenharia Química e de Petróleo UFF Diciplina: TEQ10- CONTROLE DE PROCESSOS Função de Tranferência cuto Prof a Ninoka Bojorge Sumário metre Função de Tranferência 5. Função de tranferência
FENÔMENO DE TRANSPORTE II: INTRODUÇÃO, MODOS DE TRANSFERÊNCIA E CONSERVAÇÃO DA ENERGIA PROF. GERÔNIMO
FENÔMENO DE TRANSPORTE II: INTRODUÇÃO, MODOS DE TRANSFERÊNCIA E CONSERVAÇÃO DA ENERGIA PROF. GERÔNIMO Tranferência de calor e energia térmica O QUE É TRANSFERÊNCIA DE CALOR? Tranferência de calor é a energia
de Coeficientes Constantes
Seção 12: Equações Diferenciais Lineares não Homogêneas de Coeficientes Constantes O objetivo desta seção é estudar as equações lineares não homogêneas de coeficientes constantes No entanto, a versão do
2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços
2 Carga óvei, Linha de Influência e Envoltória de Eforço 21 Introdução Para o dimenionamento de qualquer etrutura é neceário conhecer o eforço máximo e mínimo que ela apreentará ao er ubmetida ao carregamento
Módulo III Movimento Uniforme (MU)
Módulo III Moimento Uniforme (MU) Em moimento retilíneo ou curilíneo em que a elocidade ecalar é mantida contante, diz-e que o móel etá em moimento uniforme. Nete cao, a elocidade ecalar intantânea erá
TAYRONE ARAÚJO DANTAS
UNIVERSIDADE ESTADUAL DA PARAÍBA CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA CURSO DE LICENCIATURA EM MATEMÁTICA TRANSFORMADA DE LAPLACE E APLICAÇÕES TAYRONE ARAÚJO DANTAS CAMPINA GRANDE
Mecânica dos Fluidos (MFL0001) CAPÍTULO 4: Equações de Conservação para Tubo de Corrente
Mecânica do Fluido (MFL000) Curo de Engenharia Civil 4ª fae Prof. Dr. Doalcey Antune Ramo CAPÍTULO 4: Equaçõe de Conervação ara Tubo de Corrente Fonte: Bitafa, Sylvio R. Mecânica do Fluido: noçõe e alicaçõe.
ESTATÍSTICA. Turma Valores Intervalo A [4,8] B 4 4 4,2 4,3 4, [4,8]
.. - Medida de Diperão O objetivo da medida de diperão é medir quão próximo un do outro etão o valore de um grupo (e alguma menuram a diperão do dado em torno de uma medida de poição). Intervalo É a medida
Exercícios Resolvidos de Biofísica
Exercício Reolvido de Biofíica Faculdade de Medicina da Univeridade de oimbra Exercício Reolvido de Biofíica Metrado ntegrado em Medicina MEMBRNS HOMOGÉNES Exercício 1. Numa experiência com uma membrana
Aula 05 Diagramas de blocos & erro
Aula 05 Diagrama de bloco & erro input output Bloco imple Caixa preta Black box Caixa preta ou Black box: G() input output Função de Tranferência: ou: G () Y() X() Y() G() X() ou eja, SAÍDA F.T. X ENTRADA
Capítulo 5: Análise através de volume de controle
Capítulo 5: Análie atravé de volume de controle Volume de controle Conervação de maa Introdução Exite um fluxo de maa da ubtância de trabalho em cada equipamento deta uina, ou eja, na bomba, caldeira,
107484 Controle de Processos Aula: graus de liberdade, variáveis de desvio e linearização
107484 Controle de Proceo Aula: grau de liberdade, variávei de devio e linearização Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Univeridade de Braília UnB 1 o Semetre 2015 E. S.
Ondas e Óptica. No espelho côncavo, se o objeto está colocado entre o foco e o vértice ( s < f ) do espelho a imagem é virtual e direita.
Onda e Óptica Epelho eférico V = Vértice do epelho = entro de curatura do epelho F = Foco do epelho = Ditância do objeto ao értice de epelho = Ditância da imagem ao értice do epelho f = Foco do epelho
2.3 Simetrias cinemáticas e geradores infinitesimais
.3 Simetria cinemática e geradore infiniteimai O método de contruir uma repreentação de um itema diretamente a partir da freqüência relativa medida, como exemplificado no pin, eria completamente inviável
CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função
FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido.
FÍSICA º ANO I- ETOES - GANDEZA ESCALA E ETOIAL a) G Ecalar: é aquela que fica perfeitamente definida quando conhecemo o eu valor numérico e a ua unidade de medida Ex: maa, tempo, comprimento, energia,
Tabela Periódica Princípio de Exclusão de Pauli
Fíica IV Poi Engenharia Eétrica: 18ª Aua (3/10/014) Prof. Avaro Vannucci Na útima aua vimo: Grandeza fíica reacionada com o número quântico: (i) Número quântico orbita (azimuta) Momento Anguar Orbita L
PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE
PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 013 ªFASE 1. 1.1. Aplicando o método de Hondt, o quociente calculado ão o eguinte: Lita A B C D Número de voto 13 1035
Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos.
132 7.6. Acoplamento do Momento Angular. A informação dada atravé da ditribuição electrónica no átomo não é uficiente para decrever completamente o etado do átomo, uma vez que não explica como o momento
Introdução aos Circuitos Elétricos
Introdução aos Circuitos Elétricos A Transformada de Laplace Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia A Transformada de Laplace História Pierri
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos
IMPLEMENTANDO E SIMULANDO ANALOGICAMENTE SISTEMAS LITC
IMPLEMENTANDO E SIMULANDO ANALOGICAMENTE SISTEMAS LITC Orlando do Rei Pereira, Wilton Ney do Amaral Pereira Abtract É apreentada uma técnica para imular analogicamente um itema LITC tanto por diagrama
2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO ABERTA E PAREDES DELGADAS.
2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO BERT E PREDES DELGDS. Nete capítulo ão apreentado, de forma concia, com bae no trabalho de Mori e Munaiar Neto (2009), algun conceito báico neceário ao entendimento do
Cinemática Exercícios
Cinemática Exercício Aceleração e MUV. 1- Um anúncio de um certo tipo de automóvel proclama que o veículo, partindo do repouo, atinge a velocidade de 180 km/h em 8. Qual a aceleração média dee automóvel?
Quantas equações existem?
www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP [email protected] Reumo O trabalho conite em denir a altura de uma equação polinomial
Breve apontamento sobre enrolamentos e campos em sistemas trifásicos
Breve aontamento obre enrolamento e camo em itema trifáico. Introdução Nete documento areentam-e o fundamento da criação do camo girante da máquina eléctrica rotativa. Ete aunto é tratado de forma muito
ELETRÔNICA DE POTÊNCIA I Laboratório 3
ELETÔNICA DE POTÊNCIA I Laboratório 3 CONTOLE DE FASE DE MEIA ONDA E ONDA COMPLETA. Objetivo: O objetivo deta experiência é demontrar o proceo de cálculo e a operação do controladore de fae de uando tiritore.
ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA Nome: Nº 9ºAno Data: / / Profeore: Diego, Rafael, Marcello, Yuri, Cauê Nota: (Valor 1,0) 1º Bimetre 1. Apreentação: Prezado aluno, A etrutura da recuperação bimetral
Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).
2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE CIÊNCIAS EXATAS E COMPUTAÇÃO Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201)
1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE CIÊNCIAS EXATAS E COMPUTAÇÃO Diciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 1) NOTA DE AULA I OBS: Ete é um material de apoio e não deve ubtituir o
Transformadas de Laplace
Transformadas de Laplace Notas de aulas - material compilado no dia 6 de Maio de 23 Computação, Engenharia Elétrica e Engenharia Civil Prof. Ulysses Sodré ii Copyright c 22 Ulysses Sodré. Todos os direitos
2. Modelos Entrada/saída e Modelos de Estado
Modelação e Simulação.Modelo Entrada/aída e Modelo de Etado. Modelo Entrada/aída e Modelo de Etado Objectivo: No final dete módulo, o aluno deverão er capaze de reconhecer a dua grande clae de modelo entrada/aída
Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara
FUDAMETOS DE COTROLE E AUTOMAÇÃO Aula 4 Modelagem de itema no domínio da requência Pro. Marcio impara Unieridade Federal de Mato Groo do Sul Sitema mecânico tranlação Elemento Força deloc. tempo Laplace
I- CONTROLE AUTOMÁTICO DE GANHO ( CAG )
I- CONTROLE AUTOÁTICO DE ANHO ( CA ) ALICAÇÕES É aplicado em receptore que recebem inai de envoltória variável tai como o receptor A (amplitude modulada) ou receptore do aparelho de comunicação celular.
Probabilidade e Estatística
Probabilidade e Etatítica Material teórico Medida de Diperão ou Variação Reponável pelo Conteúdo: Profª M. Roangela Maura C. Bonici MEDIDAS DE DISPERSÃO OU VARIAÇÃO Introdução ao Conteúdo Cálculo da
CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2
r od la ort no C UNESDADE DE MOG DAS CUZES - ENGENHAA EÉCA Prof. Joé oberto Marque CUSO DE ENGENHAA EÉCA EEÔNCA DE POÊNCA Ex. ONE CHAEADA PWM ABAXADOA BUCK Objetivo: O objetivo deta exeriência é demontrar
Elaborado por: João Batista F. Sousa Filho (Graduando Engenharia Civil UFRJ )
www.engenhariafacil.weebly.com Elaborado por: João Batista F. Sousa Filho (Graduando Engenharia Civil UFRJ- 014.1) Bizu: (I) Resumo com exercícios resolvidos do assunto: Métodos de Integração. (I) Métodos
Professora FLORENCE. Resolução:
1. (FEI-SP) Qual o valor, em newton, da reultante da força que agem obre uma maa de 10 kg, abendo-e que a mema poui aceleração de 5 m/? Reolução: F m. a F 10. 5 F 50N. Uma força contante F é aplicada num
Apostila de SINAIS E SISTEMAS
Apotila de SINAIS E SISTEMAS Álvaro Luiz Stelle (PhD) DAELN CPGEI CEFET PR Março de 5 I PREFÁCIO Eta apotila tem como objetivo dar ao leitor um embaamento teórico da Tranformada de Laplace, de Fourier
2 Conceitos Básicos da Geometria Diferencial Afim
2 Conceitos Básicos da Geometria Diferencial Afim Antes de iniciarmos o estudo das desigualdades isoperimétricas para curvas convexas, vamos rever alguns conceitos e resultados da Geometria Diferencial
Critério de Resistência
CAPÍTULO 1 INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS I. OBJETIVOS FUNDAMENTAIS Um corpo em equilíbrio, ujeito a carga externa ativa e reativa, poui em eu interior eforço. Ete eforço interno ou olicitaçõe
= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B
eolução Fíica FM.9 1. e Com bae na tabela, obervamo que o atleta etá com 5 kg acima do peo ideal. No gráfico, temo, para a meia maratona: 1 kg,7 min 5 kg x x,5 min. Na configuração apreentada, a força
Slides Aulas de Eletrônica Material didático auxiliar
Slide Aula de Eletrônica Material didático auxiliar Obervação importante O lide aqui apreentado não refletem todo o conteúdo abordado em ala de aula. Muito exercício, demontraçõe e detalhamento da teoria,
Sistemas de Equações Diferenciais Lineares
Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x
Cálculo Diferencial e Integral C. Me. Aline Brum Seibel
Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno
AULA 02 POTÊNCIA MECÂNICA. = τ. P ot
AULA 0 POTÊNCIA MECÂNICA 1- POTÊNCIA Uma força pode realizar um memo trabalho em intervalo de tempo diferente. Quando colocamo um corpo de maa m obre uma mea de altura H num local onde a aceleração da
Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire
Univridad Salvador UNIFACS Curo d Engnharia Método Matmático Alicado / Cálculo Avançado / Cálculo IV Profa: Ilka Rbouça Frir A Tranformada d Lalac Txto 3: Dlocamnto obr o ixo t. A Função Dgrau Unitário.
Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace
Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto [email protected] Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,
4.1 Pólos, Zeros e Resposta do Sistema
ADL17 4.1 Pólos, Zeros e Resposta do Sistema A resposta de saída de um sistema é a soma de duas respostas: a resposta forçada e a resposta natural. Embora diversas técnicas, como a solução de equações
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
5 Transformadas de Laplace
5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal
Revisão de Alguns Conceitos Básicos da Física Experimental
Revião de Algun Conceito Báico da Fíica Experimental Marcelo Gameiro Munhoz [email protected] Lab. Pelletron, ala 245, r. 6940 O que é uma medida? Medir ignifica quantificar uma grandeza com relação a algum
CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e
CÁLCULO I Aula 03: s, e. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 4 A Seja x > 0. Denimos a função logarítmica natural como sendo a função dada pela medida da área
6.1: Transformada de Laplace
6.: Tranformada de Laplace Muio problema práico da engenharia envolvem iema mecânico ou elérico ob ação de força deconínua ou de impulo. Para ee ipo de problema, o méodo vio em Equaçõe Diferenciai I, ão
Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.
Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício
Prova-Modelo de Física e Química A
Prova-Modelo de Fíica e Química A PROVA 7 Página Enino Secundário DURAÇÃO DA PROVA: minuto TOLERÂNCIA: minuto Para reponder ao iten de ecolha múltipla, elecione a única opção (A, B, C ou D) que permite
CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de
Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)
Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe
Resolução dos exercícios complementares
Hiper eolução do exercício complementare Fiica FM09 b O enunciado refere-e à terceira lei de Newton: a lei da ação e reação b Subtituindo (III) em (II), temo: ( F ) 8 F 8 + 8 F m g g m (contante) Como
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
Capítulo 3 Circuitos com Capacitância e Indutância
Capítulo 3 Circuitos com Capacitância e Indutância Sumário Respostas: Livre e ao Degrau Funções Singulares Resposta às Funções Singulares Representação de Sinais como Soma de Funções Singulares O Teorema
TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE
TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 6 Heaviside Dirac Newton Conteúdo 6 Circuitos de primeira ordem...1 6.1 Equação diferencial ordinária de primeira ordem...1 6.1.1
1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7
Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais
CÁLCULO I. 1 Derivada de Funções Elementares
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar
Unidade Símbolo Grandeza
Unidade Prefixo Noe Síbolo Fator Multiplicador Noe Síbolo Fator Multiplicador exa E 10 18 deci* d 10-1 peta P 10 15 centi* c 10 - tera T 10 1 ili* 10-3 giga* G 10 9 icro* 10-6 ega* M 10 6 nano n 10-9 quilo*
Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE
Aociação de Profeore de Matemática Contacto: Rua Dr. João Couto, n.º 7-A 1500-36 Liboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
TRABALHO DO PESO. Com base nessas informações, a relação entre o peso total erguido pelo atleta e o seu próprio peso corporal é. g 10 m s.
TRABALHO DO PESO 1. (G1 - ifce 016) Para realizar o levantaento de peo de fora adequada, u halterofilita neceita realizar 5 etapa, confore otrado a eguir. E u deterinado capeonato undial de levantaento
EAD DETERMINANTES CONCEITO:
1 EAD DETERMINANTES CONCEITO: Dada uma Matriz Quadrada de ordem n, dizemos que Determinante de ordem n é um número associado a essa Matriz conforme determinadas leis. Representamos o Determinante de uma
Hewlett-Packard DETERMINANTE. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard DETERMINANTE Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 206 Sumário DETERMINANTE... Exemplo... Exemplo 2... EXERCÍCIOS FUNDAMENTAIS... Exemplo 3... EXERCÍCIOS FUNDAMENTAIS...
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;
CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;
