Quantas equações existem?

Tamanho: px
Começar a partir da página:

Download "Quantas equações existem?"

Transcrição

1 www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP [email protected] Reumo O trabalho conite em denir a altura de uma equação polinomial com coeciente inteiro, e depoi em calcular quanta equaçõe exitem com determinado grau e altura pré-xado. Em eguida, utilizaremo ete reultado para motrar que o conjunto deta equaçõe é enumerável. O trabalho conite num ótimo exercício de Análie Combinatória. Palavra chave: Enumerabilidade, Altura de uma Equação, Análie Combinatória. How many equation do exit? Abtract In thi work we dene the high of a polinomial equation with integer coecient and then calculate how many equation do exit in a given degree and height. After, we ue thi reult to how that the et of thi equation i enumerable. Keyword: Enumerability, height of an equation, combinatorial analyi. 1 Introdução A altura de uma equação polinomial a n x n +a n 1 x n 1 + +a 1 x+a 0 = 0 com coeciente a i inteiro é denida como a oma do módulo de eu coeciente. Noa propota é contar o número de equaçõe que pouem uma determinada altura h, o que conite numa boa aplicação da análie combinatória. Ao fazermo tal contagem, eremo capaze também de provar que o conjunto E de toda a equaçõe polinomiai com coeciente inteiro é enumerável, ito é, que exite uma função bijetora de domínio N = {1, 2, } e imagem E. Para tanto, vamo aumir o eguinte teorema, cláico da Análie Real, retirado de (FIGUEIREDO-1996: Teorema 1. Se {X 1, X 2, } é um conjunto enumerável, onde cada X i é um conjunto nito, então a união do X i ' é um conjunto enumerável. Um elemento típico em E erá denotado por a n x n + a n 1 x n a 1 x + a 0 = 0, n > 0. Aim, a equaçõe x 2 2 = 0 e x 8 + 4x 6 13x = 0, de grau 2 e 8 repectivamente, Santo, R.C Quanta equaçõe exitem?

2 www2.jatai.ufg.br/oj/index.php/matematica ão elemento de E. Vamo coniderar que a equaçõe de memo grau, ma que diferem em eu coeciente, ão ditinta, memo que tenham a mema raíze. Por exemplo, 2x 2 4 = 0 x 2 2 = 0. Segue abaixo a denição da altura de uma equação. Denição 2. Fixada uma equação de grau n, denimo a ua altura h como endo h = Oberve que, como o grau da equação é n, egue que a n 0, portanto, h > 0. n a i. i=0 2 Cálculo da altura h para o cao h maior do que o grau da equação Lema 3. Dado {0, 1, } e h tal que h ( + 1 0, então a quantidade de ( + 1- upla (t n 0, t 1 0, t 2 0,, t ( 0, oluçõe inteira e não negativa da equação h 1 t n +t 1 +t 2 + +t 1 +t = h (+1, é (combinação de h=1 elemento tomado a. Demontração. ( h 1 1º cao: h ( + 1 = 0. Temo: h=1 = e, portanto, = 1. Por outro lado, é fácil ver que a única olução da equação nee cao é a (+1-upla (0, 0,..., 0. 2º cao: h ( + 1 > 0. Temo: h > = 1 h 1 > 0. Trata-e de um problema cláico de análie combinatória (veja o o exercício C.1 do cap 26 em (PAIVA-1995: e dipuermo h ( + 1 barra e ímbolo de + em la, o problema e reume em determinarmo de quanta forma podemo permutar todo ete h 1 > 0 objeto. Ea quantidade correponde ao número de permutaçõe de h 1 elemento, do quai h ( + 1 e repetem, e e repetem: P (h (+1, h 1 = ( (h 1! (h ( + 1!! = (h 1! h 1 ((h 1!! = Corolário 4. Dado {0, 1, } e h tal que h=( + 1 0, a quantidade de ( + 1-upla (z n > 0, z 1 > 0,, z > 0, oluçõe poitiva da equação z n + z 1 + z z = h, é ( h 1. Santo, R.C Quanta equaçõe exitem?

3 www2.jatai.ufg.br/oj/index.php/matematica Demontração. Tomando t n = z n =1, t 1 = z 1 =1,, t = z =1, etamo na hipótee do lema 3, ou eja, t n 0, t 1 0,, t 0 e t n + t i = h ( + 1, e o reultado egue imediatamente do lema 3. Corolário 5. Sejam h > n > 0, e conidere o conjunto {0 k 1 < k 2 < < k < n} formado por número inteiro. A quantidade M de equaçõe de grau n, altura ( h, e tendo o +1 coeciente de x n, x k, x k 1,, x k 1 h 1 não-nulo e o demai nulo é M = Demontração. A quetão conite em encontrar quanta ( + 1-upla (a n 0, a k 0,, a k1 0 reolvem a equação a n + i=1 a ki = h. i=1 Tomando a n = z n, a k1 = z 1,, a k = z, etamo na hipótee do colorário 4 (oberve que, como h > n > 0, então h >, e aim h + 1. Como o + 1 coeciente a n, a k1,..., a k etão em módulo, o inal de cada um dele não modica a altura h. E como podemo variar o inal de cada uma da (( + 1-upla (z n, z 1,, z obtida no corolário 4 h 1 de 2 +1 maneira, temo que M = Corolário 6. Fixado h > n > 0, a quantidade ( de equaçõe ( de grau n, altura h e pouindo h 1 n exatamente + 1 coeciente não nulo é Demontração. Na equaçõe que atifazem a hipótee, a n já é diferente de zero. Aim, a quetão conite em pegar coeciente não nulo do conjunto A = {a 0,, a n=1} para então realizarmo a mema contagem realizada no colorário 5. De quanta( forma podemo n pegar coeciente em A? Combinação de n elemento tomado a :. Aim, o ( ( h 1 n número de equaçõe com + 1 coeciente não nulo é O corolário a eguir dá, nalmente, o número de equaçõe com determinada altura h e grau n, no cao em que h > n. Corolário 7. O número de equaçõe em E com um dado grau n > 0 e uma dada altura h > n > 0 é n =0 ( h 1 ( n 2 +1 Santo, R.C Quanta equaçõe exitem?

4 www2.jatai.ufg.br/oj/index.php/matematica Demontração. Como h > n > 0, o valor (número total de coeciente não nulo meno 1 do colorário 6 pode aumir dede o valor 0 até o valor n, veja o exemplo: na equação (n + 1 x n = 0, h = n + 1 > n e = 0, enquanto que na equação x n + x n x + 1 = 0, h também vale n + 1 > n e = n. Bata, portanto, omarmo a quantidade de equaçõe coniderada no colorário 6 para cada = 0, 1,, n. 3 Cálculo da altura h para o cao h menor ou igual do que o grau da equação Corolário 8. O número de equaçõe em E com um dado grau n > 0 e uma dada altura 0 < h < n + 1 é h 1 ( h 1 =0 ( n 2 +1 Demontração. Suponha que a equação a n x n + a k1 x k a k x k = 0, a n 0, a k1 0,, a k 0 tenha altura h < n+1. Portanto +1 a k1 + a k2 + + a k + a n = h n, ito é, a quantidade + 1 de coeciente não-nulo poderá er, no máximo, h. Logo, ao invé de variar de 0 até n como no colorário 7, deve variar de 0 até h=1. Oberve que, na demontraçõe do corolário 5 e 6, foi uado eencialmente que h > 4 Concluão Reumindo a concluõe do corolário 7 e 8, temo: xado n > 0 e h > 0, o número N n,h de equaçõe polinomiai com coeciente inteiro, grau n e altura h é: ( ( h 1 h 1 n =0 2 +1, e h n N n,h = ( ( n h 1 n =0 2 +1, e h > n Seguem algun exemplo (o cálculo de N n,h e a última tabela cam a cargo do leitor: n = 1, h = 1 N 1,1 = 2 n = 1, h = 2 N 1,2 = 6 n = 1, h = 3 N 1,3 = 10 x = 0 x + 1 = 0, x + 1 = 0, x 1 = 0, 3x = 0, 3x = 0, 2x + 1 = 0 x = 0 x 1 = 0, 2x = 0, 2x = 0 2x + 1 = 0, 2x 1 = 0 2x 1 = 0, x + 2 = 0 x + 2 = 0, x 2 = 0 x 2 = 0 Santo, R.C Quanta equaçõe exitem?

5 REMat www2.jatai.ufg.br/oj/index.php/matematica n = 2, h = 1 N 2,1 = 2 n = 2, h = 2 N 2,2 = 10 n = 2, h = 3 N 2,3 = 26 x 2 = 0, x 2 = 0 2x 2 = 0, 2x 2 = 0, x 2 + x = 0, ±3x 2 = 0, (2 equaçõe x 2 + x = 0, x 2 x = 0, ±2x 2 ± 1 = 0, (4 equaçõe x 2 x = 0, x 2 1 = 0 ±2x 2 ± x = 0, (4 equaçõe x = 0, x 2 1 = 0 ±x 2 ± 2x ± 1 = 0, (8 equaçõe x 2 1 = 0 ±x 2 ± x ± 2 = 0, (8 equaçõe n = 3, h = 1 N 3,1 = 2 n = 3, h = 2 N 3,2 = 14 n = 3, h = 3 N 3,3 = 50 Agora, denote por C n,h o conjunto da equaçõe de grau pré-xado n e altura pré-xada h, e C o conjunto de todo o conjunto C n,h, n = 1, 2, e h = 1, 2, Podemo enumerar C eguindo a etinha abaixo, começando por C 1,1 : C 1,1 C 1,2 C 1,3 C 1,4 C 2,1 C 2,2 C 2,3 C 2,4 C 3,1 C 3,2 C 3,3 C 4,1 C 4,2 Concluiremo agora a demontração de que E é enumerável: cada conjunto C n,h poui uma quantidade nita N n,h de elemento, e E = C n,h. Logo, pelo teorema 1, etá provado que E é enumerável. Referência n = 1, 2, h = 1, 2, [FIGUEIREDO-1996] FIGUEIREDO, D. G. Análie I. 2ª edição. LTC, Rio de Janeiro,1996 [PAIVA-1995] PAIVA, M. Matemática 2. 1ª Edição. Editora Moderna, São Paulo, 1995 Santo, R.C Quanta equaçõe exitem?

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial

Leia mais

Exercícios Resolvidos de Biofísica

Exercícios Resolvidos de Biofísica Exercício Reolvido de Biofíica Faculdade de Medicina da Univeridade de oimbra Exercício Reolvido de Biofíica Metrado ntegrado em Medicina MEMBRNS HOMOGÉNES Exercício 1. Numa experiência com uma membrana

Leia mais

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

CAPÍTULO 6 - Testes de significância

CAPÍTULO 6 - Testes de significância INF 16 CAPÍTULO 6 - Tete de ignificância Introdução Tete de ignificância (também conhecido como Tete de Hipótee) correpondem a uma regra deciória que no permite rejeitar ou não rejeitar uma hipótee etatítica

Leia mais

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto [email protected] Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Filtros Analógicos Ativos

Filtros Analógicos Ativos Filtro Analógico Ativo Topologia Sallen-Key FPB Prof. láudio A. Fleury onteúdo. Introdução. Filtro Paa-Baixa de a. Ordem 3. Mudança de Ecala 4. Filtro Paa-Alta de a. Ordem 5. Filtro Paa-Faixa e ejeita-faixa

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de

Leia mais

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2 Reitência do Materiai SUMÁRIO 1. TESÕES DE CISLHMETO... 1 1.1 DIMESIOMETO... 1. EXEMPLOS... Cialhamento 0 Prof. Joé Carlo Morilla Reitência do Materiai 1. Tenõe de Cialhamento Quando dua força cortante

Leia mais

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras Livro para a SBEA (material em contrução) Edmundo Rodrigue 9 4.1. Análie granulométrica Granulometria, graduação ou compoição granulométrica de um agregado é a ditribuição percentual do eu divero tamanho

Leia mais

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria Cálculo Diferencial e Integral II Lita 8 - Exercício/ Reumo da Teoria Derivada Direcionai Definição Derivada Direcional. A derivada da função f x, no ponto P x, na direção do veror u u 1, u é o número

Leia mais

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s). 2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()

Leia mais

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.) Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análie atravé de volume de controle Volume de controle Conervação de maa Introdução Exite um fluxo de maa da ubtância de trabalho em cada equipamento deta uina, ou eja, na bomba, caldeira,

Leia mais

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto [email protected] Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

CURSO DE ENGENHARIA DO AMBIENTE FÍSICA E QUÍMICA DA ATMOSFERA

CURSO DE ENGENHARIA DO AMBIENTE FÍSICA E QUÍMICA DA ATMOSFERA CURSO DE ENGENHARIA DO AMBIENE FÍSICA E QUÍMICA DA AMOSFERA Ano Lectivo 2004/2005 Época Epecial: 17/10/2005 I (4.8 valore) Atribua a cada uma da afirmaçõe eguinte, em jutificar, uma da claificaçõe: Verdadeiro

Leia mais

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE Aociação de Profeore de Matemática Contacto: Rua Dr. João Couto, n.º 7-A 1500-36 Liboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO

Leia mais

Fotografando o Eclipse Total da Lua

Fotografando o Eclipse Total da Lua Fotografando o Eclipe Total da Lua (trabalho apreentado para o Mueu de Atronomia e Ciência Afin) http://atrourf.com/diniz/artigo.html Autor: Joé Carlo Diniz (REA-BRASIL) "Você pode e deve fotografar o

Leia mais

Confrontando Resultados Experimentais e de Simulação

Confrontando Resultados Experimentais e de Simulação Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: [email protected] Um modelo de imulação é uma repreentação

Leia mais

Tensão Induzida por Fluxo Magnético Transformador

Tensão Induzida por Fluxo Magnético Transformador defi deartamento de fíica Laboratório de Fíica www.defi.ie.i.t Tenão Induzida or Fluxo Magnético Tranformador Intituto Suerior de Engenharia do Porto- Deartamento de Fíica Rua Dr. António Bernardino de

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória.

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória. Reolução do Problema de Carregamento e Decarregamento 3D de Contêinere em Terminai Portuário para Múltiplo Cenário via Repreentação por Regra e Algoritmo Genético Aníbal Tavare de Azevedo (UNICAMP) [email protected]

Leia mais

RECORRÊNCIAS DO TIPO FIBONACCI E APLICAÇÕES

RECORRÊNCIAS DO TIPO FIBONACCI E APLICAÇÕES RECORRÊNCIAS DO TIPO FIBONACCI E APLICAÇÕES JOSÉ H. DA CRUZ, MARINA T. MIZUKOSHI E RONALDO A. DOS SANTOS Reumo. O cláico problema envolvendo populaçõe de coelho propoto por Fibonacci em 1202 foi a bae

Leia mais

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara FUDAMETOS DE COTROLE E AUTOMAÇÃO Aula 4 Modelagem de itema no domínio da requência Pro. Marcio impara Unieridade Federal de Mato Groo do Sul Sitema mecânico tranlação Elemento Força deloc. tempo Laplace

Leia mais

Projeto do compensador PID no lugar das raízes

Projeto do compensador PID no lugar das raízes Projeto do compenador PID no lugar da raíze 0 Introdução DAELN - UTFPR - Controle I Paulo Roberto Brero de Campo Neta apotila erão etudado o projeto do compenadore PI, PD e PID atravé do lugar da raíze

Leia mais

Avaliação de Ações. Mercado de Capitais. Luiz Brandão. Ações. Mercado de Ações

Avaliação de Ações. Mercado de Capitais. Luiz Brandão. Ações. Mercado de Ações Mercado de Capitai Avaliação de Açõe Luiz Brandão O título negociado no mercado podem de renda fixa ou de renda variável. Título de Renda Fixa: Conhece-e de antemão qual a remuneração a er recebida. odem

Leia mais

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas 2 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 2: Transformação de Matrizes e Resolução de Sistemas Sumário 1 Transformação de Matrizes.............. 3 1.1

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE P U C R S PONTIFÍCI UNIERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI CURSO DE ENGENHRI CIIL CONCRETO RMDO II FORÇ CORTNTE Pro. lmir Schäer PORTO LEGRE MRÇO DE 006 1 FORÇ CORTNTE 1- Notaçõe principai

Leia mais

Professora FLORENCE. Resolução:

Professora FLORENCE. Resolução: 1. (FEI-SP) Qual o valor, em newton, da reultante da força que agem obre uma maa de 10 kg, abendo-e que a mema poui aceleração de 5 m/? Reolução: F m. a F 10. 5 F 50N. Uma força contante F é aplicada num

Leia mais

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO Thale Cainã do Santo Barbalho 1 ; Álvaro Daniel Tele Pinheiro 2 ; Izabelly Laria Luna

Leia mais

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL Copright 004, Intituto Braileiro de Petróleo e Gá - IBP Ete Trabalho Técnico Científico foi preparado para apreentação no 3 Congreo Braileiro de P&D em Petróleo e Gá, a er realizado no período de a 5 de

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

Apostila de SINAIS E SISTEMAS

Apostila de SINAIS E SISTEMAS Apotila de SINAIS E SISTEMAS Álvaro Luiz Stelle (PhD) DAELN CPGEI CEFET PR Março de 5 I PREFÁCIO Eta apotila tem como objetivo dar ao leitor um embaamento teórico da Tranformada de Laplace, de Fourier

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

Modelagem Matemática e Simulação computacional de um atuador pneumático considerando o efeito do atrito dinâmico

Modelagem Matemática e Simulação computacional de um atuador pneumático considerando o efeito do atrito dinâmico Modelagem Matemática e Simulação computacional de um atuador pneumático coniderando o efeito do atrito dinâmico Antonio C. Valdiero, Carla S. Ritter, Luiz A. Raia Depto de Ciência Exata e Engenharia, DCEEng,

Leia mais

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema

Leia mais

METODOLOGIA DE PROJETO DE FILTROS DE SEGUNDA ORDEM PARA INVERSORES DE TENSÃO COM MODULAÇÃO PWM DIGITAL

METODOLOGIA DE PROJETO DE FILTROS DE SEGUNDA ORDEM PARA INVERSORES DE TENSÃO COM MODULAÇÃO PWM DIGITAL METODOLOGIA DE PROJETO DE FILTROS DE SEGUNDA ORDEM PARA INVERSORES DE TENSÃO COM MODULAÇÃO PWM DIGITAL Leandro Michel * Robinon F. de Camargo * [email protected] [email protected] Fernando Botterón *

Leia mais

Vestibular 2013 2 a fase Gabarito Física

Vestibular 2013 2 a fase Gabarito Física etibular 203 2 a fae Gabarito Fíica Quetão 0 (alor: 5 ponto) Cálculo da variação da quantidade de movimento A velocidade inicial no momento do impacto erá a velocidade final da queda Aplicando conervação

Leia mais

Um Estudo Sobre a Chance de Repetição de Sorteios na Mega-Sena

Um Estudo Sobre a Chance de Repetição de Sorteios na Mega-Sena Um Estudo Sobre a Chance de Repetição de Sorteios na Mega-Sena Rogério César dos Santos 05 de Janeiro de 2014 Resumo Qual é a chance de haver um sorteio repetido na Mega-Sena, em n jogos? Como veremos,

Leia mais

Máquinas Eléctricas. Motores de indução. Motores assíncronos. Arranque

Máquinas Eléctricas. Motores de indução. Motores assíncronos. Arranque Motore de indução Arranque São motore robuto e barato (fabricado em maa), embora tendo o inconveniente de não erem regulávei. Conequentemente, uma vez definido um binário e uma corrente, ete apena dependem

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

Laboratório de Sistemas e Sinais Equações Diferenciais

Laboratório de Sistemas e Sinais Equações Diferenciais Laboratório e Sitema e Sinai Equaçõe Diferenciai Luí Cala e Oliveira Abril 2009 O objectivo ete trabalho e laboratório é o e realizar experiência com moelo e itema em tempo contínuo ecrito por equaçõe

Leia mais

I Desafio Petzl Para Bombeiros Regulamento Campeonato Internacional de Técnicas Verticais e Resgate

I Desafio Petzl Para Bombeiros Regulamento Campeonato Internacional de Técnicas Verticais e Resgate ! I Deafio Petzl Para Bombeiro Regulamento Campeonato Internacional de Técnica Verticai e Regate A Spelaion, ditribuidor excluivo Petzl no Brail e o Corpo de Bombeiro de Goiá, etá organizando o Primeiro

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori.

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Fíica Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Introdução: Ao uarmo uma chave de roda para retirar o parafuo para trocar o pneu de um automóvel, a roda inteira pode

Leia mais

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei

Leia mais

Controle de Sistemas. Estabilidade. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. Estabilidade. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Controle de Sitema Etabilidade Renato Dourado Maia Univeridade Etadual de Monte Claro Engenharia de Sitema Etabilidade: Uma Idéia Intuitiva... Etável... Neutro... Intável... 2/5 Etabilidade Ma o que é

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

Afetação de recursos, produtividade e crescimento em Portugal 1

Afetação de recursos, produtividade e crescimento em Portugal 1 Artigo 65 Afetação de recuro, produtividade e crecimento em Portugal 1 Daniel A. Dia 2 Carlo Robalo Marque 3 Chritine Richmond 4 Reumo No período 1996 a 2011 ocorreu uma acentuada deterioração na afetação

Leia mais

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS Reumo Luca Franco de Ai¹ Marcelo Semenato² ¹Intituto Federal de Educação, Ciência e Tecnologia/Campu Jataí/Engenharia Elétrica/PIBIT-CNPQ [email protected]

Leia mais

CONTROLO DE SISTEMAS. APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox. Pedro Dinis Gaspar António Espírito Santo J. A. M.

CONTROLO DE SISTEMAS. APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox. Pedro Dinis Gaspar António Espírito Santo J. A. M. UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox Pedro Dini Gapar António Epírito Santo J. A. M. Felippe de Souza

Leia mais

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID AÇÕES E CONTROLE Açõe de Controle Relação Controlador/Planta Controlador roorcional Efeito integral Efeito derivativo Controlador PI Controle de Sitema Mecânico - MC - UNICAMP Açõe comun de controle Ação

Leia mais

arxiv:1301.4910v1 [cs.lo] 21 Jan 2013

arxiv:1301.4910v1 [cs.lo] 21 Jan 2013 MÁRIO SÉRGIO FERREIRA ALVIM JÚNIOR arxiv:1301.4910v1 [c.lo] 21 Jan 2013 ASPECTOS COMPUTACIONAIS DO CÁLCULO DAS ESTRUTURAS Belo Horizonte, Mina Gerai 04 de abril de 2008 UNIVERSIDADE FEDERAL DE MINAS GERAIS

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA UNIVESIDADE FEDEAL DE CAMPINA GANDE CENTO DE ENGENHAIA ELÉTICA E INFOMÁTICA DEPATAMENTO DE ENGENHAIA ELÉTICA LABOATÓIO DE ELETÔNICA Experimento #4 Filtro analógico ativo EXPEIMENTO #4 Objetivo Gerai Eta

Leia mais

Nestas notas será analisado o comportamento deste motor em regime permanente.

Nestas notas será analisado o comportamento deste motor em regime permanente. MOTO DE INDUÇÃO TIFÁSICO 8/0/006 Ivan Camargo Introdução O motor de indução trifáico correponde a, aproximadamente, 5 % da carga elétrica do Brail, ou eja, 50 % da carga indutrial que, por ua vez, correponde

Leia mais

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas.

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas. Ecola Báic a 2º º e 3º º Ciclo Tema 1 Viver com o outro Tema Conteúdo Competência Actividade Tema 1 Viver com o outro Valore Direito e Devere Noção de valor O valore como referenciai para a acção: - o

Leia mais

Lista 4 Prof. Diego Marcon

Lista 4 Prof. Diego Marcon Lita 4 Prof. Diego Marcon Método Aplicado de Matemática I 6 de Junho de 07 Lita de exercício referente ao retante da primeira área da noa diciplina: Exponencial de matrize Tranformada de Laplace Delocamento

Leia mais

Análise Matemática IV

Análise Matemática IV Análie Maemáica IV Problema para a Aula Práica Semana. Calcule a ranformada de Laplace e a regiõe de convergência da funçõe definida em 0 pela expreõe eguine: a f = cha b f = ena Reolução: a Aendendo a

Leia mais

RESISTÊNCIA E PROPULSÃO Mestrado em Engenharia e Arquitectura Naval Exame de 2ª Época 26 de Janeiro de 2010 Duração: 3 horas

RESISTÊNCIA E PROPULSÃO Mestrado em Engenharia e Arquitectura Naval Exame de 2ª Época 26 de Janeiro de 2010 Duração: 3 horas RESISTÊNCIA E PROPULSÃO Metrado e Engenharia e Arquitectura Naval Exae de ª Época 6 de Janeiro de 010 Duração: 3 hora Quetão 1. U porta-contentore te a eguinte caracterítica: -Superfície olhada: 5454.

Leia mais

MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 03: CONTINUIDADES Este tópico trata dos conceitos de continuidade de funções num valor e num intervalo, a compreensão

Leia mais

Condução de calor numa barra semi-infinita

Condução de calor numa barra semi-infinita Univeridade de São Paulo Ecola de Engenharia de Lorena Departamento de Engenharia de Materiai Condução de calor numa barra emi-infinita Prof. Luiz T. F. Eleno Ecola de Engenharia de Lorena da Univeridade

Leia mais

Análise de Sensibilidade de Anemômetros a Temperatura Constante Baseados em Sensores Termo-resistivos

Análise de Sensibilidade de Anemômetros a Temperatura Constante Baseados em Sensores Termo-resistivos UNIVERSIDADE FEDERAL DO MARANHÃO CENTRO DE CIÊNCIA E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE Análie de Senibilidade de Anemômetro a Temperatura Contante Baeado em Senore Termo-reitivo

Leia mais

Lider. ança. para criar e gerir conhecimento. }A liderança é um fator essencial para se alcançar o sucesso também na gestão do conhecimento.

Lider. ança. para criar e gerir conhecimento. }A liderança é um fator essencial para se alcançar o sucesso também na gestão do conhecimento. Liderança para criar e gerir conhecimento Lider ança para criar e gerir conhecimento }A liderança é um fator eencial para e alcançar o uceo também na getão do conhecimento.~ 48 R e v i t a d a ES P M janeiro

Leia mais

3 Fuga de cérebros e investimentos em capital humano na economia de origem uma investigação empírica do brain effect 3.1.

3 Fuga de cérebros e investimentos em capital humano na economia de origem uma investigação empírica do brain effect 3.1. 3 Fuga de cérebro e invetimento em capital humano na economia de origem uma invetigação empírica do brain effect 3.1. Introdução Uma da vertente da literatura econômica que etuda imigração eteve empre

Leia mais

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada.

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada. Compenadore 0.1 Introdução Controle 1 - DAELN - UTFPR Prof. Paulo Roberto Brero de Campo O compenadore ão utilizado para alterar alguma caracterítica do itema em malha fechada. 1. Avanço de fae (lead):

Leia mais

Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Redes MPLS, com Duas Classes de Serviço

Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Redes MPLS, com Duas Classes de Serviço Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Rede MPLS, com Dua Clae de Serviço Rita Girão Silva a,c (Tee de Doutoramento realizada ob upervião de Profeor Doutor Joé Craveirinha a,c e Profeor

Leia mais

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B eolução Fíica FM.9 1. e Com bae na tabela, obervamo que o atleta etá com 5 kg acima do peo ideal. No gráfico, temo, para a meia maratona: 1 kg,7 min 5 kg x x,5 min. Na configuração apreentada, a força

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXI Olimpíada Braileira de Matemática GBRITO Segunda Fae Soluçõe Nível Segunda Fae Parte PRTE Na parte erão atribuído ponto para cada repota correta e a pontuação máxima para ea parte erá 0 NENHUM PONTO

Leia mais

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações Contagem Prof. Dr. Leandro Balby Marinho Matemática Discreta Prof. Dr. Leandro Balby Marinho 1 / 39 UFCG CEEI Motivação Contagem e combinatória são partes importantes da matemática discreta. Se resumem

Leia mais

INE5403 - Fundamentos de Matemática Discreta para a Computação

INE5403 - Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 2) Fundamentos 2.1) Conjuntos e Sub-conjuntos 2.2) Números Inteiros 2.3) Funções 2.4) Seqüências e Somas 2.5) Crescimento de Funções Divisão

Leia mais

No campo da eletrcidade podemos sintetizar 03 elementos fundamentais passivos e são eles: resisores, capacitores e indutores.

No campo da eletrcidade podemos sintetizar 03 elementos fundamentais passivos e são eles: resisores, capacitores e indutores. SIMULAÇÃO MODELAGEM DE SISTEMAS POR LAPLACE Pro. Luí Calda Simulação de Proceo em Eng. de Materiai Diiciplina - MR070 A modelagem matemática de um itema é empre uma tarea muito complexa para o engenheiro

Leia mais

Vetores. Definição geométrica de vetores

Vetores. Definição geométrica de vetores Vetores Várias grandezas físicas, tais como por exemplo comprimento, área, olume, tempo, massa e temperatura são completamente descritas uma ez que a magnitude (intensidade) é dada. Tais grandezas são

Leia mais

CAPÍTULO 4. Movimento Variado. Introdução. 2-Aceleração Escalar Média

CAPÍTULO 4. Movimento Variado. Introdução. 2-Aceleração Escalar Média CAPÍTULO 4 Movimento Variado Introdução O movimento do corpo no dia-a-dia ão muito mai variado do que propriamente uniforme, até porque, para entrar em movimento uniforme, um corpo que etava em repouo,

Leia mais

R domínio de fatoração única implica R[x] também

R domínio de fatoração única implica R[x] também R domínio de fatoração única implica R[x] também Pedro Manfrim Magalhães de Paula 4 de Dezembro de 2013 Denição 1. Um domínio integral R com unidade é um domínio de fatoração única se 1. Todo elemento

Leia mais

Estratégias MIMO-OFDM para Sistemas de

Estratégias MIMO-OFDM para Sistemas de XXII SIMPÓSIO BRASILEIRO DE TELECOMUICAÇÕES - SBrT 05, 04-08 DE SETEMBRO DE 005, CAMPIAS, SP Etratégia -OFDM para Sitema de Comunicaçõe Móvei Walter C. Freita Jr., Charle C. Cavalcante e F. Rodrigo. P.

Leia mais

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração

Leia mais

1 Transformada de Laplace de u c (t)

1 Transformada de Laplace de u c (t) Tranformada de Laplace - Função de Heaviide Prof ETGalante Equaçõe diferenciai ob ação de funçõe decontínua aparecem com frequência na análie do uxo de corrente em circuito elétrico ou na vibraçõe de itema

Leia mais

AULA 02 POTÊNCIA MECÂNICA. = τ. P ot

AULA 02 POTÊNCIA MECÂNICA. = τ. P ot AULA 0 POTÊNCIA MECÂNICA 1- POTÊNCIA Uma força pode realizar um memo trabalho em intervalo de tempo diferente. Quando colocamo um corpo de maa m obre uma mea de altura H num local onde a aceleração da

Leia mais

UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais

UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais Repota: UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Diciplina: Equaçõe Diferenciai Profeora: Geraldine Silveira Lima Eercício Livro: Jame Stewart Eercício 9.1 1. Motre que y 1 é uma olução

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

Capítulo I Tensões. Seja um corpo sob a ação de esforços externos em equilíbrio, como mostra a figura I-1:

Capítulo I Tensões. Seja um corpo sob a ação de esforços externos em equilíbrio, como mostra a figura I-1: apítuo I Seja um corpo ob a ação de eforço externo em equiíbrio, como motra a figura I-1: Figura I-3 Eforço que atuam na eção para equiibrar o corpo Tome-e, agora, uma pequena área que contém o ponto,

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Matemática / Física. Figura 1. Figura 2

Matemática / Física. Figura 1. Figura 2 Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da

Leia mais

ESTUDOS EXPERIMENTAIS SOBRE A AVALIAÇÃO DAS PROPRIEDADES DE FLUIDOS DE PERFURAÇÃO EM MEIOS POROSOS ANISOTRÓPICOS

ESTUDOS EXPERIMENTAIS SOBRE A AVALIAÇÃO DAS PROPRIEDADES DE FLUIDOS DE PERFURAÇÃO EM MEIOS POROSOS ANISOTRÓPICOS 3 a 6 de outubro de 0 Univeridade Federal Rural do Rio de Janeiro Univeridade Severino Sombra aoura RJ ESTUDOS EXPERIMENTIS SOBRE LIÇÃO DS PROPRIEDDES DE FLUIDOS DE PERFURÇÃO EM MEIOS POROSOS NISOTRÓPICOS.

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais