Análise Matemática IV
|
|
|
- Mauro Pedro Valente Beretta
- 10 Há anos
- Visualizações:
Transcrição
1 Análie Maemáica IV Problema para a Aula Práica Semana. Calcule a ranformada de Laplace e a regiõe de convergência da funçõe definida em 0 pela expreõe eguine: a f = cha b f = ena Reolução: a Aendendo a que c f = e a cob d f = en cha = ea + e a 2 e à linearidade da Tranformada de Laplace, em-e Vio e em-e que L{cha} = L{ ea + e a } = 2 2 = 2 a + = + a L{e a } = a L{e a } = + a L{cha} = b Aendendo a que para n N e e, > 0 L{e a } + L{e a } 2 a 2 Re > a Re > a 2 a 2 e Re > a em-e que Vio em-e d n d n L{f} = n L{ n f} L{ ena} = d d L{ena} = d a d 2 + a = 2 L{ena} = L{ ena} = 2 + a 2 e Re > 0 2a 2 + a 2 2 e Re > 0 2a 2 + a 2 2
2 Análie Maemáica IV 2 c Aendendo a que em-e que L{e a f} = L{f} a L{e a cob} = L{cob} a = válido para Re a > 0, ou eja, Re > a. d Vio não e coneguir calcular, por primiivação, o inegral { en } L = 0 en e d a a 2 + b 2 eremo que uilizar uma da propriedade da Tranformada de Laplace. Aim endo, noe-e que d L d { en, inegrando em } { = L en } = L{en } = 2 + { en } L = arcg + c Para calcular o valor conane, conideramo a equação anerior no cao epecial = 0: É conhecido que c = π 2 e 0 en en d = c d = π { en } L = arcg + π 2 2. Calcule a invera da Tranformada de Laplace de a 2 2 b Reolução: c d + 4 a Para calcular a invera da Tranformada de Laplace, vamo eparar a função em fracçõe imple, io é 2 = = A 2 + B + C Calculando a conane, em-e enão que 2 = D + 2
3 Análie Maemáica IV 3 É óbvio que Por ouro lado, vio = L{e } 2 = d d e + = L{e } = d d L{e } mai uma vez por aplicação da propriedade, eremo e de modo análogo e conclui que Finalmene b Noe-e que 2 = L{e } + 2 = L{e } 2 = { 2 4 L e + e + e + e } L = e + e + e + e = 0 2 = 9 ou 2 = = = A + B C + D Calculando a conane, em-e enão que = = 3 L{en } L{en 3} L 6 = en en 3 4 c Mai uma vez eparando em fraçõe imple = = = 3L{e 2 } + 2L{e 3 } d Noe-e que + 4 = 3 + L = e2 + 2e 3 = 6 d d + 3 d 3 d 3 + = 3 2 = 6 d 2 d d 3 L{e } d 3
4 Análie Maemáica IV 4 e por aplicação de Enão + 4 = 6 3 L{ 3 e } L = e 3. Uilizando a Tranformada de Laplace reolva o eguine problema de valor inicial: a y y 6y = 0, y0 =, y 0 = b y + ω 2 y = co2, ω 2 0, y0 =, y 0 = 0 c y + 2y + 2y = h, y0 = 0, y 0 = endo { e π < 2π h = 0 e 0 < π e 2π Reolução: a Para a reolução do problema de valor inicial, iremo uilizar a propriedade que em como conequência imediaa L{f } = f0 + L{f} 2 L{f } = f 0 f0 + 2 L{f} Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e y 0 y0 + 2 Y y0 + Y 6Y = 0 2 6Y + 2 = 0 onde uilizámo o faco de y0 = y 0 =. Enão Y = = = 4L{e 2 } + L{e 3 } 3 5 a olução do PVI é y = 4e 2 + e 3 5 b Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obém-e y 0 y0 + 2 Y + ω 2 Y = onde uilizámo o faco de y0 = e y 0 = 0. Enão Y = ω 2 Y = ω ω H + H 2 2 S Não há dúvida que H 2 = L{co ω}
5 Análie Maemáica IV 5 Relaivamene a H, é fundamenal noar que o reulado depende do valor de ω. Se ω 2 4 enão, decompondo H em fracçõe imple: H = ω ω 2 Aim: H = { } L{co 2} L{co ω} = L co 2 co ω ω 2 4 ω 2 4 Logo, a olução do PVI no cao ω 2 4 ou eja, ω 2 e ω 2 é: Se ω = 2 ou ω = 2, enão: H = y = co ω + co 2 co ω ω = 2 e mai uma vez por aplicação de, em-e Finalmene a olução do PVI nee cao é: Nee cao ocorre reonância. d = d H = 4 L{ en 2} y = en 2 + co 2 4 d d 2 L{en 2} c Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e y 0 y0 + 2 Y + 2 y0 + Y + 2Y = e π e 2π Y = e π e 2π onde uilizámo o faco de y0 = 0 e y 0 =. Enão Y = e π e 2π H + H 2 S + H 3 Para calcular a Tranformada de Laplace invera de H 3 poderemo uilizar um do doi méodo eguine:
6 Análie Maemáica IV 6 i Noe-e que endo Uilizando a propriedade podemo concluir ii Aendendo a que H 3 = H = 2 + podemo eparar em fraçõe imple = H + = L{en } L{e a f} = L{f} + a 3 H 3 = L{en } + = L{e en } = 0 = + i ou = i = A + i + B i = 2i + i i = L{e +i } L{e i } 2i = 2i L{e e i e i } = L{e en } Por ouro lado, para calcular a invera da Tranformada de Laplace de H e H 2 podemo uilizar a propriedade: L{H af a} = e a L{f} 4 Noe-e que = onde uilizámo a propriedade 3. Enão: = 2 L{} 2 L{e co } L{e en } H = e π L{ 2 2 e co e en } = L{H π 2 2 e π co π e π en π }
7 Análie Maemáica IV 7 onde uilzámo a propriedade 4. De igual modo e mora que H 2 = e 2π = e 2π = e 2π L{ 2 2 e co e en } = L{H 2π 2 2 e 2π co 2π e 2π en 2π } Finalmene a olução do PVI é y = H π e π co + e π en H 2π 2 2 e 2π co e 2π en + e en 4. Deigna-e por δ a diribuição de Dirac com upore na origem. Uilizando a ranformada de Laplace, reolva o eguine problema de valor inicial: a y + 2y + 2y = δ π, y0 =, y 0 = 0 b y + y = δ π δ 2π, y0 = 0, y 0 = 0 c y + y = δ π co, y0 = 0, y 0 = Reolução: a Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e y 0 y0 + 2 Y + 2 y0 + Y + 2Y = L{δ π} o que é equivalene a Y 2 = e π onde uilizámo o faco de y0 =, y 0 = 0 e L{δ 0 } = e 0, 0 > 0 Enão 2 + Y = e π H + H 2 S Por méodo análogo ao uilizado na alínea c do problema 3: H = Uilizando a propriedade 4: = L{e co + e en } H 2 S = e π L{e en } = L{H πe π en π} = L{ H πe π en }
8 Análie Maemáica IV 8 Finalmene a olução do PVI é y = e co + en H πe π en b Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e o que é equivalene a y 0 y0 + 2 Y + Y = L{δ π δ 2π} 2 + Y = e π e 2π onde uilizámo o faco de y0 = 0, y 0 = 0 e L{δ 0 } = e 0, 0 > 0 Enão Y = e π 2 + e 2π 2 + H + H 2 S, ulizando a propriedade 4 e H = e π L{en } = L{H π en π} H 2 = e 2π L{en } = L{H 2π en 2π} Finalmene a olução do PVI é y = H π en H 2π en c Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e o que é equivalene a y 0 y0 + 2 Y + Y = L{δ π co } 2 + Y = e π onde uilizámo o faco de y0 = 0, y 0 = e Enão Finalmene, a olução do PVI é δ 0 f d = f 0 Y = 2 + e π 2 + = L{en } e π L{en } = L{en } L{H π en π} y = en + H π en
TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE
TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração
TRANSFORMADA DE LAPLACE Conceitos e exemplos
TRANSFORMADA DE LAPLACE Conceio e exemplo Diciplina MR7 A finalidade dea apoila é dar o conceio da ranformada de Laplace, eu uo na olução de problema e por fim um aprendizado do méodo de reoluçõe. Muia
A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma
Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial
1 Transformada de Laplace de u c (t)
Tranformada de Laplace - Função de Heaviide Prof ETGalante Equaçõe diferenciai ob ação de funçõe decontínua aparecem com frequência na análie do uxo de corrente em circuito elétrico ou na vibraçõe de itema
Edital Nº. 04/2009-DIGPE 10 de maio de 2009
Caderno de Prova CONTROLE DE PROCESSOS Edial Nº. /9-DIPE de maio de 9 INSTRUÇÕES ERAIS PARA A REALIZAÇÃO DA PROVA Ue apena canea eferográfica azul ou prea. Ecreva o eu nome compleo e o número do eu documeno
Lista 4 Prof. Diego Marcon
Lita 4 Prof. Diego Marcon Método Aplicado de Matemática I 6 de Junho de 07 Lita de exercício referente ao retante da primeira área da noa diciplina: Exponencial de matrize Tranformada de Laplace Delocamento
v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.
Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,
Quantas equações existem?
www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP [email protected] Reumo O trabalho conite em denir a altura de uma equação polinomial
CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS
CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS. Moivaçõe Como vio o Regulado de Eado maném o iema em uma deeminada condição de egime pemanene, ou eja, ena mane o eado em uma dada condição eacionáia.
CONTROLE LINEAR I. Parte A Sistemas Contínuos no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -2013-
CONTROLE LINEAR I Pare A Siema Conínuo no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -03- AGRADECIMENTOS O auore deejam agradecer ao aluno Pierre Goebel, que em uma arde de verão
Acção da neve: quantificação de acordo com o EC1
Acção da neve: quanificação de acordo com o EC1 Luciano Jacino Iniuo Superior de Engenharia de Liboa Área Deparamenal de Engenharia Civil Janeiro 2014 Índice 1 Inrodução... 1 2 Zonameno do erriório...
12 Integral Indefinida
Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar
6.1: Transformada de Laplace
6.: Tranformada de Laplace Muio problema práico da engenharia envolvem iema mecânico ou elérico ob ação de força deconínua ou de impulo. Para ee ipo de problema, o méodo vio em Equaçõe Diferenciai I, ão
Transformada de Laplace
Sinai e Sitema - Tranformada de Laplace A Tranformada de Laplace é uma importante ferramenta para a reolução de equaçõe diferenciai. Também é muito útil na repreentação e análie de itema. É uma tranformação
TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações
TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei
CONTROLABILIDADE E OBSERVABILIDADE
Eduardo obo uoa Cabral CONTROABIIDADE E OBSERVABIIDADE. oiação Em um iema na forma do epaço do eado podem exiir dinâmica que não ão ia pela aída do iema ou não ão influenciada pela enrada do iema. Se penarmo
Equações Diferenciais Ordinárias Lineares
Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais
UNIVERSIDADE FEDERAL DE SANTA CATARINA. TRANSFORMADA DE LAPLACE: uma introdução com aplicações.
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA CURSO DE ESPECIALIZAÇÃO EM MATEMÁTICA FORMAÇÃO DE PROFESSOR TRANSFORMADA DE LAPLACE: uma inrodução
Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação
TRANSFORMADA DE LAPLACE E PVI
Inversa Solução de PVI via TRANSFORMADA DE LAPLACE E PVI por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 21 e 23 de novembro de 2018 Inversa Solução de PVI via Propriedades
Transformada de Laplace. Um Livro Colaborativo
Tranformada de Laplace Um Livro Colaboraivo 7 de junho de 8 Organizadore Eequia Sauer - UFRGS Fabio Souo de Azevedo - UFRGS Irene Maria Foneca Srauch - UFRGS ii Licença Ee rabalho eá licenciado ob a Licença
Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE
Aociação de Profeore de Matemática Contacto: Rua Dr. João Couto, n.º 7-A 1500-36 Liboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara
FUDAMETOS DE COTROLE E AUTOMAÇÃO Aula 4 Modelagem de itema no domínio da requência Pro. Marcio impara Unieridade Federal de Mato Groo do Sul Sitema mecânico tranlação Elemento Força deloc. tempo Laplace
Competências/ Objetivos Especifica(o)s
Tema B- Terra em Tranformação Nº previta Materiai Contituição do mundo material Relacionar apecto do quotidiano com a Química. Reconhecer que é enorme a variedade de materiai que no rodeiam. Identificar
Transformada de Laplace
Tranformada de Laplace Câmpu Francico Beltrão Diciplina: Prof. Dr. Jona Joacir Radtke Tranformada de Laplace Se f (t) for uma função definida para todo t 0, ua tranformada de Laplace é a integral de f
Transformada de Laplace
Capítulo 8 Transformada de Laplace A transformada de Laplace permitirá que obtenhamos a solução de uma equação diferencial ordinária de coeficientes constantes através da resolução de uma equação algébrica.
Transformadas de Laplace Matemática Aplicada
Tranformada de Laplace Matemática Aplicada Carlo Luz Revito em 4/5 Conteúdo Introdução Definição e exemplo 3 Exitência e Unicidade 6 3. Exitência... 6 3. Unicidade... 7 4 Propriedade da tranformação de
AVALIAÇÃO DE DESEMPENHO
AVALIAÇÃO DE DESEMPENHO Itrodução Aálie o domíio do tempo Repota ao degrau Repota à rampa Repota à parábola Aálie o domíio da freqüêcia Diagrama de Bode Diagrama de Nyquit Diagrama de Nichol Eta aula EM
Tabela: Variáveis reais e nominais
Capíulo 1 Soluções: Inrodução à Macroeconomia Exercício 12 (Variáveis reais e nominais) Na abela seguine enconram se os dados iniciais do exercício (colunas 1, 2, 3) bem como as soluções relaivas a odas
CÂMARA MUNICIPAL DE SANTO ANTÔNIO DA PLATINA - PR
JANEIRO 75 0 75 2 73 1440 0 1440 104 1336 7 0 7 5 2 119 0 119 1 118 293 0 293 11 282 225 0 225 5 220 2 0 2 0 2 116 0 116 4 112 Página 1 de 12 FEVEREIRO 73 0 73 2 71 1336 0 1336 385 951 2 0 2 2 0 118 0
CÂMARA MUNICIPAL DE SANTO ANTÔNIO DA PLATINA - PR. Planilha Controle de Estoque - Materiais de Limpeza - 2013 ESTOQUE ANTERIOR
JANEIRO 20 0 20 1 19 13 0 13 0 13 0 5 5 0 5 16 0 16 1 15 17 0 17 0 17 5 0 5 2 3 20 0 20 2 18 107 0 107 5 102 59 0 59 1 58 23 0 23 1 22 215 0 215 7 208 60 0 60 1 59 5 0 5 0 5 5 0 5 1 4 Página 1 de 12 FEVEREIRO
Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem
FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 7 Repota no domínio do tempo - Sitema de egunda ordem Prof. Marcio Kimpara Univeridade Federal de Mato Groo do Sul Sitema de primeira ordem Prof. Marcio Kimpara
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Circuitos Elétricos II
Univeridade Federal do ABC Eng. de Intrumentação, Automação e Robótica Circuito Elétrico II Joé Azcue, Prof. Dr. Tranformada invera de Laplace Definição Funçõe racionai Expanão em fraçõe parciai Teorema
Introdução à Decomposição de Dantzig-Wolfe. Manuel António Matos
Inrodução à Decompoição de Danzig-Wolfe Manuel Anónio Mao FEUP 994 índice. Inrodução... 2. Noação... 3. Decrição geral... 4. Deenvolvimeno...2 5. Algorimo...5 5.. Noação...5 5.2. Solução báica inicial...5
TEMPO DE PROVA: 2h30 Questão 1: (2.5 pontos) Estude a convergência, convergência absoluta ou divergência das séries abaixo. ( 1) m m.
Instituto de Matemática - IM/UFRJ Gabarito prim. prova unificada - Escola Politécnica / Escola de Química - 26/09/208 TEMPO DE PROVA: 2h30 Questão : (2.5 pontos) Estude a convergência, convergência absoluta
XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXI Olimpíada Braileira de Matemática GBRITO Segunda Fae Soluçõe Nível Segunda Fae Parte PRTE Na parte erão atribuído ponto para cada repota correta e a pontuação máxima para ea parte erá 0 NENHUM PONTO
Aula 7 de FT II. Prof. Gerônimo
Aula 7 de FT II Prof. Gerônimo Condução Traniene Quando energia érmica é adicionada ou removida de um corpo (volume de conrole), eu eado não pode er conane e, aim, a emperaura do corpo variará em geral
Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).
2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()
Sistemas não-lineares de 2ª ordem Plano de Fase
EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,
Nesta aula iremos continuar com os exemplos de revisão.
Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).
Aplica-se a transformada de Fourier nas duas equações: EDP e condição inicial. A transformada da EDP é: = ( ik 1)û(k,t) û(k,t) = A(k)e ( ik 1)t
TEA13: Matemática Aplicada II - Engenharia Ambiental - UFPR Gabarito P (1) (4. ponto) Reolva a equação diferencial e condição inicial uando Tranformada de Fourier: Solução da Quetão 1: u x + u t + u =,
UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais
Repota: UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Diciplina: Equaçõe Diferenciai Profeora: Geraldine Silveira Lima Eercício Livro: Jame Stewart Eercício 9.1 1. Motre que y 1 é uma olução
4a. Lista de Exercícios
UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são
Condução de calor numa barra semi-infinita
Univeridade de São Paulo Ecola de Engenharia de Lorena Departamento de Engenharia de Materiai Condução de calor numa barra emi-infinita Prof. Luiz T. F. Eleno Ecola de Engenharia de Lorena da Univeridade
Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores.
Modelagem Maemáica MODELOS MATEMÁTICOS DE CIRCUITOS ELÉTRICOS O circuio equivalene à rede elérica com a quai rabalhamo coniem baicamene em rê componene lineare paivo: reiore, capaciore e induore. A Tabela
Exercícios Resolvidos de Biofísica
Exercício Reolvido de Biofíica Faculdade de Medicina da Univeridade de oimbra Exercício Reolvido de Biofíica Metrado ntegrado em Medicina MEMBRNS HOMOGÉNES Exercício 1. Numa experiência com uma membrana
Universidade Federal de Lavras
Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média
Projecto de Filtros Digitais IIR
Sistemas de Processamento Digital Engenharia de Sistemas e Informática Ficha 7 2005/2006 4.º Ano/ 2.º Semestre Projecto de Filtros Digitais IIR Projecto de Filtros IIR O projecto de filtros IIR digitais
CAPÍTULO 5: CISALHAMENTO
Curo de Engenaria Civil Univeridade Eadual de Maringá Cenro de Tecnologia Deparameno de Engenaria Civil CAPÍTULO 5: CSALHAMENTO 5. Tenõe de Cialameno em iga o Flexão Hipóee Báica: a) A enõe de cialameno
Curso de preparação para a prova de matemática do ENEM Professor Renato Tião
Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração
Teoria da Comunicação. Prof. Andrei Piccinini Legg Aula 09
Teoria da Comuniação Pro. Andrei Piinini Legg Aula 09 Inrodução Sabemos que a inormação pode ser ransmiida aravés da modiiação das araerísias de uma sinusóide, hamada poradora do sinal de inormação. Se
Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)
Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual
CURSO DE ENGENHARIA DO AMBIENTE FÍSICA E QUÍMICA DA ATMOSFERA
CURSO DE ENGENHARIA DO AMBIENE FÍSICA E QUÍMICA DA AMOSFERA Ano Lectivo 2004/2005 Época Epecial: 17/10/2005 I (4.8 valore) Atribua a cada uma da afirmaçõe eguinte, em jutificar, uma da claificaçõe: Verdadeiro
PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos
PPNL Min (Max) f(x). a. g i (x) (,, =) b i, i =,,m onde x = (x,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida.
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP
Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de
Quanto maior for o número de questões passadas estudadas por vocês, maior será a probabilidade de APROVAÇÃO no concurso. ANÁLISE COMBINATÓRIA
Prezados concursandos!!! Muita paz e tranqüilidade para todos!!! Nesta reta final de preparação para o concurso do próximo dia 4 Mai 009, comento mais algumas questões de raciocínio lógico matemático cobradas
ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA
EPÇO ETORIL REL DE DIMENÃO FINIT Defnção ejam um conjuno não ao o conjuno do númeo ea R e dua opeaçõe bnáa adção e mulplcação po ecala : : R u a u a é um Epaço eoal obe R ou Epaço eoal Real ou um R-epaço
Filtros Analógicos Ativos
Filtro Analógico Ativo Topologia Sallen-Key FPB Prof. láudio A. Fleury onteúdo. Introdução. Filtro Paa-Baixa de a. Ordem 3. Mudança de Ecala 4. Filtro Paa-Alta de a. Ordem 5. Filtro Paa-Faixa e ejeita-faixa
Comportamento Assintótico de Convoluções e Aplicações em EDP
Comporameno Assinóico de Convoluções e Aplicações em EDP José A. Barrionuevo Paulo Sérgio Cosa Lino Deparameno de Maemáica UFRGS Av. Beno Gonçalves 9500, 9509-900 Poro Alegre, RS, Brasil. 2008 Resumo Nese
= + 3. h t t. h t t. h t t. h t t MATEMÁTICA
MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.
Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)
Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe
MECÂNICA DO CONTÍNUO. Tópico 2. Cont. Elasticidade Linear Cálculo Variacional
MECÂNICA DO CONTÍNUO Tópico 2 Cont. Elaticidade Linear Cálculo Variacional PROF. ISAAC NL SILVA Lei de Hooke Até o limite elático, a tenão é diretamente proporcional à deformação: x E. e x e e y z n E
5 Cálculo do Diâmetro e Espaçamento entre Estribos Utilizando a Formulação Proposta
5 Cácuo do Diâmero e Epaçameno enre Erio Uiizando a Formuação ropoa 5.1. Inrodução Nee capíuo apreena-e um criério para o cácuo do diâmero e epaçameno enre erio aravé da formuação propoa e comparam-e o
Métodos Matemáticos para Gestão da Informação
Métodos Matemáticos para Gestão da Informação Aula 05 Taxas de variação e função lineares III Dalton Martins [email protected] Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2 O Método de Separação de Variáveis A ideia central desse método é supor que a solução
Exemplos de equações diferenciais
Transformadas de Laplace - EDO's Prof. E.T.Galante Denição. Uma equação diferencial é uma equação na qual: a incógnita é uma função; há ao menos uma derivada da função incógnita. Antes de mais nada, vamos
APLICAÇÕES DA DERIVADA
Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,
4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html
4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo
