Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)

Tamanho: px
Começar a partir da página:

Download "Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)"

Transcrição

1 Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

2 Ponto Crítico Considere uma função diferenciável f. O plano tangente a superfície dada por z = f (x, y) no ponto P = (x, y, z ), com z = f (x, y ), é definido pela equação z z = f x (x, y )(x x ) + f y (x, y )(y y ). Se o plano tangente é paralelo ao plano (x, y), ou seja, se então dizemos: f x (x, y ) = e f y (x, y ) =, O ponto P = (x, y, z ) é um ponto estacionário da superfície; O ponto (x, y ), no domínio de f, é um ponto estacionário ou ponto crítico de f. Dizemos também que (x, y ) é um ponto crítico de f se uma das derivadas parciais não existir.

3 Máximo, mínimo e ponto de sela Os pontos estacionários de uma superfície são geralmente classificados como: Máximo - que pode ser interpretado como o topo de uma montanha; Mínimo - que pode ser interpretado como o fundo de um vale; Ponto de Sela - que pode ser interpretado como uma passagem entre montanhas. Formalmente, temos as seguintes definições:

4 Máximo Definição (Máximo Global e Local) Uma função f : D R tem um máximo absoluto ou máximo global em a se f (x) f (a), x D. Dizemos a é um máximo relativo ou máximo local de f se f (x) f (a), x próximo de a.

5 Exemplo Considere a função f (x, y) = x y. z x y 3 Note que f (x, y) = x y = f (, ), para qualquer (x, y) R. Logo, (, ) é um máximo absoluto de f.

6 Mínimo Definição 3 (Mínimo Global e Local) Uma função f : D R tem um mínimo absoluto ou mínimo global em a se f (a) f (x), x D. Dizemos a é um mínimo relativo ou mínimo local de f se f (a) f (x), x próximo de a.

7 Exemplo 4 Considere a função f (x, y) = x + y. z x y 3 Note que f (x, y) = x + y = f (, ), para qualquer (x, y) R. Logo, (, ) é um mínimo absoluto de f.

8 Valor Extremo Definição 5 (Valor Extremo) Um número que é um máximo ou um mínimo local é chamado valor extremo de f. Teorema 6 Se f é diferenciável e tem um valor extremo num ponto a no interior de seu domínio, então devemos ter f (a) =. No entanto, podemos encontrar exemplos no qual f (a) = mas f não tem valor extremo em a.

9 Ponto de Sela Definição 7 (Pontos de Sela) Um ponto estacionário a de uma função diferenciável f é um ponto de sela se qualquer bola aberta B de centro a contém pontos x e y tais que f (x) < f (a) < f (y). O conceito de ponto de sela é análogo à noção de ponto de inflexão para uma função f : R R.

10 Exemplo 8 Considere a função f (x, y) = xy cujo gráfico é o paraboloide hiperbólico z x y 3 Observe que o gradiente de f é f (x, y) = (y, x).

11 Logo, f (, ) = (, ). Porém, (, ) não é um extremo de f. Vamos mostrar que (, ) é um ponto de sela. Considere uma bola aberta B que contém (, ). A bola necessariamente contém um ponto (x, y ) no primeiro quadrante e um ponto (x, y ) no segundo quadrante. Em outras palavras, (x, y ) são tais que x > e y >. Similarmente, (x, y ) são tais que x > e y <. Agora, f (x, y ) < f (, ) } {{ } } {{ } =x y = < f (x, y ). } {{ } =x y

12 Exemplo 9 Considere a função f (x, y) = x 3 3xy, cujo gráfico é 6 4 z x y 3 também possui um ponto de sela na origem.

13 Exemplo Considere a função f (x, y) = x y, cujo gráfico é z x y 3 possui um mínimo absoluto na origem porque f (x, y) f (, ) para qualquer (x, y).

14 Matriz Hessiana Definição (Matriz Hessiana) A matriz n n com as derivas de segunda ordem de uma função de n variáveis é chamada matriz Hessiana e denotada por H(x). Em outras palavras, D f (x) D f (x)... D n f (x) D f (x) D f (x)... D n f (x) H(x,..., x n ) = D n f (x) D n f (x)... D nn f (x)

15 Exemplo Determine o vetor gradiente e a matriz Hessian da função f (x, y) = x y no ponto (, ).

16 Exemplo Determine o vetor gradiente e a matriz Hessian da função f (x, y) = x y no ponto (, ). Resposta: f (x, y) = ( x, y) = f (, ) = (, ), e H(x, y) = [ ] = H(, ) = [ ].

17 Teorema da Hessiana Teorema 3 (Teorema de Hessiana) Seja f : D R uma função com derivadas de segunda ordem contínuas numa bola aberta que contém um ponto estacionário a de f. Nesse caso, Se todos os auto-valores de H(a) são positivos, f tem um mínimo relativo em a. Se todos os auto-valores de H(a) são negativos, f tem um máximo relativo em a. Se H(a) tem auto-valores positivos e negativos, a é um ponto de sela de f.

18 Teste da Segunda Derivada Teorema 4 (Teste da Segunda Derivada) Seja f : D R uma função de duas variáveis com derivadas de segunda ordem contínuas numa bola aberta que contém um ponto estacionário (a, b) de f. Denote o determinante da matriz Hessian em (a, b) por D, ou seja, D = f xx f xy = f xxf yy (fxy). Nesse caso, tem-se f yx f yy Se D > e f xx (a, b) >, f tem um mínimo relativo em (a, b). Se D > e f xx (a, b) <, f tem um máximo relativo em (a, b). Se D <, é um ponto de sela de f.

19 Exemplo 5 Determine os pontos de máximo e mínimo relativos e os pontos de sela da função f (x, y) = x 4 + y 4 4xy +.

20 Exemplo 5 Determine os pontos de máximo e mínimo relativos e os pontos de sela da função f (x, y) = x 4 + y 4 4xy +. Resposta: Os pontos críticos são: (, ), (, ) e (, ). Aplicando o teste da segunda derivada, concluímos que (, ) é um ponto de sela quanto os outros dois são mínimos relativos.

21 Gráfico da função f (x, y) = x 4 + y 4 4xy + : 4 3 z x y 3

22 Exemplo 6 Determine a menor distância entre o ponto (,, ) e o plano x + y + z = 4.

23 Exemplo 6 Determine a menor distância entre o ponto (,, ) e o plano x + y + z = 4. Resposta: A menor distância é

24 Teorema do Valor Extremo Teorema 7 (Teorema do Valor Extremo) Se f é uma função contínua em um conjunto fechado e limitado D R n, então f assume um valor máximo absoluto e um valor mínimo absoluto em pontos de D. Observação: Para determinar os valores extremos de uma função f em um conjunto fechado e limitado D, deve-se:. Determinar os valores de f nos pontos críticos de f em D.. Determinar os valores extremos de f na fronteira de D. O maior dos valores nos itens e é o valor máximo absoluto de f e o menor dos itens e é o mínimo absoluto de f.

25 Exemplo 8 Determine os valores extremos de f (x, y) = x xy + y, no retângulo D = {(x, y) : x 3, y }.

26 Exemplo 8 Determine os valores extremos de f (x, y) = x xy + y, no retângulo D = {(x, y) : x 3, y }. Resposta: O valor máximo de f em D é f (3, ) = 9 e o valor mínimo absoluto de f é f (, ) = f (, ) =.

27 Gráfico da função f (x, y) = x xy + y, no retângulo D = {(x, y) : x 3, y }.f (x, y) = x 4 + y 4 4xy + : z x y

11.7 Valores Extremos e Ponto de Sela

11.7 Valores Extremos e Ponto de Sela 11.7 Valores Extremos e Ponto de Sela Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Valores Extremos Locais Definição: Seja f(x,

Leia mais

Aula 19 Teorema Fundamental das Integrais de Linha

Aula 19 Teorema Fundamental das Integrais de Linha Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Soluções abreviadas de alguns exercícios

Soluções abreviadas de alguns exercícios Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

Aula 16 Mudança de Variável em Integrais Múltiplas

Aula 16 Mudança de Variável em Integrais Múltiplas Aula 16 Mudança de Variável em Integrais Múltiplas MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

MAT-2454 Cálculo Diferencial e Integral II EP-USP

MAT-2454 Cálculo Diferencial e Integral II EP-USP MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)

Leia mais

Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por

Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por Força conservativa Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por U 12 = Gm 1m 2 r 2 r 1. Vimos também que

Leia mais

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície: Capítulo 3 Integrais de superfícies 3.1 Superfícies no espaço Definição 3.1 Uma superfície S no espaço é definida como sendo a imagem de uma aplicação contínua r : K R R 3, (u, v) K 7 r (u, v) =(x (u,

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante.

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica

Leia mais

Máximos e mínimos (continuação)

Máximos e mínimos (continuação) UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f

Leia mais

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange

Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Máximos, mínimos e pontos de sela Multiplicadores de Lagrange Anderson Luiz B. de Souza Livro texto - Capítulo 14 - Seção 14.7 Encontrando extremos absolutos Determine o máximo e mínimo absolutos das funções

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine

Leia mais

(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta.

(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta. UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta Lista de Exercícios de Cálculo II - MTM13 Prof. Júlio César do Espírito Santo (com colaboraçao

Leia mais

CAMPOS CONSERVATIVOS NO PLANO

CAMPOS CONSERVATIVOS NO PLANO CAMPOS CONSERVATIVOS NO PLANO Ricardo Bianconi Primeiro Semestre de 2008 Revisado em Fevereiro de 2015 Resumo Relacionamos os conceitos de campos irrotacionais, campos conservativos e forma do domínio

Leia mais

Aula 5 - Matemática (Gestão e Marketing)

Aula 5 - Matemática (Gestão e Marketing) ISCTE, Escola de Gestão Aula 5 - Matemática (Gestão e Marketing) Diana Aldea Mendes 29 de Outubro de 2008 Espaços Vectoriais Definição (vector): Chama-se vector edesigna-sepor v um objecto matemático caracterizado

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GEOMETRIA ANALÍTICA ASSUNTO: CÔNICAS

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GEOMETRIA ANALÍTICA ASSUNTO: CÔNICAS UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GEOMETRIA ANALÍTICA ASSUNTO: CÔNICAS. Usando a definição de parábola determinar, em cada um dos itens a

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 17

Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 17 Fundamentos de Linguagens de Programação Nelma Moreira Departamento de Ciência de Computadores da FCUP Fundamentos de Linguagens de Programação Aula 17 Nelma Moreira (DCC-FC) Fundamentos de Linguagens

Leia mais

Cálculo Diferencial e Integral III - EAD. Professor Paulo Cupertino de Lima

Cálculo Diferencial e Integral III - EAD. Professor Paulo Cupertino de Lima Cálculo Diferencial e Integral III - EAD Professor Paulo Cupertino de Lima Sumário Sumário i 0.1 Apresentação do livro............................. v 1 Revisão: retas, planos, superfícies cilíndricas

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

Lei de Gauss Origem: Wikipédia, a enciclopédia livre.

Lei de Gauss Origem: Wikipédia, a enciclopédia livre. Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que

Leia mais

MAT2454 - Cálculo Diferencial e Integral para Engenharia II

MAT2454 - Cálculo Diferencial e Integral para Engenharia II MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

Números fuzzy interativos

Números fuzzy interativos Números fuzzy interativos Francielle Santo Pedro Orientador: Laécio Carvalho de Barros Instituto de Matemática, Estatística e Computação Científica- IMECC Unicamp - Campinas 29 de Agosto, 2013 Francielle

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

4.1 Funções de varias variáveis - Definição e exemplos

4.1 Funções de varias variáveis - Definição e exemplos Capítulo 4 Funções de duas variáveis 4.1 Funções de varias variáveis - Definição e eemplos Definição 1: Chamamos de função real com n variáveis a uma função do tipo f : D R com D R n = R R. Ou seja, uma

Leia mais

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241 Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html 4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

O coeficiente angular

O coeficiente angular A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

RESUMO 2 - FÍSICA III

RESUMO 2 - FÍSICA III RESUMO 2 - FÍSICA III CAMPO ELÉTRICO Assim como a Terra tem um campo gravitacional, uma carga Q também tem um campo que pode influenciar as cargas de prova q nele colocadas. E usando esta analogia, podemos

Leia mais

Aula 8 Distância entre pontos do plano euclidiano

Aula 8 Distância entre pontos do plano euclidiano Distância entre pontos do plano euclidiano MÓDULO - AULA 8 Aula 8 Distância entre pontos do plano euclidiano Objetivos Nesta aula, você: Usará o sistema de coordenadas para calcular a distância entre dois

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas

UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam Lista 1 Curvas 1. Desenhe as imagens das seguintes curvas: (a) γ(t) = (1, t) (b) γ(t) = (cos

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

Roda de Samba. Série Matemática na Escola

Roda de Samba. Série Matemática na Escola Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323.

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo B (Informática) Turmas 18 e 138 Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada:

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

OTIMIZAÇÃO VETORIAL. Formulação do Problema

OTIMIZAÇÃO VETORIAL. Formulação do Problema OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

Cálculo II. Derivadas Parciais

Cálculo II. Derivadas Parciais Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,

Leia mais

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

CIRCUITOS ELÉTRICOS II

CIRCUITOS ELÉTRICOS II CIRCUITOS ELÉTRICOS II Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Corrente Elétrica Quantidade de carga elétrica deslocada por unidade de tempo As correntes elétricas

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 02 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 02 Comandos de Repetição - O Comando FOR - O comando IF com o comando

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3 Aula 2_1 Lei de Gauss I Física Geral e xperimental III Prof. Cláudio Graça Capítulo 3 Conceito de Fluxo do campo elétrico Fluxo do campo elétrico num campo uniforme Suponhamos uma superfície plana de área

Leia mais

CDI-II. Trabalho. Teorema Fundamental do Cálculo

CDI-II. Trabalho. Teorema Fundamental do Cálculo Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Trabalho. Teorema Fundamental do Cálculo 1 Trabalho. Potencial Escalar Uma das noções mais importantes

Leia mais

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D. Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

3.4 Movimento ao longo de uma curva no espaço (parte segunda)

3.4 Movimento ao longo de uma curva no espaço (parte segunda) 3.4-17 3.4 Movimento ao longo de uma curva no espaço (parte segunda) 3.4.4 Mais exemplos sobre curvas no espaço. No parágrafo anterior discutimos os elementos que entram na descrição de uma trajetória

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis.

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis. www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) Funções de duas ou mais variáveis; Limites; Continuidade. (I) Funções de duas ou mais variáveis. No Cálculo I

Leia mais

Pointer Jumping. odg(v) e idg(v): graus de saída e entrada do vértice v V. um vértice r tal que. O vértice r é dita raíz de T

Pointer Jumping. odg(v) e idg(v): graus de saída e entrada do vértice v V. um vértice r tal que. O vértice r é dita raíz de T Pointer Jumping T = (V,E) : árvore direcionada odg(v) e idg(v): graus de saída e entrada do vértice v V um vértice r tal que v V-{r}, odg(v) = 1, odg(r)=0 v V-{r}, um caminho de v a r O vértice r é dita

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

1 Equações Diferenciais Ordinárias: Sistemas de Equações

1 Equações Diferenciais Ordinárias: Sistemas de Equações Equações Diferenciais Ordinárias: Sistemas de Equações O sistema geral de duas equações diferenciais pode ser escrito como: ẋ = F x,y,t ẏ = Gx,y,t Uma Solução de é um par x t e y t de funções de t tais

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE

AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Disciplina: Matemática Computacional Prof. Diana de Barros Teles AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Quantificadores: são frases do tipo para todo, ou para cada, ou para algum, isso é, frases

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais