MATEMÁTICA - 16/12/2010

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA - 16/12/2010"

Transcrição

1 GGE RESPONDE - VESTIBULAR ITA (MATEMÁTICA) MATEMÁTICA - //. Dado Z a) b) - c) d) e) Z, então n e Z e Mas, Z = e (*) =e 8 = n z é gual a ; podemos esceve Z na foma pola: Z x y + xy + x + y + x y = (x - y -) + x(y + ) = x(y ) (I) x y (II) de (I): x = ou y = -/. se x = de (II): y = - se y = - /: de (II): x z z ; z z z z x x ALTERNATIVA E Mas x 9= e potanto 8-=. E potanto Z = Z, pos = x. Logo, o somatóo que nada mas é do que uma P.G. de azão Z é: n z(z ) Z(Z ) z (Z )Z Z Z Z Z n ALTERNATIVA B. Das afmações abaxo sobe númeos complexos z e z : I. z z z - z II. z z z z III. Se z = z (cos + sen), então z z (cos sen). é (são) sempe vedadea(s). a) apenas I b) apenas II c) apenas III d) apenas II e III e) todas I. tome Z = - e Z = Logo, - = e - - = = > falsa! II. tome z = z = Logo z z e z z falsa! III. Se z = z (cos + sen) (cos sen ) z z cos sen z (cos sen) cos sen cos sen z z z z (cos sen ) cos sen. A soma de todas as soluções da equação em C : z + z + z = é gual a a) b) c) d) e) - Seja z = x + y; x, y IR, temos: z + z + z =. Numa caxa com moedas, apesentam duas caas, são nomas (caa e cooa) e as demas apesentam duas cooas. Uma moeda é etada ao acaso e a face obsevada mosta uma cooa. A pobabldade de a outa face desta moeda também apesenta uma cooa é moedas duas caas nomas (caa e cooa) duas cooas P nº casos favoáves espaço amostal Logo P 7 ALTERNATIVA B. Sejam A e B conjuntos fntos e não vazos tas que A B e n ({C : C B \ A}) = 8. Então, das afmações abaxo: I. n(b) n(a) é únco; II. n(b) + n(a) 8; III. a dupla odenada (n(a), n(b)) é únca; é(são) vedadea(s) a) apenas I b) apenas II c) apenas III d) apenas I e II e) nenhuma I. Vedadea n ({C : C B \ A}) = 8 n(b\a) = 8 N(B\A) = 7 Como A B, temos n(b\a) = n(b) n(a) Assm n(b) n(a) = 7 II. Falsa Sabemos que n(b) n(a) = 7 Adconando n(a) em ambos os membos obtemos n(b) + n(a) = 7 + n(a) Logo n(b) + n(a) depende do númeo de elementos de A, o qual não é fxo. II. Falsa Como n(a) não é fxo, a dupla odenada (n(a), n(b)) não é únca. ALTERNATIVA A

2 GGE RESPONDE - VESTIBULAR ITA (MATEMÁTICA) x y z a. O sstema y z b x y cz a) é possível, a, b, c R. b) é possível quando a ou c c) é mpossível quando c =, a, b R. d) é mpossível quando a 7 b, c R e) é possível quando c = e a Do sstema, testamos o teoema de Came: C C 9 ( C) *Se C Sstema Possível e detemnado * Se C = : x + y + z = Q (I) y + z = b (II) x y z = (III) Multplcando (I) po e somando a (-7) vezes (II) x (I) : -7x (II) : x y 9z a -7y -z - x - y - z a - Se a = sstema possível e ndetemnado a se a sstema mpossível Logo: Se C possível a, b. Se a possível b, c. ALTERNATIVA B 7. Consdee as afmações abaxo: I. Se M é uma matz quadada de odem n>, não-nula e nãonvesível, então exste matz não-nula N, de mesma odem, tal que M N é matz nula. II. Se M é uma matz quadada nvesível de odem n tal que det(m - M) =, então exste matz não-nula X, de odem n x, tal que M X = X. cos sen III. A matz tg é nvesível, k,k z. sen sec Destas, é(são) vedadeas(s) a) Apenas II. b) Apenas I e II c) Apenas I e III d) Apenas II e III e) Todas RESOLUÇÃO: I. Seja V um veto coluna com n lnhas. Temos que o sstema M V tem nfntas soluções, pos detm =. Escolha n dessas soluções v,...,v n. Consdee a matz N = [v, v,..., v n] Então M N Onde M = (a j) nxn matz nvesível de odem n. Sabemos que p()=det(m-i) é polnômo caacteístco. Mas po hpótese det(m - M) = det(m(m - I)) =. detm det(m - I) = detm = ou det (M - I) =. Mas detm. Potanto det (M I) =. Como p() = det (M - I) = p() =, logo é az do polnômo caacteístco, sto é é auto valo de T, deste modo os autovetoes > v assocados ao auto valo = são dados po T(v) =. V MV = V onde V e V é odem (nx). Afmação Vedadea. cos sen III. cos sen M Lg sen sen cos sec Det(M) = cos +sen = M é nvesível k,k z 8. Se é uma az de multplcdade da equação x + x + ax + b =, com a, b R, então a b é gual a a) - b) - c) - 8 d) 8 e) 7 P(x) = x + x + ax + b; como é az de multplcdade, teemos: P(x) = x + x + ax + b = (x ) q(x) Devando o polnômo P(x), teemos: P (x) = x + x + a = (x ) q(x) + (x ) q (x) logo, x = também é az de P (x). Dessa foma, substtundo x = em P(x) e em P (x), encontaemos: a b (I) a (II) De (II), temos: a = -. Substtundo em (I), teemos: + b = b = Logo: a b = = O poduto das aízes eas da equação x x x é gual a a) - b) - c) d) e) x x + = x temos apenas duas possbldades: x - x x - (I) x - x - x (II) (I): x x + = x x x + = = = > logo, da foma genéca da equação do º gau, teemos: P (P : poduto das aízes) (II) x c x = = + (+) = > P a Logo, o poduto das aízes seá: P P = (-) = - ALTERNATIVA A II. Defna a segunte tansfomação lnea N N T : R R V T (V) MV

3 GGE RESPONDE - VESTIBULAR ITA (MATEMÁTICA) k. Consdee a equação algébca x a k que x = é uma das aízes e que (a, a, a ) é uma pogessão geométca com a = e soma, pode-se afma que a) a soma de todas as aízes é. b) o poduto de todas as aízes é. c) a únca az eal é mao que zeo. d) a soma das aízes não eas é. e) todas as aízes são eas. k x ak k (x a ) + (x a ) + (x a ) = a = S = a + a = a, a q, a q q + q = q + q = q = - ou q = k k mas q = x a k logo q = - (x ) + (x + ) + ( x 8) = x x + x = Logo x + x + x = ALTERNATIVA A paa x = k. Sabendo. A expessão e x + 9e y e x e y + =, com x e y eas, epesenta a) o conjunto vazo. b) um conjunto untáo. c) um conjunto não-untáo com um númeo fnto de pontos. d) um conjunto com um númeo nfnto de pontos. e) o conjunto {(x, y) R (e x ) + (e y ) = } e x + 9 e y e x e y + = ( e x ) + ( e y ) e x e y = + 8 ( e x ) + ( e y 9) = ª condção: (e x ) < - < e x < - < e x < - < e x < como a função exponencal é esttamente postva, teemos: < e x < x ( -, n) ª condção: (e y 9) < - < e y 9 < < e y < < e y < y (, n) ALTERNATIVA D. Com espeto à equação polnomal x x x + x = é coeto afma que a) todas as aízes estão em Q. b) uma únca az está em Z e as demas estão em Q\Z. c) duas aízes estão em Q e as demas têm pate magnáa não-nula. d) não é dvsível po x. e) uma únca az está em Q \ Z e pelo menos uma das demas está em R \ Q. x x x + x = Note x = é uma das aízes da equação. Usando o dspostvo de Bot-Ruffn, temos: As demas aízes são aízes da equação x x x + = Note que x é uma de suas aízes. Usando o dspostvo, temos: As duas aízes que faltam são aízes da equação x = cujos valoes são x ALTERNATIVA E m. Sejam m e n nteos tas que e a equação x + n y + mx + ny = epesenta uma ccunfeênca de ao = cm e cento C localzado no segundo quadante. Se A e B são os pontos onde a ccunfeênca cuza o exo Oy, a áea do tângulo ABC, em cm, é gual a a) 8 b) c) d) 9 m m n n x + y + mx + ny = m n n m x y n m Logo, pos o ao é. n n n n n, mas como a ccunfeênca está no º 9 quadante n tem que se postvo Logo n = e m y x x 9 -/ x A ABO A OBC B x / / C A ABO A ABO 9 A e) 9 ALTERNATIVA E

4 GGE RESPONDE - VESTIBULAR ITA (MATEMÁTICA). Ente duas supeposções consecutvas dos ponteos das hoas e dos mnutos de um elógo, o ponteo dos mnutos vae um ângulo cuja medda, em adanos, é gual a a) d) b) 7 e) Vamos supo que os ponteos se cuzem as hmn. c) - O ponteo dos mnutos possuem a velocdade de, enquanto o ponteo das hoas possuem a velocdade de. - Após h, o ponteo dos mnutos estaão novamente macado mn, enquanto o ponteo das hoas macaão hoa. Dessa foma, temos as seguntes condções: Ponteo: P = + mn Hoa: H= mn Paa os ponteos tocaem-se novamente, teemos: P = H mn mn mn mn mn Logo, taduzmos os mnutos em ângulos teemos: Logo, o total em adamos seá: t =. Seja ABC um tângulo etângulo cujos catetos AB e BC medem 8 cm e cm, espectvamente. Se D é um ponto sobe AB e o tângulo ADC é sósceles, a medda do segmento AD, em cm, é gual a a) b) c) d) e). Sejam ABCD um quadado e E um ponto sobe AB. Consdee as áeas do quadado ABCD, do tapézo BEDC e do tângulo ADE. Sabendo que estas áeas defnem, na odem em que estão apesentadas, uma pogessão atmétca cuja soma é cm, a medda do segmento AE, em cm, é gual a a) b) c) d) e) S S x S : Áea de ADE (tângulo) S : Áea de BCDE (tapézo) S : Áea de ABCD (quadado) S + S + S = cm Seja o ponto F como na fgua. Note que S = S + S, sendo S a áea de BCFE. Ou seja, S é a azão da PA. Assm, da fgua: S = S + S = S + S + S = S + S. (I) Como S, S, S é PA, temos: S = S + S (II) De (I) e (II): S = S + S = S + S S = S S S S S S S S S cm S S S = cm. Sendo o lado do quadado: = cm x S cm como S x, temos: x cm 7. Num tângulo ABC o lado AB mede cm, a altua elatva ao lado AB mede cm, o ângulo AB mede e M é o ponto médo de AB. Então a medda de BÂC BMˆ C, em adanos, é gual a a) b) c) d) 8 e) Aplcando o Teoema de Ptágoas no tângulo BCD, temos: x = + (8 - x) x = + -x + x x = x = Note que o tângulo BDC é sósceles. Assm BD = cm ALTERNATIVA D

5 GGE RESPONDE - VESTIBULAR ITA (MATEMÁTICA) Sendo B ÂC e B Mˆ C, temos: tg tg CD AD CD DM tg ( ) tg tg tg tg tg( ) tg( ) Note que e são menoes que. Assm + =. Logo, B ÂC BMˆ C ALTERNATIVA B 8. Um tângulo ABC está nscto numa ccunfeênca de ao cm. Sabe-se anda que AB é o dâmeto, BC mede cm e a bssetz do ângulo ABˆ C ntecepta a ccunfeênca no ponto D. Se é a soma das áeas dos tângulos ABC e ABD e é a áea comum aos dos, o valo de -, em cm, é gual a a) b) c) d) 7 e) 8 é gual à dfeença ente as áeas dos tângulos ABC e BCE. Logo: 8 9 Assm - = ALTERNATIVA A 9. Uma esfea está nscta em uma pâmde egula hexagonal cuja altua mede cm e a aesta da base mede cm.então o ao da esfea, em cm, é gual a A B H C G O F P I E h cm Passando um plano pelos pontos A, H e I, teemos a segunte seção plana A H O I Cálculo de OH: analsando o hexágono da base, teemos: B H C X O BC OH OI X Como o lado AB dos tângulos ABC e ABD concde com o dâmeto da ccunfeênca, os tângulos ABC e ABD são etângulos em C e D, espectvamente. Aplcando o teoema de Ptágoas no tângulo ABC, concluímos que AC = 8. Seja E a nteseção de BD com AC. Aplcando o teoema da bssetz ntena no tângulo ABC, temos: CE AE CE AE 8 CE = e AE = Da semelhança dos tângulos BCE e BDA, temos: CE BC BD AD AD BD AD BD Fazendo AD = x, temos BD = x. Da aplcação do teoema de Ptágoas no tângulo ABD, temos: (x) + x = x = x = Segue que: 8 x x x F I E Cálculo de AH: Pelo tângulo AOH, temos: (AH) = + (AH)= Dessa foma temos: (Po smeta) H A O sen = I ALTERNATIVA E

6 GGE RESPONDE - VESTIBULAR ITA (MATEMÁTICA). Consdee as afmações: I. Exste um tedo cujas faces têm a mesma medda a =. II. Exste um ângulo polédco convexo cujas faces medem, espectvamente,,,, e 7. III. Um poledo convexo que tem faces tangulaes, face quadangula, face pentagonal e faces hexagonas tem 9 vétces. IV. A soma das meddas de todas as faces de um poledo convexo com vétces é 88. Destas, é(são) coeta(s) apenas a) II b) IV c) II e IV d) I, II e IV e) II, III e IV Assm, (AB) (B\A) = Mas (A B) (B\A) = (A B) (B A C ) = B (A A C ) = B Logo, B = : ABSURDO, pos B Logo, concluímos que não exste tas conjuntos A e B.. Sejam n ímpa, z C \ {} e z, z,..., z n as aízes de z n =. Calcule o númeo de valoes z z j,, j =,,..., n, com j, dstntos ente s. Z n = polígono com n lados nscto na ccunfeênca de ao. z j I. INCORRETA Seja um tedo com faces de mesma medda. A soma das faces deve se meno que paa caacteza a exstênca do ângulo tédco. Caso a soma seja gual a o ângulo dexa de se polédco e os ângulos passam a se coplanaes. Logo: <º <º II. CORRETO Pela mesma justfcatva do tem anteo: = < (EXISTIRIA O ÂNGULO POLIÉDRICO) Mas: = 7 7 > 7 (MAIOR QUE A MEDIDA DA MAIOR FACE, LOGO, NÃO EXISTE O ÂNGULO POLIÉDRICO.) z z j z Logo queemos o númeo de segmentos que tem compmento dfeente; paa um ponto temos n possbldades pela smeta n segmentos dfeentes.. Sobe uma mesa estão dspostos lvos de hstóa, de bologa e de espanhol. Detemne a pobabldade de os lvos seem emplhados sobe a mesa de tal foma que aqueles que tatam do mesmo assunto estejam juntos. hstóa bologa espanhol nº casos favoáves P espaço amostal III. INCORRETA Cálculo do númeo de aestas pelas faces: x x x x A A = F = F = 7 Aplcando Eüle: F A + V = 7 + V = V = IV. CORRETA S = (V ) S = ( ) S = 8. S = 88. Analse a exstênca de conjuntos a e b, ambos não-vazos, tas que (A\B) (B\A) = A. Seja x = (A\B) (B\A) X = (AB c ) (BA c ) Da equação, temos: X = A x - A = Mas, X A = X A c = [(AB C ) (BA c )]A C X A = (AB C A C ) (BA C A C ) = B A C = B\A B\A = Assm: X = (A\B) (B\A) = (A\B) A\B = A A B = 9 8 7! P. Resolva a nequação em log (x x9) Note que x x + 9 > paa todo x R. Assm, temos: log (x x9) log (x x 9) x x 9 x x + 9 > x x > S {x R : x ou x } log (x x9)

7 GGE RESPONDE - VESTIBULAR ITA (MATEMÁTICA). Detemne todas as matzes M M x (IR) tas que M N = NM, N M x (IR). a b Seja M c d x y Seja N uma matz qualque. z t De MN = NM segue que: a b x y x y a c d z t z t c b d Efetuando os podutos, temos: ax + bz = ax + cy bz = cy (I) ay + bt = bx + dy (a d) y = b(x t) (II) A equação (I) é válda paa todo y e z, logo b = c =. Substtundo b = na equação (II) e lembando que (II) é válda paa todo y obtemos a = d. a Assm M paa todo a IR. a. Detemne todos os valoes de m R tas que a equação ( - m) x +mx +m + = tenha duas aízes eas dstntas e maoes que zeo. Resolução: ( -m) x + mx + m + = m m (I) - < m < (**) Da nteseção de (*) e (**), temos: - < m < (III) Po fm, de (I), (II) e (III) segue que - < m < - 7. Consdee uma esfea com cento em C e ao = cm e um plano que dsta cm de C. Detemne a áea da ntesecção do plano com uma cunha esféca de em que tenha aesta otogonal a. Paa que a equação tenha duas aízes eas dstntas, devemos te: > (m) ( - m) (m+) > m + m > m - > + x = x m < ou m > (II) Paa que as aízes sejam maoes que zeo devemos te: x' x' ' x' x" em que x' e x'' são as aízes Segue que: m m m m m m m < ou m > (*) m m R x 8. 8 x a) Calcule cos sen cos sen cos sen. b) Usando o esultado do tem anteo, calcule sen cos. a) cos sen cos sen cos sen cos cos sen sen cos cos 7

8 GGE RESPONDE - VESTIBULAR ITA (MATEMÁTICA) Assm cos sen cos sen b) Seja P Sen cos cos sen Assm sen P sen cos sen sen P sen sen Pelo tem a) temos que sen sen cos cos Assm sen P cos cos Adconando as duas gualdades, obtemos que sen P sen P cos cos sen sen sen sen P P cos cos Mas, Logo, sen cos e potanto P Deste modo sen cos sena sen  sen ( ) = sem - sen Igualando o valo das expessões: = (V) Logo  = b) Le dos cossenos no tângulo x C x x x x x (C B) ou x ( ) Logo, AC ( )cm O Bˆ C. Consdee um tângulo eqüláteo cujo lado mede cm. No nteo deste tângulo exstem cículos de mesmo ao. O cento de um dos cículos concde com o bacento do tângulo. Este cículo tangenca extenamente os demas e estes, po sua vez, tangencam lados do tângulo. a) Detemne o valo de. b) calcule a áea do tângulo não peenchda pelos cículos. c) paa cada cículo que tangenca o tângulo, detemne a dstânca do cento ao vétce mas póxmo. a) 9. Num tângulo AOB o ângulo AÔB mede e os lados AB e OB medem cm e cm, espectvamente. A ccunfeênca de cento em O e ao gual à medda de OB ntecepta AB no ponto C( B). a) Moste que OÂB mede. b) Calcule o compmento de AC. Sen x = x Logo cm b) A A O ( ) c) ( ) cm a) Le dos senos:, mas sem = sen sen sen  Sen x x x = 8

Versão 2 RESOLUÇÃO GRUPO I. = 0. Tal permite excluir a opção C.

Versão 2 RESOLUÇÃO GRUPO I. = 0. Tal permite excluir a opção C. Teste Intemédo de Matemátca A Vesão Teste Intemédo Matemátca A Vesão Duação do Teste: 90 mnutos.05.0.º Ano de Escoladade Deceto-Le n.º 7/00, de 6 de maço RESOLUÇÃO GRUPO I. Resposta (C) Tem-se: a b log

Leia mais

GABARITO DE MATEMÁTICA ITA 2010 INSTITUTO TECNOLÓGICO DE AERONÁUTICA

GABARITO DE MATEMÁTICA ITA 2010 INSTITUTO TECNOLÓGICO DE AERONÁUTICA GABARITO DE MATEMÁTICA ITA 010 INSTITUTO TECNOLÓGICO DE AERONÁUTICA Gabarito da prova de Matemática Realizada em 16 de Dezembro de 010 Matemática GABARITO ITA 010 GABARITO ITA 010 NOTAÇÕES : Conjunto dos

Leia mais

MATEMÁTICA II - Engenharias/Itatiba SISTEMAS LINEARES

MATEMÁTICA II - Engenharias/Itatiba SISTEMAS LINEARES - Mauco Fabb MATEMÁTICA II - Engenhaas/Itatba o Semeste de Pof Mauíco Fabb a Sée de Eecícos SISTEMAS IEARES IVERSÃO DE MATRIZES (I) Uma mat quadada A é nvetível se est a mat A - tal que AA - I Eecíco Pove

Leia mais

( ) ( ) ( ) Questão 02 Das afirmações abaixo sobre números complexos z

( ) ( ) ( ) Questão 02 Das afirmações abaixo sobre números complexos z ITA i z z conjunto dos números naturais conjunto dos números inteiros conjunto dos números racionais conjunto dos números reais conjunto dos números complexos unidade imaginária i = conjugado do número

Leia mais

78

78 0 As medianas taçadas dos ângulos agudos de um tiângulo etângulo medem medida da mediana taçada do ângulo eto é : (A) 5 cm (B) cm (C) cm (D) cm (E) cm 7 cm e cm. A 0 Os lados de um tiângulo medem AB 0,

Leia mais

1 B 1 Dado z = ( 1 + 3 i), então z n é igual a

1 B 1 Dado z = ( 1 + 3 i), então z n é igual a MATEMÁTICA NOTAÇÕES : conjunto dos números naturais : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária:

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geal III Aula exploatóa Cap. 24 UNICAMP IFGW F328 1S2014 F328 1S2014 1 Pontos essencas Enega potencal elétca U Sstema de cagas Equvalente ao tabalho executado po um agente exteno paa taze as

Leia mais

ATIVIDADES PARA SALA PÁG. 75

ATIVIDADES PARA SALA PÁG. 75 esoluções 01 pítulo 4 studo de tângulos e polígonos TIVIS SL ÁG. 7 onsdendo s ets // s // //, tem-se os ângulos ltenos ntenos gus. 1 s III. eg de tês: Medd do co ompmento do (em gus) co (m) 360 40000 (qudo)

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Matemática D Extensivo V. 7

Matemática D Extensivo V. 7 Matemática D Extensivo V. 7 Execícios 0) D V V g Potanto, temos que o volume do tonco do cone é dado pelo volume total do cone menos o volume da pate supeio do cone. π.. 6 π.. 8π 6 π... π 8 π 7 6 8 7 7

Leia mais

Física I. Aula 9 Rotação, momento inércia e torque

Física I. Aula 9 Rotação, momento inércia e torque Físca º Semeste de 01 nsttuto de Físca- Unvesdade de São Paulo Aula 9 Rotação, momento néca e toque Pofesso: Vald Gumaães E-mal: valdg@f.usp.b Fone: 091.7104 Vaáves da otação Neste tópco, tataemos da otação

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica PME 00 MECÂNIC P3 6 de unho de 009 Duação da Pova: 0 mnutos (não é pemtdo uso de calculadoas) ENÇÃ: a pova consta de 3 questões de aplcação da teoa estudada valendo 0 pontos e de 4 questões teócas, cua

Leia mais

Apostila de álgebra linear

Apostila de álgebra linear Apostila de álgeba linea 1 Matizes e Sistemas de Equações Lineaes 1.1 Matizes Definição: Sejam m 1 e n 1 dois númeos inteios. Uma matiz A de odem m po n, (esceve-se m n) sobe o copo dos númeos eais (R)

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Depatamento de Físca da Faculdade de Cêncas da Unvesdade de Lsboa Mecânca A 008/09 1. Objectvo MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Estudo do movmento de otação de um copo ígdo. Detemnação do momento

Leia mais

EQUAÇÕES DINÂMICAS DE MOVIMENTO PARA CORPOS RÍGIDOS UTILIZANDO REFERENCIAL MÓVEL

EQUAÇÕES DINÂMICAS DE MOVIMENTO PARA CORPOS RÍGIDOS UTILIZANDO REFERENCIAL MÓVEL NTAS DE AULA EQUAÇÕES DINÂICAS DE IENT PARA CRPS RÍIDS UTILIZAND REFERENCIAL ÓEL RBERT SPINLA BARBSA RSB PLI USP LDS TIAÇÃ Paa a obtenção das equações dnâmcas de um copo ígdo pode se convenente epessa

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

Física I IME. 2º Semestre de Instituto de Física Universidade de São Paulo. Professor: Luiz Nagamine Fone: 3091.

Física I IME. 2º Semestre de Instituto de Física Universidade de São Paulo. Professor: Luiz Nagamine   Fone: 3091. Físca E º Semeste de 015 nsttuto de Físca Unvesdade de São Paulo Pofesso: uz Nagamne E-mal: nagamne@f.usp.b Fone: 091.6877 0, 04 e 09 de novembo otação º Semeste de 015 Cnemátca otaconal Neste tópco, tataemos

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática 11. N DE ESLRIDDE Duação: 90 minutos Data: adeno 1 (é pemitido o uso de calculadoa) Na esposta aos itens de escolha múltipla, selecione a opção coeta. Esceva, na olha de espostas, o númeo do

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/009 RESOLUÇÕES E RESPOSTAS QUESTÃO : a) De f(3) =, temos a + = e, de f() = 0, temos a + = 0. Subtaindo 3 b b membo a membo, temos a + a =, ou = e 3 b b 3 b b ( b) (3 b) = ( b)(3 b),

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias Matemática 8A. b A medida de cada lado do pimeio quadado é igual à medida de cada diagonal do segundo quadado. Sendo x a medida de cada lado do segundo quadado, temos: x x x Potanto, a azão da PG é igual

Leia mais

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4 UNIVERSIDDE FEDERL D PRÍB ENTRO DE IÊNIS EXTS E D NTUREZ DEPRTMENTO DE MTEMÁTI ÁLULO DIFERENIL E INTEGRLL II PLIÇÕES D INTEGRLL. oodends Poles O sstem de coodends que conhecemos p dentfc pontos noo plno

Leia mais

Física Geral. Força e Torque

Física Geral. Força e Torque ísca Geal oça e Toqe oças Se há nteação ente dos objetos, então este ma foça atando sobe os dos objetos. Se a nteação temna, os copos deam de epementa a ação de foças. oças estem somente como esltado de

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = det M : determinante da matriz M M : inversa da matriz M MN : produto das matrizes M e N AB

Leia mais

MATEMÁTICA CADERNO 2 SEMIEXTENSIVO E. FRENTE 1 Álgebra. n Módulo 5 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 2 SEMIEXTENSIVO E. FRENTE 1 Álgebra. n Módulo 5 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO SEMIEXTENSIVO E ) I) x + 0 x II) x 7 + x + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) x 6x + < não tem solução, pois a 0, "a Œ ) A igualdade x x x +, com x + 0, é verificada

Leia mais

4/10/2015. Física Geral III

4/10/2015. Física Geral III Físca Geal III Aula Teóca 9 (Cap. 6 pate 3/3): ) Cálculo do campo a pat do potencal. ) Enega potencal elétca de um sstema de cagas. 3) Um conduto solado. Po. Maco R. Loos Cálculo do campo a pat do potencal

Leia mais

Matemática D Extensivo V. 3

Matemática D Extensivo V. 3 Extensivo V. Resolva Aula 9 9.0) C 9.01) B Em AC, temos: 8 x + 7 x = 9 6 = x x = PQRO é um losango. Assim, os ângulos opostos são iguais. + 00 = 60 = 80 o Aula 10 9.0) B 10.01) Comprimento:. = Comprimento:.

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

INTEGRAL DE LINHA E ROTACIONAL DE UM CAMPO VETORIAL

INTEGRAL DE LINHA E ROTACIONAL DE UM CAMPO VETORIAL ISTITUTO DE FÍSICA DA UFBA DEPARTAMETO DE FÍSICA DO ESTADO SÓLIDO DISCIPLIA: FÍSICA ERAL E EXPERIMETAL IV FIS ITERAL DE LIHA E ROTACIOAL DE UM CAMPO VETORIAL Sea um campo de velocdades v não unfome em

Leia mais

ELECTROMAGNETISMO E ÓPTICA Cursos: MEBiom + MEFT + LMAC 1 o TESTE (16/4/2016) Grupo I

ELECTROMAGNETISMO E ÓPTICA Cursos: MEBiom + MEFT + LMAC 1 o TESTE (16/4/2016) Grupo I ELECTROMAGNETIMO E ÓPTICA Cusos: MEBom + MEFT + LMAC o TETE (6/4/06) Gupo I A fgua epesenta um conensao esféco e um conuto eteo 3 também esféco. O conensao é consttuío po um conuto nteo e ao R cm e po

Leia mais

4. TÉCNICA APLICADA A ANÁLISE BIDIMENSIONAL COM MEC

4. TÉCNICA APLICADA A ANÁLISE BIDIMENSIONAL COM MEC 4. TÉCNICA APLICADA A ANÁLISE BIDIMENSIONAL COM MEC Este capítulo sevá como base de compaação paa entende os eas objetvos deste tabalho e, a pat dsto, pecebe que alguns concetos aplcados pela técnca desenvolvda

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27 MATEMÁTICA CADERNO CURSO E ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo 7 Logaritmos: Definição e Existência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = (

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase Soluções Nível Unverstáro XXVII Olmpíada Braslera de Matemátca GABARITO Prmera Fase SOLUÇÃO DO PROBLEMA : Pelo enuncado, temos f(x) = (x )(x + )(x c) = x 3 cx x + c, f'(x) = 3x cx, f '( ) = ( + c) e f

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca ndade Capítulo 9 Geadoes elétcos esoluções dos execícos popostos 1 P.19 Dados: 4 ; 1 Ω; 0 a) 0 4 1 4 b) Pot g Pot g 4 4 Pot g 96 W Pot º Pot º 0 4 Pot º 80 W Pot d Pot g Pot º Pot d 96 80 Pot

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMAS ESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudo Depatamento de Físca Cento de Cêncas Eatas Unvesdade Fedeal do Espíto Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Últma atualzação: 3/8/5

Leia mais

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010 Físca Geal - F -18 Aula 13 Consevação do Momento Angula e Rolamento 0 semeste, 010 Consevação do momento angula No sstema homem - haltees só há foças ntenas e, potanto: f f z constante ) ( f f Com a apoxmação

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar PROVA DE MATEMÁTICA IV SIMULADO ITA. ALUNO(A): N o : TURMA:

FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar PROVA DE MATEMÁTICA IV SIMULADO ITA. ALUNO(A): N o : TURMA: D: 007 018 º EM MATEMÁTICA ITA IME SIMUL Rosângela FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar Central de Atendimento: 4006.7777 o Ensino Médio PROVA DE MATEMÁTICA IV SIMULADO

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

INSTRUÇOES: Responda no espaço próprio da questão e use o verso da página como rascunho. lim(1 + x) = e (limites fundamentais) calcule o limite

INSTRUÇOES: Responda no espaço próprio da questão e use o verso da página como rascunho. lim(1 + x) = e (limites fundamentais) calcule o limite a FASE DO CONCURSO VESTIBULAR DO BACHARELADO EM ESTATÍSTICA a PROVA DA DISCIPLINA: CE65 ELEMENTOS BÁSICOS PARA ESTATÍSTICA 6/5/8 INSTRUÇOES: Responda no espaço pópio da questão e use o veso da página como

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula. CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo

Leia mais

Aula 3 Trabalho e Energia - Bioenergética

Aula 3 Trabalho e Energia - Bioenergética Aula 3 Tabalho e Enega - Boenegétca Cálculo deencal Taa de vaação nstantânea de uma unção: lm ( ) ( ) (Função devada) Notação: lm ( ) ( ) d d Cálculo ntegal Áea sob o gáco de uma unção: ( 1 ) ) ( 2 Áea

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Capítulo 2 Galvanômetros

Capítulo 2 Galvanômetros Capítulo 2 Galvanômetos 2.. Intodução O galvanômeto é um nstumento eletomecânco que é, bascamente, um meddo de coente elétca de pequena ntensdade. Exstem bascamente dos tpos de galvanômetos, que são os

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBUAR a Fase RESOUÇÃO: Proa Mara Antôna Gouvea Questão Um quadrado mágco é uma matr quadrada de ordem maor ou gual a cujas somas dos termos de cada lnha de cada coluna da

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1

Leia mais

Plano de Aulas. Matemática. Módulo 20 Corpos redondos

Plano de Aulas. Matemática. Módulo 20 Corpos redondos Plano de Aulas Matemática Módulo 0 Copos edondos Resolução dos execícios popostos Retomada dos conceitos 8 CAPÍTULO 1 1 No cilindo equiláteo, temos: ] 6 ] cm A lateal s ] A lateal s 6 ] ] A lateal.704s

Leia mais

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}.

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}. MATEMÁTICA NOTAÇÕES = {0,,,,...} : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária; i = Izl: módulo do

Leia mais

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a NOTAÇOES R : conjunto dos números reais N : conjunto dos números naturais C : conjunto dos números complexos i : unidade imaginária: i2 = z : módulo do número z E C det A : determinante da matriz A d(a,

Leia mais

Distribuições Discretas. Estatística. 6 - Distribuição de Probabilidade de Variáveis Aleatórias Discretas UNESP FEG DPD

Distribuições Discretas. Estatística. 6 - Distribuição de Probabilidade de Variáveis Aleatórias Discretas UNESP FEG DPD Estatístca 6 - Dstbução de Pobabldade de Vaáves Aleatóas Dscetas 06-1 Como ocoe na modelagem de fenômenos detemnístcos em que algumas funções têm papel mpotante tas como: função lnea, quadátca exponencal,

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) ) cos (a) ) tg

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

o anglo resolve a prova de Matemática do ITA

o anglo resolve a prova de Matemática do ITA o anglo resolve a prova de Matemática do ITA Código: 858005 É trabalho pioneiro. Prestação de serviços com tradição de confiabilidade. Construtivo, procura colaborar com as Bancas Examinadoras em sua tarefa

Leia mais

2ªAula do cap. 11. Quantidade de Movimento Angular L. Conservação do Momento Angular: L i = L f

2ªAula do cap. 11. Quantidade de Movimento Angular L. Conservação do Momento Angular: L i = L f 2ªAula do cap. 11 Quantdade de Movmento Angula. Consevação do Momento Angula: f Refeênca: Hallday, Davd; Resnck, Robet & Walke, Jeal. Fundamentos de Físca, vol.. 1 cap. 11 da 7 a. ed. Ro de Janeo: TC.

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional

Leia mais

Lista de Matemática ITA 2012 Números Complexos

Lista de Matemática ITA 2012 Números Complexos Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto

Leia mais

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0.

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0. UFSC Matemática (Violeta) 1) Resposta: 8 01. Incorreta. f(0, ) = f(0, ) = 0 0. Correta. m < 0 m 1 < 0 1 Logo, f m = m 1 m 1 < m 1 < m 0. Correta. Pela função f(x) = x x z 08. Incorreta. Im(f) = z 16. Incorreta.

Leia mais

Uma sonda de exploração espacial prepara-se para colocar um satélite de comunicações numa órbita em redor do planeta Marte.

Uma sonda de exploração espacial prepara-se para colocar um satélite de comunicações numa órbita em redor do planeta Marte. Lcencatua em Engenhaa Geológca e de Mnas Lcencatua em Matemátca Aplcada e Computação Mestado Integado em Engenhaa Bomédca Mecânca e Ondas 1º Ano -º Semeste º Teste/1º Exame 0/06/017 11:30h Duação do teste:

Leia mais

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV. NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto

Leia mais

Congruência de triângulos

Congruência de triângulos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade IV: Série 4 Resoluções Congruência de triângulos 1. a) 90 + 3x + x + x + 30 360 6x + 10 360 6x 40 x 40 b) 105

Leia mais

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido

Leia mais

Para duas variáveis aleatórias X e Y define-se Função Distribuição Cumulativa CDF F XY (x,y)

Para duas variáveis aleatórias X e Y define-se Função Distribuição Cumulativa CDF F XY (x,y) Vaáves Aleatóas (contnuação) Po. Waldec Peella Dstbução Conunta: po: Paa duas vaáves aleatóas e dene-se Função Dstbução Cuulatva CDF F (,y) P ( e y ) = F (,y ) e a Função Densdade de Pobabldade de Pobabldade

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Áreas de Figuras Planas: Resultados Básicos - Parte 2. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M.

Áreas de Figuras Planas: Resultados Básicos - Parte 2. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Mateial Teóico - Módulo Áeas de Figuas Planas Áeas de Figuas Planas: Resultados ásicos - Pate Nono no uto: Pof. Ulisses Lima Paente Reviso: Pof. ntonio aminha M. Neto 8 de outubo de 08 xemplos Nesta segunda

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

TICA. Sistemas Equivalentes de Forças MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Sistemas Equivalentes de Forças MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CPÍTULO 3 Copos ECÂNIC VETORIL PR ENGENHEIROS: ESTÁTIC TIC Fednand P. Bee E. Russell Johnston, J. Notas de ula: J. Walt Ole Teas Tech Unvest Rígdos: Sstemas Equvalentes de Foças 2010 The cgaw-hll Companes,

Leia mais

Questão 2. Questão 1. Questão 3. alternativa D. alternativa D. alternativa B

Questão 2. Questão 1. Questão 3. alternativa D. alternativa D. alternativa B NOTAÇÕES C: conjunto dos números compleos. Q: conjunto dos números racionais. R: conjunto dos números reais. Z: conjunto dos números inteiros. N {0,,,,...}. N {,,,...}. 0: conjunto vazio. A \ B { A; B}.

Leia mais

Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Relação de Stewart 9 ano E.F. Professores Cleber Assis e Tiago Miranda Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Relação

Leia mais

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm.

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm. Tarefas 05, 0, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B Gabarito: 0. D Calculando: x x x 4x x S,5,5 5 x x 0 x x7 4 ( 7) 5 5 5 x' 0,75 (não convém) x 4 x''

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 13 EXERCÍCIOS 1) A representação cartesiana da função y = ax 2 + bx + c é a parábola abaixo. Tendo em vista

Leia mais

Matemática 1 a QUESTÃO

Matemática 1 a QUESTÃO Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é

Leia mais

CAPÍTULO 10 DINÂMICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS

CAPÍTULO 10 DINÂMICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS 94 CAPÍTUL 10 DNÂCA D VENT ESPACAL DE CPS ÍDS As equações geas que desceve o ovento de u copo ígdo no espaço pode se dvddas e dos gupos: as equações que desceve o ovento do cento de assa, equações de Newton

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

CONHECIMENTOS ESPECÍFICOS ENGENHEIRO / ÁREA ELETRICISTA

CONHECIMENTOS ESPECÍFICOS ENGENHEIRO / ÁREA ELETRICISTA CONHECIMENTOS ESPECÍFICOS ENGENHEIRO / ÁREA ELETRICISTA 26. Obseve a fgua abaxo. Consdeando que a fgua lusta uma ponte esstva, na qual fo nseda uma esstênca R = 8 Ω ente os nós C e D, a coente desse ccuto

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

QUESTÃO 01. Se x, y e z são números reais, é verdade que: 01) x = 2, se somente se, x 2 = 4. 02) x < y é condição suficiente para 2x < 3y.

QUESTÃO 01. Se x, y e z são números reais, é verdade que: 01) x = 2, se somente se, x 2 = 4. 02) x < y é condição suficiente para 2x < 3y. SIMULADO DE MATEMÁTICA _ 008 a SÉRIE E M _ COLÉGIO ANCHIETA-BA ELABORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO 0 Se x, y e z são números reais, é verdade que: 0)

Leia mais

Matemática D Intensivo V. 2

Matemática D Intensivo V. 2 Intensivo V. Execícios 0) Note que o lado ( ) do tetaedo é a diagonal da face do cubo de aesta, sendo assim: D 0) 0) 0) C 05) Segue que a áea da face do tetaedo é: l ( ).. Soma das aestas é dada po: S

Leia mais

3013 5400 www.elitecuritiba.com.br RESOLUÇÃO COMENTADA ITA 2010-2011 16/DEZ/2010

3013 5400 www.elitecuritiba.com.br RESOLUÇÃO COMENTADA ITA 2010-2011 16/DEZ/2010 O ELITE CURITIBA aprova mais porque tem qualidade, seriedade e profissionalismo como lemas. Confira alguns de nossos resultados e comprove porque temos mais a oferecer. Elite Curitiba: 6 anos de existência,

Leia mais

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27 MATEMÁTICA CADERNO CURSO D ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo Logaritmos: Definição e Eistência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = ( )

Leia mais

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A Pepaa o Eame 03 07 Matemática A Página 84. A taa de vaiação instantânea da função f em c é igual a f c e é dada po: c f f c f c h f c f lim lim c c ch h0 h Resposta: D... Como g é deivável em tem um máimo

Leia mais

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C.

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C. 13 Geometia I - GRITO VLIÇÃO - 01/ Questão 1. (pontuação: ) o seto O de cento O, aio O = 3 e ângulo O = 60 o está inscita uma cicunfeência como mosta a figua. a) alcule o aio dessa cicunfeência. b) alcule

Leia mais

Breve Revisão de Cálculo Vetorial

Breve Revisão de Cálculo Vetorial Beve Revsão de Cálculo Vetoal 1 1. Opeações com vetoes Dados os vetoes A = A + A j + A k e B = B + B j + B k, dene-se: Poduto escala ente os vetoes A e B A B A B Daí, cos A AB cos A B B A A B B AB A B

Leia mais

PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão.

PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão. PÁG0 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão 1 Daniel tem ração suficiente para alimentar quatro galinhas durante 18 dias No fim do 6 o

Leia mais

Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]

Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C] Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,

Leia mais

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem

Leia mais

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27 MATEMÁTICA CADERNO SEMIEXTENSIVO D ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo Logaritmos Definição e Existência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log

Leia mais